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1. INTRODUCTION AND MAIN RESULTS

Consider the semilinear elliptic Dirichlet boundary problem

��u � f x , u in � , u � 0 on � � , 1Ž . Ž .
N Ž .where � � R N � 1 is a bounded smooth domain and f : � � R � R

is a subcritical Caratheodory function; that is, there are positive constants´
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C , C such that1 2

p�1� �f x , t � C t � C 2Ž . Ž .1 2

	 Ž .
for all t � R and a.e. x � �, where p � 2, 2 N� N � 2 for N � 3,
	 
p � 2, �� for N � 1, 2. Let

0 � � � � � � � ���1 2 3

be the sequence of the distinct eigenvalues of the eigenvalue problem

��u � �u in � , u � 0 on � �

and let k be a fixed positive integer.
With the reduction method, two nontrivial solutions are obtained for the

Ž . Ž 
 	.nonresonant or resonant elliptic problem 1 see 2, 5�8 . Recall the
following multiple existence results.

1Ž . Ž . �THEOREM A. Suppose that f � C R, R , f 0 � 0, and f is bounded.
Assume that there exists 0 � m � k such that

� � f � 0 � � , � � lim f � t � � 3Ž . Ž . Ž .m� 1 m k k�1
� �t ��

and such that

sup f � t � � . 4Ž . Ž .k�1
t�R

Ž .Then problem 1 has at least two nontrivial solutions.

Ž . Ž . 2Ž .THEOREM B. Suppose that f t � � t � g t , g � C R, R ,k

g tŽ .
lim � 0,

t� �t ��

and

lim g t t � ��Ž .
� �t ��

� Ž . �and that g is bounded or lim inf g t � 0 holds. Assume that there� t � ��

exists 0 � m � k such that

g tŽ .
�� � � � inf � � � g 0 � �Ž .m� 1 k k mt� 4t�R � 0

and that

� � sup g� t � � .Ž .k k�1
t�R

Ž .Then problem 1 has at least two nontrivial solutions.
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 	Theorem A is due to Castro and Lazer 6 . Their approach is based on
the reduction method and finite dimensional critical point theory. That is,

Ž . Ž .under assumptions 3 and 4 , there exist a function � on the finite
dimensional space V spanned by the eigenfunctions corresponding to the
eigenvalues � , . . . , � and a function 	 which is from V to the Sobolev1 k

1Ž .space H � such that � � V is a critical point of � if and only if0
Ž . Ž . Ž . Ž .� � 	 � is a solution of problem 1 . Under assumptions 3 and 4 , one

Ž .of the nontrivial solutions of problem 1 is a critical point of � at which �
attains its maximum. The existence of the second nontrivial solution is
deduced from the calculation of the Leray�Schauder index of critical
points.


 	Theorem B is due to Hirano and Nishimura 7 . Their approach is based
on the reduction method and an abstract multiplicity result which is based
on the minimax method.

In this paper, we obtain some multiplicity results which unify and
generalize the results mentioned above. Our approach is based on the
reduction method and a three-critical-point theorem due to Brezis and


 	Nirenberg 4 . The main results are the following theorems.

Ž .THEOREM 1. Suppose that 2 holds and that there exists a � � suchk�1
that

f x , s � f x , tŽ . Ž .
� a 5Ž .

s � t

for all s, t � R, s � t, and a.e. x � �. Assume that
1 2F x , t � � t � �� 6Ž . Ž .k2

� �as t � � uniformly for a.e. x � � and that there exist 
 � 0, b � 0, and
0 � m � k such that

1 12 2� t � F x , t � � � b t 7Ž . Ž . Ž .m� 1 m2 2

� � Ž . t Ž .for all t � 
 and a.e. x � �, where F x, t � H f x, s ds. Then problem0
Ž . 1Ž .1 has at least two nontri�ial solutions in H � .0

1Ž .THEOREM 2. Suppose that f � C R, R is subcritical and

sup f � t � � . 8Ž . Ž .k�1
t�R

Assume that

f t t � � t 2 � �� 9Ž . Ž .k

� �at t � � and that there exist 
 � 0 and 0 � m � k such that

f tŽ .
�� � inf , f 0 � � . 10Ž . Ž .m� 1 mt� �0� t �
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Then the problem

��u � f u in � , u � 0 on � �Ž .
has at least two nontri�ial solutions.

