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ABSTRACT

The relationship between El Ni~no–Southern Oscillation (ENSO) and tropical storm (TS) activity over the

western North Pacific Ocean is examined for the period from 1981 to 2010. In El Ni~no years, TS genesis

locations are generally shifted to the southeast relative to normal years and the passages of TSs tend to

recurve to the northeast. TSs of greater duration and more intensity during an El Ni~no summer induce an

increase of the accumulated tropical cyclone kinetic energy (ACE). Based on the strong relationship between

the TS properties and ENSO, a probabilistic prediction for seasonal ACE is investigated using a hybrid

dynamical–statistical model. A statistical relationship is developed between the observed ACE and large-

scale variables taken from the ECMWF seasonal forecast system 4 hindcasts. The ACE correlates positively

with the SST anomaly over the central to eastern Pacific and negatively with the vertical wind shear near the

date line. The vertical wind shear anomalies over the central and western Pacific are selected as predictors

based on sensitivity tests of ACE predictive skill. The hybrid model performs quite well in forecasting sea-

sonal ACE with a correlation coefficient between the observed and predicted ACE at 0.80 over the 30-yr

period. A relative operating characteristic analysis also indicates that the ensembles have significant proba-

bilistic skill for both the above-normal and below-normal categories. By comparing the ACE prediction over

the period from 2003 to 2011, the hybrid model appears more skillful than the forecast from the Tropical

Storm Risk consortium.

1. Introduction

There is a growing demand for extended-range fore-

casts of tropical storm (TS) activity with lead times of

months over the western North Pacific (WNP), a region

where more than one-third of the global TSs originate

(Elsner and Liu 2003). The socioeconomic importance

of accurate prediction of TSs has motivated the devel-

opment of seasonal prediction systems for TSs and several

agencies issue the seasonal forecast for TSs over the WNP

basin. Prediction methods can be classified as either a pure

statistical prediction or dynamical prediction [see over-

view in Camargo et al. (2007a)]. TS predictions over the

WNP by the CityUniversity of HongKong (http://weather.

cityu.edu.hk/tc_forecast/forecast.htm) and the Tropical
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StormRisk consortium (TSR; http://www.tropicalstormrisk.

com) are based on statistical methods that are built on

the lag relationship between predictand and predictors

from the previous seasons. On the other hand, the In-

ternational Research Institute for Climate and Society

(IRI; http://iri.columbia.edu/forecast/tc_fcst/wn_pacific)

and the European Centre for Medium-Range Weather

Forecasts (ECMWF) release dynamical predictions for

WNPTS activity directly from coupled ocean–atmosphere

climate models. Vitart et al. (2007) has shown that there is

added predictability in dynamical predictions over statis-

tical methods.

Recent studies have shown that a combination of dy-

namical and statistical methodologies provides addi-

tional skill beyond that of either methodology (H.Wang

et al. 2009; Kim and Webster 2010; Vecchi et al. 2011).

Kim and Webster (2010) showed that successful sea-

sonal forecasts of North Atlantic hurricane activity can

be obtained by applying a dynamical–statistical hybrid

model. They used hindcasts from the ECMWF seasonal

forecast system 3 (hereinafter System 3; Stockdale et al.

2011) to build a statistical relationship between the ob-

served seasonal hurricane numberswith simultaneous sea

surface temperature (SST) and vertical wind shear from

the hindcasts. The prediction skill of the hybrid model

shows better (or at least competitive) performance than

publicly available results of hurricane forecast models.

Additional predictive skill has been found for hurricane

prediction by considering the slowly varying climate sig-

nals as predictors, such as El Ni~no–Southern Oscillation

(ENSO) and the Atlantic meridional mode (AMM)

(Kim andWebster 2010).We attempt to apply the hybrid

prediction concept to TS prediction in the WNP.

