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Abstract
Background and aims: There is a demand for serum markers that can
routinely assess the progression of liver cancer. DENA (diethylnitrosamine), a
hepatocarcinogen, is commonly used in an experimental mouse model to
induce liver cancer that closely mimics a subclass of human hepatocellular
carcinoma (HCC). However, blood monitoring of the progression of HCC in
mouse model has not yet been achieved. In this report, we studied glycomics
during the development of mouse HCC induced by DENA. Methods: Mouse
HCC was induced by DENA. Serum N-glycans were profiled using the
sequencer assisted–Fluorophore-assisted carbohydrate electrophoresis techni-
que developed in our laboratory. Possible alteration in the transcription of
genes relevant to the synthesis of the changed glycans was analysed by real-
time polymerase chain reaction. Results: In comparison with the control mice
that received the same volume of saline, a tri-antennary glycan (peak 8) and a
biantennary glycan (peak 4) in serum total glycans of DENA mice increased
gradually but significantly during progression of liver cancer, whereas a core-
fucosylated biantennary glycan (peak 6) decreased. Expression of a-1,6-
fucosyltransferase 8 (Fut8), which is responsible for core fucosylation,
decreased in the liver of DENA mice compared with that of age-matched
control mice. Likewise, the expression level of Mgat4a, which is responsible for
tri-antennary, significantly increased in the liver of DENA mice (Po 0.001).
Conclusions: The changes of N-glycan levels in the serum could be used as a
biomarker to monitor the progress of HCC and to follow up the treatment of
liver tumours in this DENA mouse model.

Diethylnitrosamine (DENA) is a hepatocarcinogen
known to cause DNA ethylation and mutagenesis (1). It
is commonly used to induce liver cancer in animal
models, and in rodents, it induces tumours that closely
mimic a subclass of human hepatocellular carcinoma
(HCC) (2). However, blood monitoring of the progres-
sion of HCC in a mouse model has not yet been achieved.

Most serum N-linked glycoproteins are synthesized
by the liver and B-lymphocytes. Any change in serum
total N-glycans could reflect an alteration of liver or
B-lymphocyte physiology. Because the sugar chains of
glycoproteins are important for maintaining the ordered
‘social behaviour’ of differentiated cells in multicellular

organisms, alterations in these sugar chains contribute to
the molecular basis of abnormalities such as invasion of
tumour cells into the surrounding tissues and their
metastasis to distant sites/tumour cell invasion and
metastasis. Several studies have linked changes in certain
N-glycosylation patterns to human disease (3–7). Altera-
tions in the N-linked sugar chains are indeed found in
various tumours (8–11). Moreover, we and others re-
cently showed that certain changes in the N-glycans in
total serum protein are indicative of human HCC (8),
non-alcoholic steatohepatitis (NASH) (9), liver fibrosis
(10) and cirrhosis (11). These observations are in line
with the fact that a large fraction of serum proteins are
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produced by hepatocytes. Therefore, N-glycan changes in
serum proteins are potential reporters of liver dysfunction.

Here, we show that serum N-glycan analysis by DNA
sequencer assisted–fluorophore-assisted carbohydrate
electrophoresis (DSA-FACE) can be used to evaluate the
progression of liver HCC in mice treated with DENA.

Materials and methods

Animals and treatment

Three-week old female C57BL/6j mice with an average
weight of 15.8� 1.5 g SD were purchased from Elevage
Janvier (Le-Genest-Saint-Ile, France). All mice were
housed in specific pathogen free animal facilities. They
were maintained in a temperature-controlled, air-condi-
tioned environment with 14–10-h light/dark cycles, and
they received food and water ad libitum. Experimental
protocols and procedures for the animal experiments
were approved by the Ghent University Animal Ethics
Committee, Belgium.