1Ž .COROLLARY 1. Suppose that g � C R, R and

sup g� t � � � � .Ž . k�1 k
t�R

Assume that
g t t � ��Ž .

� �as t � � and that there exists 
 � 0 and 0 � m � k such that

g tŽ .
�� � � � inf , g 0 � � � � .Ž .m� 1 k m kt� �0� t �


Then the problem

��u � � u � g u in � , u � 0 on � �Ž .k

has at least two nontri�ial solutions.

Remark 1. Theorem A is a consequence of Theorem 2. In fact,
�Ž .lim f t � � implies that� t � �� k

f t t � � t 2 � ��Ž . k

� � �Ž .as t � � and f 0 � � implies thatm� 1

f tŽ .
� � infm� 1 t� �0� t �


1Ž .for some 
 � 0. There are functions f � C R, R satisfying our Theorem
2 and not satisfying Theorem A. For example,

t
1 1� � � t � � � � � 2�Ž . Ž .k�1 k k�1 k m�12 4 � �t� � �f t � t � 1,Ž .
1 � �� t � � � � � 2� t t ,Ž .m� 1 k�1 k m�14� � �t � 1

�Ž .where f 0 � � .m� 1

Remark 2. Corollary 1 generalizes Theorem B. In fact, Corollary 1 has
no need of the conditions that

g tŽ .
lim � 0

t� �t ��
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� Ž . �and that g is bounded or lim inf g t � 0 holds; besides, the condi-� t � ��

tion that

g tŽ .
� � � � infm� 1 k t� 4t�R � 0

is replaced by the weaker one that

g tŽ .
� � � � infm� 1 k t� �0� t �


1Ž .for some 
 � 0. There are functions g � C R, R satisfying our Corollary
1 and not satisfying Theorem B. For example,

g t � f t � � t ,Ž . Ž . k

where f is the same as Remark 1 and

g tŽ .
lim � 0.

t� �t ��

Remark 3. From Remarks 1 and 2, we know that Theorem 2 unifies
and generalizes Theorems A and B. Furthermore, Theorem 1 generalizes
Theorems A and B to the nonautonomous case; it needs only the basic
regularity.

2. PROOFS OF THEOREMS

1Ž .Define the functional � on the Sobolev space H � by0

1 2 1� �� u � � u � F x , u dx , u � H � ,Ž . Ž . Ž .H 02
�

Ž . t Ž . � � Ž � � 2 .1�2where F x, t � H f x, s ds, u � H �u dx is the usual norm in0 �
1Ž .H � . Then � is continuously differentiable and0

² � :� u , � � � �u �� dx � f x , u � dxŽ . Ž .H H
� �

1Ž . 1Ž .for u, � � H � . It is well known that u � H � is a solution of0 0
Ž .problem 1 if and only if u is a critical point of �. Let

V � E � � ��� �E �Ž . Ž .1 k
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� Ž .and W � V , where E � stands for the eigenspace corresponding to � ,i i
i.e., the finite dimensional space spanned by the eigenfunctions corre-
sponding to � . Define the functional �i

� � � sup � � � w , � � VŽ . Ž .
w�W


 	It follows easily from Theorem 2.3 of Amann 1 that

Ž . Ž .LEMMA 1. Suppose that 2 and 5 hold. Then � : V � R is continuously
differentiable and

� � � � P �� � � 	 � , � � V ,Ž . Ž .Ž .V

1Ž .where P : H � � V is the corresponding projection onto V along W, 	 :V 0
V � W and is a continuous mapping satisfying that

� � � � � � 	 �Ž . Ž .Ž .
for e�ery � � V.

Ž .It is a simple corollary that � � 	 � is a critical point of � if � is a
critical point of � .

Ž . Ž .LEMMA 2. Suppose that 2 and 6 hold. Then � is coerci�e on V, i.e.,

� �� � � � as � � � in V .Ž .
Thus � is coerci�e.