Although a proportion of WNP TS activity is related

to the Madden–Julian oscillation (Liebmann et al. 1994;

Sobel and Maloney 2000; Camargo et al. 2007b) and de-

cadal variability (Matsuura et al. 2003; Ho et al. 2004;

Chan 2008; Liu and Chan 2008; Yeh et al. 2010), a size-

able portion of variability appears to be related to large-

scale ENSO variability. The ENSO phase affects the

genesis location, passage, duration, and intensity of TSs

over theWNP significantly (Chan 2000;Wang and Chan

2002; Camargo and Sobel 2005; Ho et al. 2005; Chen

et al. 2006; Camargo et al. 2007b; Kim et al. 2011). In El

Ni~no years, the location of TS genesis is shifted to the

southeastern part of the WNP but to the northwestern

part of the WNP in La Ni~na years. TSs that form farther

southeast during El Ni~no years are more likely to recurve

toward higher latitudes, whereas duringLaNi~na TSs tend

to extend more westward, increasing the probability of

landfall over East Asian monsoon regions, such as south

China (Elsner and Liu 2003; Camargo et al. 2007b; Kim

et al. 2011). Therefore, in strong El Ni~no years, TSs tend

to have a higher potential to become generally more in-

tense and long lived because of their formation nearer to

the equator than in normal years, allowing a longer pe-

riod within a warm SST environment (Wang and Chan

2002; Camargo and Sobel 2005; Camargo et al. 2007b).

These characteristics are induced by large-scale ocean–

atmosphere interactions associatedwith regional changes

in SST, vertical wind shear, the extension of the monsoon

trough, and lower-tropospheric relative vorticity anom-

alies (Chen et al. 1998; Chan 2000; Chia and Ropelewski

2002; Wang and Chan 2002; Wu et al. 2004; Kim et al.

2005; Camargo et al. 2007b; Kim et al. 2011). Because of

the strong influence of ENSO on TS activity described

above, ENSO is generally considered to be the main

predictor in seasonal statistical TS prediction models

(Chan et al. 1998; Chan et al. 2001;Wang andChan 2002;

Liu and Chan 2003, Lea and Saunders 2006).

Camargo and Sobel (2005) have codified the impact of

ENSO on the WNP tropical cyclone properties for the

period 1950–2002 using the Joint Typhoon Warning

Center (JTWC) best-track dataset. The relationships be-

tween ENSO and TS genesis location, passage, number,

intensity, and lifetime are revised here using the newly

developed best-track dataset from the International Best

Track Archive for Climate Stewardship (IBTrACS)

project (Knapp and Kruk 2010; Knapp et al. 2010). The

set comprises a global best-track collection from the

world’s tropical cyclone forecast centers. The IBTrACS

dataset includes the JTWC best-track dataset. Here, the

IBTrACS dataset is used for the most recent 30-yr pe-

riod from 1981 to 2010 providing a set of interannually

varying TS properties. With this dataset, we test the

hypothesis that a combination of the two methodologies

(dynamical and statistical model) provides additional

skill beyond that which can be gleaned from either dy-

namical or statistical model alone. Using ECMWFmodel

seasonal hindcasts as the dynamical base, a hybrid sea-

sonal prediction model is developed and applied for

WNP seasonal TS prediction for a 30-yr period. Section 2

describes the basic data. Themodulation of TS properties

by different ENSOphases is examined in section 3. Based

on the TS–ENSO relationship, the hybrid prediction for

WNP TS is examined in section 4. The results are then

compared with operational forecasts from the Tropical

Storm Risk consortium. Results are summarized and

discussed in section 5.

2. Data and method

A total of 30 Northern Hemisphere summers are ex-

amined in the 1981–2010 period. We define a TS as a sys-

tem having maximum sustained wind exceeding 30kt (or

15.4m s21) and an intense typhoon (ITY) as a typhoon
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exceeding category 3 (maximum sustained wind .86 kt

or 44.2m s21). It needs to be mentioned that IBTrACS

use 10-min average wind rather than 1-min wind, so the

definition for tropical storm (or typhoon) is slightly

different from other datasets, such as that constructed at

JTWC. Details of the rescaling method are discussed in

Knapp and Kruk (2010). The analysis for TS properties

is focused on the WNP TS season from April to De-

cember. We focus on the genesis location, passage, and

the accumulated tropical cyclone kinetic energy index

(ACE; e.g., Bell et al. 2000), which combines the num-

bers, lifetime, and intensity of TSs. Compared to the total

number of TSs, the ACE provides information on the

basinwide TS activity and is a more suitable parameter

withwhich to examine the influence of large-scale climate

variability on TS activity. The index is calculated by

squaring the maximum sustained surface wind speed of

the tropical storm system every 6 h and summing it up

over the April–December season. Total ACE in a sea-

son is defined as �N
i51�

tfi
toi
y(t)2, where y(t) is the maxi-

mum sustained wind speed (kt; 1 kt’ 0.5m s21) at time t

in 6-h time step, i is each individual storm, toi and tfi are

the beginning and the end of the lifetime of individual

storm, and N is the total number of tropical storms. The

mean intensity per TS is defined as the ACE divided by

N. The basic unit of ACE and intensity is 104 kt2. The

seasonal total of TS days is defined as �N
i51�

tfi
toi
Dt, with

Dt as 6 h and divided by 4. The mean lifetime per TS is

defined as the TS days divided by N.