The mice were divided into two groups: a DENA-
treated group and a control group starting from the age
of 4 weeks. Mice in the DENA group were injected weekly
with DENA (Sigma-Aldrich, St Louis, MO, USA) at
75 mg/g body weight (BW) for 3 weeks and then at
100 mg/g BW weekly for another 3 weeks intraperitone-
ally. At the same time, mice in the control group received
the same volume of saline in the same scheme. Control
mice and DENA mice were killed at different time points:
23, 30, 36 and 48 weeks after the initiation of DENA
administration. Serum samples were collected to investi-
gate serum N-glycan profiles. Mice were killed under
anaesthesia, weighed and examined for the presence of
visible lesions. The right lobe of the liver in control mice
and the tumour in DENA mice were removed and fixed in
4% formalin for histology and pathology or snap-frozen in
liquid nitrogen for RNA analysis.

Histology and pathology

Liver sections of 4 mm were cut from paraffin-embedded
blocks and stained with haematoxylin and eosin (H&E),
Masson’s trichrome and reticulin for histological exam-
ination. Liver samples were evaluated independently by
two experienced hepatopathologists who were not in-
formed of the glycomics results.

Processing blood samples for protein N -glycome analysis

The N-glycans present on the proteins in 2ml of serum
were released, labelled and analysed by DSA-FACE as
described previously (12, 13), with some minor modifica-
tion. Briefly, 2ml serum was added in a polymerase chain
reaction (PCR) tube containing 2ml of buffer (10 mM
NH4HCO3, pH 8.3, 5% SDS) and 3ml of water. The tube
was heated at 95 1C for 5 min and cooled for 15 min at
4 1C in a PCR thermocycler. Then, 3ml of peptide-
N-glycosidase F (PNGase F) was added (2.2 U/ml in

10 mM NH4HCO3, pH 8.3, containing 3.33% NP40)
(New England Biolabs, Hitchin, UK). The tubes were
incubated in the thermocycler at 37 1C for 3 h, cooled to
4 1C and then 100ml of water was added. Six microlitres of
the resulting solution were transferred to a new PCR tube
and evaporated to dryness at 60 1C in the thermocycler
(lid open). N-glycans were derivatized by adding 1ml of
labelling solution [1:1 mixture of 20 mM 8-amino-1,3,6-
pyrenetrisulphonic acid (APTS); Molecular Probes,
Eugene, OR, USA] in 1.2 M citric acid and 1 M NaCNBH3

in dimethyl sulphoxide). The tightly closed tubes were
incubated at 37 1C for 16 h. The APTS labelling reaction
was stopped by adding 200ml of water. Then, 2ml of
APTS-labelled solution was transferred to a new PCR tube
for digestion with 0.25 mU Arthrobacter ureafaciens siali-
dase (Roche, Mannheim, Germany) in 5ml of 5 mM
NH4Ac, pH 5. The tube was incubated overnight at 37 1C
in the thermocycler. Labelled N-glycans were analysed by
DSA-FACE using a capillary electrophoresis (CE)-based
ABI3130 sequencer (Applied Biosystems, Foster city, CA,
USA). Data were analysed using the GeneMapper v3.7
software (Applied Biosystems). We measured the heights
of the 10 peaks that were detected in all the samples to
obtain a numerical description of the profiles.

For structural analysis of APTS-labelled serum
N-glycans, appropriate amounts were digested with
exoglycosidases: Streptococcus pneumonia b-1,4-galacto-
sidase (0.4 mU/digest), jack bean b-N-acetylhexosamini-
dase (10 mU/digest), bovine kidney a-fucosidase (2 mU/
digest) and almond meal a-1,3/4-fucosidase (1mU/digest)
(all from Prozyme, San Leandro, CA, USA). DSA-FACE was
used to analyse the digestion products.

Statistical analysis

Statistical analyses were performed with SPSS 15.0 for
Windows software (SPSS, Chicago, IL, USA). Results are
presented as means� SD. All reported P-values are two-
tailed, using a t-test for independent samples.