Ž .Proof. By 6 there exists M � 0 such that

1 2F x , t � � t � 0Ž . k2

� � Ž .for all t � M and a.e. x � �. It follows from 2 that

C1 p�1F x , t � M � C MŽ . 2p

� �for all t � M and a.e. x � �. Hence we have

1 1 C12 2 pF x , t � � t � � M � M � C MŽ . k k 22 2 p

for all t � R and a.e. x � �.
Ž .If � is not coercive, there exist M � 0 and a sequence � in V such0 n

� � Ž . Ž .that � � � and � � � M . Let � � a � b , a � E � � ��� �n n 0 n n n n 1
Ž . Ž .E � , and b � E � . Thenk�1 n k

� � 2 � � 2 � � 2� � a � b .n n n
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Ž . Ž .In the case that a has a subsequence a such thatn ni

� �a � � as i � �ni

one has

1 12 2
2� � � �� � � � a � � a � CŽ . Ln n k n 3i i i2 2

1 �k 2� �� � 1 a � Cn 3iž /2 �k�1

� ��

1 2 pŽ Ž . .as i � ��, where C � � M � C �p M � C M meas �. This is a3 k 1 22

contradiction.
Ž� �. � �In the case that a is bounded by C , one has b � � as n � �. Itn 4 n


 	follows from the first part of the proof of Lemma 3.2 in 3 that for every

 � 0 there exists m � 0 such that


� �meas x � � � � x � m � � 
� 4Ž . 


Ž .for all � � E � . Letk

� �A � x � � � b x � m b .� 4Ž .n n 
 n

Ž .Then one has meas �� A � 
 . By the finite dimensionality of V, theren
exists C � 0 such that5

sup a x � x � � � C� 4Ž .n 5

for all n. For every � � 0, there exists M � 0 such that

1 2F x , t � � t � �Ž . k2

� � Ž .for all t � M and a.e. x � � by 6 . Let

B � x � � � � x � M .� 4Ž .n n

For x � A , one hasn

� �� x � b x � a x � m b � C ,Ž . Ž . Ž .n n n 
 n 5
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which implies A � B for large n. Now we haven n

1 2� �F x , � � � � dxŽ .H n k nž /2�

1 C12 p� � meas B � � M � M � C M meas �� BŽ .n k 2 nž /2 p

1 C12 p� � meas A � � M � M � C M meas �� AŽ .n k 2 nž /2 p

1 C12 p� � meas � � 
 � � M � M � C M 
Ž . k 2ž /2 p

for large n. Hence one has

1 2� �lim inf F x , � � � � dxŽ .H n k nž /2n�� �

1 C12 p� � meas � � 
 � � M � M � C M 
 .Ž . k 2ž /2 p

Letting 
 � 0, we obtain

1 2� �lim inf F x , � � � � dx � � meas � .Ž .Ž .H n k n2
n�� �

By the arbitrariness of � we have

1 2� �lim inf F x , � � � � dx � ��.Ž .Ž .H n k n2
n�� �

Hence one has

1 2� �� � � F x , � � � � dx � ��Ž . Ž .Ž .Hn n k n2
�

as n � �, which is a contradiction. Therefore � is coercive on V. Thus �
is coercive.

Ž . Ž . Ž . Ž .LEMMA 3. Let V � E � � ��� �E � , V � E � � ��� �E � .1 1 m�1 2 m k
Ž .Suppose that 7 holds. Then there exists 
 � 0 such that0

� �� � � 0 for � � V and � � 
Ž . 1 0

and

� �� � � 0 for � � V and � � 
 .Ž . 2 0
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Proof. By the finite dimensionality of V , there exists C � 0 such that1 6

� �sup � x � x � � � C �� 4Ž . 6

Ž . � �for all � � V . Let 
 � 1�C 
 . Then for � � V , � � 
 , one has1 1 6 1 1

1 2 1 2
2� � � �� � � � � � � � � � � � 0.Ž . Ž . Lm�12 2

Ž . Ž .On the other hand, it follows from 7 that f x, 0 � 0 for a.e. x � �.
Ž . Ž . 2Associating with 5 we have f x, t t � at for all t � R and a.e. x � �,

which implies that
1 2F x , t � atŽ . 2

Ž . 1 Ž .for all t � R and a.e. x � � by the fact that F x, t � H f x, ts t ds. Hence0
one has

1 12 2F x , t � � � b t � a � b � � tŽ . Ž . Ž .m m2 2

1 1 p2 2�p� � � �� � � b t � a � b � � 
 tŽ .m m2 2

� � Ž .for all t � 
 and a.e. x � �. It follows from 7 that
1 p2 � �F x , t � � � b t � C t 11Ž . Ž . Ž .m 72