The ECMWF seasonal forecast system 4 (System 4) is

a fully coupled atmosphere–ocean forecast system that

provides operational seasonal predictions together with

a substantial hindcast dataset (www.ecmwf.int/products/

forecasts/seasonal/documentation/system4). TheECMWF

upgraded its operational seasonal forecasts from Sys-

tem 3 to System 4 (Molteni et al. 2011) in late 2011.

System 4 utilizes the most recent atmospheric model

version, higher spatial resolution (spectral T255) than

System 3 (spectral T159), a higher top of the atmosphere

(0.01 hPa, 91 levels) than System 3 (0.5 hPa, 62 levels),

a large number of ensemble members (15), and a longer

hindcast dataset (30 yr). As in System 3, System 4 initial

perturbations are defined with a combination of atmo-

spheric singular vectors and an ensemble of ocean

analyses. System 4 seasonal hindcasts consist of 7-month

simulations initialized on the first day of every month

from 1981 to 2010. Large-scale ocean–atmosphere vari-

ables are selected as predictors for July–October

(JASO; the active TS period in WNP) from various

hindcasts started from different initial conditions from

April to July. Observed SST data are obtained from

monthly National Oceanic and Atmospheric Adminis-

tration (NOAA) Optimum Interpolation SST version 2

(Reynolds et al. 2002). The wind data at 850 and 200 hPa

are obtained from the ECMWF Interim Re-Analysis

(ERA-Interim) products, the latest global atmospheric

reanalysis dataset produced by ECMWF (Berrisford

et al. 2009). The vertical wind shear, used in the analysis,

is defined as a magnitude of differences of zonal wind

between 850 and 200 hPa.

3. Modulation of tropical storm characteristics by
ENSO phases

To examine the impact of ENSO on the seasonal TS

activity, we define El Ni~no and La Ni~na years as when

the JASO Ni~no-3.4 index exceeds its one standard de-

viation. Seven El Ni~no years (1982, 1987, 1991, 1997,

2002, 2004, and 2009), six La Ni~na years (1985, 1988,

1998, 1999, 2007, and 2010), and 17 neutral years were

selected. The definitions of ‘‘genesis’’ and ‘‘passage’’ are

the same as in Kim et al. (2009). The TS genesis metric in

each ENSO phase is defined as the number of TSs that

formed in each grid box (58 3 58) during the JASOperiod

divided by the number of years. Then, the TS genesis

metric is smoothed by averaging the eight grid points

surrounding the main grid point with 1:8 weighting. The

TS passage metric is calculated in a similar way to genesis

except by counting the number of TSs moving into each

grid box. Figure 1 shows the difference of genesis and

passage composites between El Ni~no and La Ni~na years.

Statistical significance is inferred when the composite

difference exceeds the 90% and 95% confidence level

based on a two-tailed Student’s t test. In an El Ni~no year,

the TS genesis location shows a southeastward displace-

ment around 58–158N, 1408–1608E, while the north-

western part of the WNP displays relative suppression

(Fig. 1a). This southeastward shift in an El Ni~no year has

been well documented in previous studies and has been

explained by the changes of the large-scale circulation

patterns including the monsoon trough, low-level flow,

or vertical wind shear (Chen et al. 1998; Chan 2000;

Wang and Chan 2002; Chia and Ropelewski 2002; Kim

et al. 2011). The passage statistics are consistent with the

changes in genesis location (Fig. 1b). During El Ni~no

years, TSs tend to recurve northeastward, whereas in La

Ni~na years, as the genesis locations tend to move north-

westward, TSs tend to enhance landfall over the eastern

coast of China and the southern parts of the Korean

Peninsula and Japan (Wang and Chan 2002; Elsner and

Liu 2003; Chan 2000; Camargo et al. 2007b; Kim et al.

2011). These well-known characteristics of TS genesis

and passage changes relative to the phase of ENSO are

clearly recorded by IBTrACS.

Figure 2 shows a 30-yr comparison of the April–

December TS number, ACE, and Ni~no-3.4 index. The
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highest number of TSs (33) occurs in 1994, while the

lowest number (13) occurs in 2010. The relationship

between total TS number and Ni~no-3.4 is not statisti-

cally significant with correlation coefficients of less

than 0.3 over the entire 30-yr period. Several opera-

tional typhoon prediction centers use the tropical Pa-

cific SST as a predictor of TS number assuming some

type of nonlinear relationship with ENSO (Chan 2000;

Chen et al. 1998; Wang and Chan 2002; Camargo and

Sobel 2005, Camargo et al. 2007b). However, the relation-

ship between the TS number and ENSO is still contro-

versial given the differences in datasets and methods of

analysis. On the other hand, the interannual variation of

ACE is strongly related to ENSOwith the smallest ACE

value occurring in the La Ni~na year of 1999 and the

highest in the El Ni~no year of 2004 (Fig. 2). The corre-

lation coefficient between ACE and the Ni~no-3.4 index

is 0.76.

To examine the large-scale patterns associated with

TS characteristics, the correlation coefficients between

the observed JASO SST anomaly and the TS properties

are calculated over the 30-yr period (Fig. 3). The total

ACE is highly correlated with the cold SST anomalies

over the western Pacific, especially near the Philippine

Sea, and with the warm SST anomalies over the broad

area from the equatorial central to eastern Pacific (Fig.

3a). Table 1 shows the average of each indices (per year)

classified by different ENSO phases. The average of

total ACE for El Ni~no years is 257 3 104 kt2, which is

more than twice asmuch as LaNi~na years (1183 104 kt2).

The average ACE for neutral years (198 3 104 kt2) is in

between the El Ni~no and La Ni~na years. A similar linear

relationship between ACE and the Ni~no indices has

been found by Camargo and Sobel (2005) for the period

1950–2002. ACE is also strongly correlated with the

total days of TS occurrence in a season (TS days) with

FIG. 1. Difference betweenEl Ni~no and LaNi~na years for (a) tropical storm genesis and (b) tropical storm passage.

Negative contours are dashed. Both indices are multiplied by 100. Contour interval is 10 for genesis and 30 for

passage. Shaded areas represent significant areas in 90% (light blue) and 95% (dark blue) confidence levels based on

a two-tailed Student’s t test.

FIG. 2. Variability fromyear to year of observed number of tropical stormsN, ACE, andNi~no-3.4

index from 1981 to 2010.
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correlations as high as 0.87. Thus, the TS days metric is

influenced by ENSO variation as well (Fig. 3b). The

total number of TS days is 224 for El Ni~no, 148 for La

Ni~na, and 209 for neutral years (Table 1). The difference

in TS days between El Ni~no and neutral years is 15 days,

while the difference between La Ni~na and neutral years

is 61 days. These results are consistent with Camargo

and Sobel (2005).

The weak relationship between the TS number and

ENSO (Fig. 4c and Table 1) suggests that the strong

relationship between the TS days and ENSO (Fig. 3b)

mainly results from the mean lifetime of individual TS.

As the tropical storm genesis location is shifted to the

southeast in an El Ni~no summer, a TS has a higher prob-

ability of being a longer-lived storm (Wang andChan 2002;

Camargo and Sobel 2005; Camargo et al. 2007b). The

spatial pattern of a strong correlation coefficient between

the lifetime of a TS and the SST supports this conclusion

(Fig. 4a). Themean lifetime is 2 days longer in anElNi~no

year compared to a La Ni~na year (Table 1). Although

there is a smaller TS number during an El Ni~no year

compared to a neutral year, once a TS occurs it stays

longer in the Pacific contributing to large total TS days

and ACE (Camargo and Sobel 2005). The mean TS in-

tensity is also positively correlated with ENSO (Fig. 4b).