1 2�p� �for all t � T , a.e. x � �, and some C � a � b � � 
 . By Sobolev’s7 m2

embedding theorem, there exists C � 0 such that8

� � p � �u � C uL 8

1Ž .for all u � H � . It follows from the continuity of 	 that there exists0
	 

 � 0, 
 such that0 1

Ž .1� p�2b
� � 	 � �Ž . pž /2� C Cm 7 8

� � Ž .for all � � V with � � 
 . Thus 11 implies that2 0

� � � � � � 	 �Ž . Ž .Ž .
1 12 2

2� � � � 	 � � � � b � � 	 �Ž . Ž . Ž . Lm2 2
p

p� C � � 	 �Ž . L7

b p2 p� � � � 	 � � C C � � 	 �Ž . Ž .7 82�m

� 0
� �for all � � V with � � 
 .2 0
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Proof of Theorem 1. By the finite dimensionality of V and Lemma 1 we
Ž .know that � satisfies the PS condition.
Ž . � �In the case that inf � � � 0, all � � V with � � 
 are minima� � V 2 0

of � by Lemma 3, which implies that � has infinite critical points.
Ž .In the case that inf � � � 0, from the proof of Lemma 2 one� � V

obtains

inf � � � ��.Ž .
��V


 	It follows from Theorem 4 in 4 that � has at least two nonzero critical
Ž .points. Hence � has at least two nonzero critical points. Thus problem 1

1Ž .has at least two nontrivial solutions in H � .0

�Ž .Proof of Theorem 2. Let a � sup f t . It follows from the meant � R
Ž .value theorem and 8 that

f s � f tŽ . Ž .
�� f � � aŽ .

s � t

Ž .for all s, t � R, s � t. Hence 5 holds. For every � � 0, there exists
M � 0 such that

f t t � � t 2 � �Ž . k

� � Ž .for every t � M by 9 . Hence one has

�
f t � � t �Ž . k t

for all t � M, which implies that

1 12 2F t � F M � � t � � M � � ln t � � ln M .Ž . Ž . k k2 2

Thus we have
1 2F t � � t � ��Ž . k2

as t � ��. In a similar way we obtain

1 2F t � � t � ��Ž . k2

Ž .as t � ��. Hence 6 holds.
1 �Ž Ž .. Ž .Let b � � � f 0 . From the first part of 10 and the continuity ofm2

Ž . Ž . 	 
f , one obtains that f 0 � 0. By 10 , there exists 
 � 0, 
 such that0

f tŽ .
� � � bmt
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� �for all 0 � t � 
 . Hence we have0

� t 2 � f t t � � � b t 2Ž . Ž .m� 1 m

� �for all t � 
 . Thus one has0

1 12 2� t � F t � � � b t .Ž . Ž .m� 1 m2 2

� � Ž .for all t � 
 . Therefore 7 is proved. Now Theorem 2 follows from0
Theorem 1.

REFERENCES

1. H. Amann, Saddle points and multiple solutions of differential equations, Math. Z. 169
Ž .1979 , 127�166.

2. D. Arcoya and D. G. Costa, Nontrivial solutions for a strongly resonant problem,
Ž .Differential Integral Equations 8, No. 1 1995 , 151�159.

3. P. Bartolo, V. Benci, and D. Fortunato, Abstract critical point theorems and applications
to some nonlinear problems with strong resonance at infinity, Nonlinear Anal. 7, No. 7
Ž .1983 , 981�1012.

4. H. Brezis and L. Nirenberg, Remarks on finding critical points, Comm. Pure Appl. Math.
Ž .44 1991 , 939�963.

5. N. P. Cac, On an elliptic boundary value problem at double resonance, J. Math. Anal.
Ž .Appl. 132 1988 , 473�483.

6. A. Castro and A. C. Lazer, Critical point theory and the number of solutions of a
Ž .nonlinear Dirichlet problem, Ann. Math. 18 1977 , 113�137.

7. N. Hirano and T. Nishimura, Multiplicity results for semilinear elliptic problems at
Ž .resonance and with jumping nonlinearities, J. Math. Anal. Appl. 180 1993 , 566�586.

8. K. Thews, A reduction method for some nonlinear Dirichlet problems, Nonlinear Anal. 3
Ž .1979 , 795�813.


	1. INTRODUCTION AND MAIN RESULTS
	2. PROOFS OF THEOREMS
	REFERENCES