The correlation coefficient between interannual varia-

tion of mean TS intensity and Ni~no-3.4 is 0.70. Themean

intensity is 113 104 kt2 in an El Ni~no year, 63 104 kt2 in

a La Ni~na year, and 8 3 104 kt2 in a neutral year (Table

1). However, as mentioned above, the TS number is not

influenced by ENSO phases (Table 1). Compared to

neutral years, a slight reduction of the TS number ap-

pears both in El Ni~no and La Ni~na years. Therefore, it

can be concluded that the increase of total ACE in an El

Ni~no year occurs not because of an increase of TS num-

bers, but by an increase of intense and longer-traveling

TSs. In El Ni~no years, the large tendency for intense TSs

results in an increase in the number of intense typhoons

(nITY) (Table 1). The average number of ITYs in El Ni~no

years is 9, almost twice as many as in La Ni~na years (4).

4. Probabilistic prediction for the ACE

Based on the relationship between TS characteristics

and ENSO, a hybrid prediction model is developed for

seasonal TSs over the WNP, in a similar manner as in

KimandWebster (2010) for theNorthAtlantic hurricane.

Here, we forecast seasonal total ACE in WNP, which is

a common predictand used in various operational fore-

cast centers such as TSR, IRI, and ECMWF.

a. Predictor selection

We test the hypothesis that a combination of statistical

and dynamical models provides additional skill for sea-

sonal WNP TS prediction beyond that of either of the

component models. Predictors are selected fromECMWF

System 4 hindcasts based on their statistical relationship

with the observed ACE. First, to build a statistical rela-

tionship between the observed ACE and variables from

hindcast, the correlation coefficients between the observed

ACE and the ensemble averaged JASO SSTs and vertical

wind shear anomaly fromSystem4 are calculated. Figure 5

shows the correlation coefficient between the observed

ACE and the JASO SST and vertical wind shear anom-

alies from both observations (Figs. 5a,c) and hindcasts

FIG. 3. Spatial distribution of correlation coefficients between

the interannual variation of JASO SST anomaly with (a) ACE and

(b) TS days. The solid black contours denote the threshold value

for the 95% confidence level.

TABLE 1. Mean ACE, TS days, lifetime, intensity, number of TS, and number of intense typhoons per year for El Ni~no, La Ni~na, and

neutral years. Standard deviations are listed in parentheses. Numbers are rounded to the nearest integer.

ACE (104 kt2) TS days Lifetime (days) Intensity (104 kt2) N nITY

El Ni~no 257 (39) 224 (34) 9 (1) 11 (1) 24 (3) 9 (2)

Neutral 198 (43) 209 (43) 8 (1) 8 (1) 25 (4) 7 (2)

La Ni~na 118 (39) 148 (46) 7 (1) 6 (1) 21 (6) 4 (2)
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(Figs. 5b,d). In the observed fields, significant correla-

tions are found with SSTs in the central to east Pacific

(Fig. 5a) and with vertical wind shear in the equatorial

North Pacific (Fig. 5c). The vertical wind shear is known

as a main factor that controls the TS activity. Strong

vertical wind shear inhibits the genesis and development

of TSs, while weak vertical wind shear promotes genesis

and development (Gray 1979; Chia and Ropelewski

2002). In an El Ni~no year, the warm SST anomaly over

the equatorial central to east Pacific is associated with

a shifting of the Walker circulation. The strong ascend-

ing motion, normally located over the western Pacific

warm pool, shifts to the east. With this displacement,

both the easterly wind in the lower troposphere and the

westerly wind in the upper troposphere weaken, resulting

in a decreased vertical shear anomaly in El Ni~no years

(Figs. 5a,c). Thus, during an El Ni~no year, the increase in

SST and decrease in wind shear over the central Pacific

play a crucial role in enhancing TSs.

The relationship between observed ACE and the

predicted SST andwind shear anomaly from themean of

15 ensemble members generated with the 1 July initial

condition is similar to those found in observed fields,

with slight spatial differences presumably due to the

model bias (Figs. 5b,d). For central-east Pacific SST and

wind shear anomaly, the areas that exceed statistical

significance at the 95% confidence level are even broader

than from observations, suggesting that there is potential

skill for predicting the ACE. Based on these correlation

coefficient maps, we have selected four potential pre-

dictors that exhibit high correlation with the observed

ACE. The potential predictors are the area mean values

of anomalies: 1) the SST over the central Pacific (CSST;

58S–58N, 1608E–1508W), 2) the wind shear over the

central Pacific (CWIND; 108S–108N, 1608E–1508W), 3)

the wind shear over the southwestern Pacific (WWIND;

128S–58S, 1308–1408E), and 4) the wind shear over the

equatorial western Pacific (EWIND; 38S–88N, 1258–1358E).
It has to be noted that this selection of predictors is

somewhat arbitrary and there may be room for improve-

ment that will be further investigated. But, the choice is

sufficient to demonstrate predictive skill.

Observed ACE correlates with predicted CSST,

CWIND,WWIND, andEWINDat 0.74,20.76, 0.77, and

20.81, respectively, all exceeding the 99% significance

level. To select the optimal predictor for ACEprediction,

sensitivity tests are performed using four potential pre-

dictors singularly or in combination. To build a statistical

relationship, a simple or multiple linear regression model

is constructed between the observed ACE and four pre-

dictors following the method of Kim andWebster (2010).

A cross-validation method (leaving one year out) is ap-

plied to obtain the regression parameters. The parame-

ters are then applied to the predictors of the target year to

obtain ACE prediction. Although the prediction skill for

ACE exceeds 0.7 when only one of the predictors is

FIG. 4. As in Fig. 3, but for the (a) lifetime, (b) intensity, (c) number of TSs, and (d) number of ITYs.
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used, it improves to 0.80 with the best combination of

predictors coming from a combination of CWIND and

WWIND. Including the Ni~no-4 SST (CSST) or the

EWIND does not increase the skill score significantly

because the information they impart has already been

included in the vertical wind shear.

b. Probabilistic prediction for seasonal ACE

Figure 6 shows the hybrid prediction for ACE in 15

ensemble members and ensemble mean using two pre-

dictors (CWIND and WWIND) at 0-month lead time

initialized on 1 July. The correlation and root-mean-square

error (RMSE) between the observed and predicted

ACE over the 30-yr period are computed for each en-

semble member. The hybrid model performs quite well

in forecasting ACE. The correlation coefficient for en-

semble members ranges from 0.66 to 0.76 and RMSE

ranges from 41 to 52. The mean correlation coefficient

and RMSE for 15 ensemble members are 0.72 and 45,

respectively. The skill of the ensemble mean represents

the highest correlation of 0.80 and the lowest RMSE

of 38.

The hybrid prediction model shows promising re-

sults. However, it should be kept in mind that the cross-

validation method could artificially overestimate the

skill as a result of predictor screening (DelSole and Shukla

2009). Therefore, in addition to the cross-validation pro-

cedure, we also carry out the hybrid prediction thatmimics

a real time forecast. In this ‘‘retrospective forecast,’’

data after the forecast time are not included in the pre-

dictor selection procedure. Twenty years of data from

1991 to 2010 are set for the forecast experiment. Tomake

the forecast for 1991, the hindcasts fromonly 1981 to 1990

have been used to establish the statistical relationship

between the ACE and the ensemble mean hindcasts. For

the 1992 forecast, data are used from only 1981 to 1991,

and so on. In Fig. 6, the blue line represents this retro-

spective forecast. The correlation coefficient between the

cross-validation and retrospective forecasts over the 20-yr

period (1991–2010) is 0.95. The correlation between the

observed ACE and retrospective forecast is 0.83.

Given that there are 15 ensemble members in the

hindcasts, the probabilistic characteristics of these pre-

dictions are explored using the relative operating charac-

teristic (ROC) score (Mason 1982). TheROC is evaluated

by considering the hit rates (or probability of detection)

and false-alarm rates at different probability thresholds.

We consider probability thresholds ranging from 0% to

100%with a 10% interval. A probabilistic forecast of an

event for two tercile categories is performed. Figure 7

FIG. 5. The spatial distribution of correlation coefficients between observed ACE and the JASO (top) SST

anomaly and (bottom)wind shear anomaly for (a),(c) observations and (b),(d) themean of ensembles generatedwith

IC07. The solid black contours represent statistical significance at 95% confidence level.
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shows the ROC curve for ACE prediction for above and

below normal, which are defined as observed ACE be-

ing above the upper tercile and below the lower tercile.

A quantitative measure of the skill is obtained by cal-

culating the area under theROC curve (theROC score).

A ROC score above 0.5 indicates skill better than cli-

matology. The ROC score for above normal and below

normal exceeds 0.8 and 0.9, respectively, implying that

there is a greater than 80% (90%) probability that the

forecasts can successfully discriminate between above-

normal (below normal) years from other years.

To explore the possibility of the extension of the lead

time ahead of the active tropical storm season, we have

examined the prediction skill of the hybrid model de-

pending on lead times from 0 to 3 months. Two predictors

of CWIND and WWIND were used singly or in com-

bination to test the prediction skill in extended lead

times. Figure 8 shows the prediction skill for ACE as a

function of lead months from zero [initial condition of 1

July (IC07)] to three lead months [initial condition of 1

April (IC04)]. Although the prediction skill for ACE

decreases as a function of lead time, skill for seasonal

ACE using the IC04 stays high with a correlation co-

efficient of 0.7, which is statistically significant at the

99% level. Using both CWIND and WWIND together

as predictors always gives the best skill compared to the

case using a single predictor. Table 2 summarizes the

ROC scores for ACE prediction for above- and below-

normal categories as a function of lead times. The ROC

scores range from 0.76 to 0.91.

Next, we compare the ACE prediction skill with op-

erational ACE prediction issued by the tropical storm

risk. These comparisons are shown in Table 3. ECMWF

and the IRI also provide a dynamical seasonal ACE

outlook forWNP basin, but it is difficult to compare with

our results because ECMWF ACE outlook is available

only from 2006 and the IRI only provides tercile prob-

ability prediction. Hybrid and TSR prediction is verified

over the overlapping 9-yr period from 2003 to 2011. It

should be noted that the observed ACE is different be-

tween the hybrid model and the TSR. The TSR forecast

FIG. 6. Seasonal ACE from observations (black line, open circles), ensemble mean for cross-

validation forecasts (red line, crosses), individual ensembles (gray lines), and ensemble mean

for retrospective forecasts (blue line,diagonal crosses). The correlation coefficient between the

ensemble mean cross validation forecast and the observed ACE is 0.80. The horizontal black

line denotes the 30-yr average of observed ACE.

FIG. 7. ROC curves for the ensemble ACE predictions on

0-month lead time (IC07) for above normal (black) and below

normal (gray). The dots correspond to probabilities ranging from

0% to 100% with a 10% interval. The numbers in parentheses in-

dicate the area under the ROC curve (ROC score). A ROC score

above 0.5 indicates skill better than climatology. The diagonal line

represents a ROC curve with no probabilistic skill.
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spans the full season from January to December ACE

defined by JTWC best-track data, while our hybrid

model uses ACE from April to December defined by

IBTrACS. The standard deviation of ACE is 98 3
104 kt2 for JTWC and 763 104 kt2 for the IBTrACS over

the 9-yr period from 2003 to 2011. To make the forecast

for 2003, the ECMWF hindcasts from 1981 to 2002 have

been used to establish the statistical relationship with

observed ACE. For the 2004 forecast, data were used

from 1981 to 2003, and so on. We then compare the

hybrid forecast and the TSR forecast issued in May and

July (TSR ACE prediction is issued only in May and

July). The RMSE and rank correlation of both forecasts

are listed in the Table 3. Prediction skill (correlation

coefficients) over the 30-yr verification period is listed in

parentheses for the hybrid prediction. The TSR ACE

prediction is compared with observedACE from JTWC.

Comparing the ACE prediction reported in May and

July, the RMSE for the TSR is more than twice as high

as the hybrid prediction. Rank correlations over 9 years

for July prediction show skill above 0.6 in both models.

However, the prediction skill represents large differ-

ences in the May prediction, which is 0.22 for the TSR

and 0.83 for the hybrid model. The prediction skill for

the hybrid prediction model exceeds 0.7 for the 30-yr

period even in May.

The performance of theACE forecast (not in hindcast

mode, but in forecast mode) is examined for 2011. A full

51-member ensemble real-time forecast from theECMWF

System4 is available fromMay2011.As the IBTrACSdata

are only available through 2011, the real-time forecast

and verification are performed only for 2011. We applied

the hybrid prediction for 2011ACE and compared it with

the observed ACE. The forecast includes deterministic

and probabilistic forecasts using the ECMWF forecasts

initialized in May (IC05), June (IC06), and July (IC07)

(Table 4). The 30-yr averaged observed ACE and its

standard deviation are also shown in the table. The ac-

tual ACE value in 2011 was 154 3 104 kt2, which was in

the below-normal category. The hybrid forecast over-

predicted the ACE values in May and June (Table 4).

The overpredicted seasonal ACE inMay forecast results

from the ENSO condition in 2011. A La Ni~na condition

persisted for several months from the previous summer

FIG. 8. Correlation coefficients between the observed and predicted ACE index as a function

of forecast lead time for four initial months fromApril (IC04) to July (IC07). The limiting value

of significant correlation coefficient is 0.46 at the 99% level.

TABLE 2. ROC score for ensemble ACE predictions from April

(IC04) to July (IC07) forecast start months.

IC04 IC05 IC06 IC07

Above normal 0.78 0.76 0.76 0.81

Below normal 0.88 0.79 0.80 0.91

TABLE 3. RMSE and rank correlation for ACE prediction by

two forecasts (hybrid and TSR) for the 9-yr period from 2003 to

2011. Numbers are rounded to the nearest integer. Hybrid forecast

skill (temporal correlation coefficient) for the 30-yr period is listed

in parentheses. TSR prediction is compared with JTWC data.

Hybrid TSR

Month forecasts issued May July May July

RMSE 39 (42) 36 (38) 105 91

Rank correlation 0.83 (0.73) 0.82 (0.80) 0.22 0.68
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to spring 2011, and then the SST anomaly turned into

a neutral condition around May 2011. The seasonal SST

forecast issued in May predicts an El Ni~no condition for

the 2011 summer and fall, which results in an over-

prediction of ACE (Table 4). However, after June 2011,

the SST condition gradually decreased and resulted in a La

Ni~na summer again. The forecast from IC07 shows higher

skill in which the ensemble mean ACE is 160 3 104kt2,

a 65% probability for below normal and only 4% for

above normal. The TSR probabilistic forecast for 2011

issued on 4 July shows 31% probability below normal,

25% above normal, and 44% normal. By comparing the

deterministic and probabilistic ACE prediction of the

hybrid model with forecasts from the TSR, the hybrid

model appears more skillful.

5. Summary and discussion

The relationship between ENSO and TS activity in

the western North Pacific has been examined using the

combined best-track datasets from IBTrACS over the

period from 1981 to 2010. The interannual variations of

TS properties are found to be strongly influenced by

ENSO, similar to the results from Camargo and Sobel

(2005). In El Ni~no years, TS genesis locations show a

southeastward displacement and the passages of TSs tend

to recurve northeastward compared to normal years. As

the TS genesis locations are generally shifted southeast in

El Ni~no boreal summer, a TS has a higher chance of

developing into an intense and longer-traveling storm. In

El Ni~no years, this larger tendency produces an increase

of ACE. The average number of intense typhoons in an

El Ni~no year is greater by a factor of 2 than in a La Ni~na

year.

Based on the statistical relationship between TS pro-

perties and ENSO, a hybrid forecast model has been

developed using a combination of dynamical and sta-

tistical models. The statistical relationship is built on the

observed ACE relative to the variability of large-scale

variables from the 30-yr ECMWF System 4 hindcasts.

The variability of ACE correlates with the ENSO SST

variability and its associated wind shear anomaly over the

equatorial Pacific. The best combination of predictors

comes jointly from the vertical wind shear averaged over

areas in central Pacific and the western Pacific. The hy-

brid model performs quite well in forecasting ACE. The

correlation between the observed ACE and the pre-

dicted ensemble mean ACE is 0.80 for a 0-month lead

with July initial conditions. Although, as can be expec-

ted, the prediction skill for ACE decreases as a function

of lead time, significant prediction skills exist for ex-

tended lead times up to 3 months. ROC analysis also

indicates that the ensembles have significant probabi-

listic skill for both the above-normal and below-normal

categories. The ROC scores range from 0.76 to 0.91 in

lead time from 0 to 3 months. By comparing the ACE

prediction of the hybrid model with forecasts from the

TSR over the period from 2003 to 2011, the hybrid model

appears more skillful.

The skill for the seasonal TS prediction in the hybrid

model depends strongly on the performance of the dy-

namical seasonal prediction system. For future work, the

seasonal hindcast data from Asian-Pacific Economic

Cooperation (APEC) Climate Center (APCC) will be

used. APCC shows an improvement for seasonal pre-

diction skill by using a multimodel ensemble approach

based on model simulations from 17 climate forecasting

centers in the APEC region (B. Wang et al. 2009). We

will apply the hybrid model to APCC models and assess

the possibility for real-time probabilistic forecast for TS

characteristics (ACE, lifetime, and intensity) over the

western North Pacific basin.
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