RNA, cDNA and quantitative polymerase chain reaction

Thirty milligrams of frozen liver tissue was ground in
liquid nitrogen and RNA was prepared with the RNeasy
Mini Kit (Qiagen Benelux B.V., Venlo, the Netherlands).
A DNase digestion was performed with the Qiagen
RNase-Free DNase Set. For cDNA synthesis, 150 ng of
random primers (Roche Diagnostics, Vilvoorde, Bel-
gium) were allowed to anneal with 5 mg of total RNA in
12 ml Rnase-free water and then combined with 5 ml of
5� reaction buffer (250 mM Tris-HCl, pH 8.3, 375 mM
KCl, 15 mM MgCl2), 2.5 ml 0.1 M DTT, 1.25 ml of 10 mM
dNTPs (Roche Diagnostics), 20 U RNase Block (Strata-
gene, Huissen, the Netherlands) and 2.75 ml DEPC-H2O.
The mixture was incubated at room temperature for
2 min, combined with 200 U of Superscript II RT (Invi-
trogen, Merelbeke, Belgium) and incubated for 10 min at
25 1C and 50 min at 42 1C. The enzyme was inactivated at
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70 1C for 15 min, and the RNA template was removed by
incubation with 2 U of RNase H (1.5 U/ml; Promega,
Benelux BV, Leiden, the Netherlands) at 37 1C for
20 min. The cDNA was stored at � 20 1C.

Real-time quantitative PCR (qPCR) using the Light
Cycler 480 (Roche Diagnostics) was performed with a
16-fold dilution of the cDNA. Each 10-ml assay contained
5 ml of 2xLightCycler 480 SYBR Green I Mastermix
(Roche Diagnostics) containing FastStart Taq DNA Poly-
merase, reaction buffer, dNTP mix (with dUTP instead
of dTTP), SYBR Green I dye, MgCl2, 1 ml primer mix for
each gene (final concentration of 0.5 mM each) and 4 ml of
diluted cDNA (Roche Diagnostics). The housekeeping
genes RPL13a.1 and Hprt1 were used as a reference to
normalize the liver sample data. Each reaction was
performed in triplicate. PCR cycling consisted of dena-
turation at 95 1C for 5 min, 50 cycles of 95 1C for 10 s and
60 1C for 30 s, followed by detection for 1 s at 72 1C. The
Ct data were analysed with Excel and GRAPHPAD PRISM 4
(GraphPad Software Inc. La Jolla, CA, USA). Primers
were selected from the Primer Bank of Harvard (http://
pga.mgh.harvard.edu/primerbank) and sequences are
presented in Table 1.

Results

Diethylnitrosamine treatment induced cholangiocellular
carcinoma and hepatocellular carcinoma

We induced liver tumours in C57BL/6j mice by injecting
them intraperitoneally six times with the alkylating agent
DENA starting at the age of 4 weeks and monitored
weight and tumour development for 48 weeks. BW was
significantly lower (Po 0.05) in the DENA-injected mice
(23.03� 1.87 g; n = 48) compared with the control group

(26.41� 1.37 g; n = 34). To monitor tumour develop-
ment, the mice were sacrificed at different time points
after DENA administration (Table 2). Histological exam-
ination showed that after 23 weeks of DENA treatment,
the mice started developing cholangiocellular carcinoma
(CCC), a rare primary carcinoma of the liver originating
in bile duct cells (Fig. 1A). No HCCs were observed at
that time point. HCCs were observed later after the
formation of CCC, starting after 30 weeks of treatment
(Fig. 1C). It is noteworthy that no liver fibrosis was
observed in DENA mice (Fig. 1B).

Profiles of serum protein N -glycans were altered in the
diethylnitrosamine mice

We analysed the serum N-glycan profiles in DENA-
treated mice and control mice using DSA-FACE. As
shown in Fig. 2, the desialylated N-glycan profile con-
tained eight major peaks in control mice. No other N-
glyans (or peaks) were found in the DENA-treated
animals compared with the control animals. We per-
formed structural analysis of the different N-glycans by
labelling them and then treating them with exoglycosi-
dases. This analysis showed that several N-glycans (such
as peak 1, peak 5m and peak 6) contained a core-a-1,6-
fucose structure, but did not reveal the presence of an
a-1,3-fucose N-glycan structure (data not shown). In
addition, the mouse serum N-glycan structures were
further analysed using matrix-assisted laser desorption/
ionization-time of flight mass spectrometry (MALDI-
TOF MS). Here again, no a-1,3-fucose N-glycan or
bisecting GlcNAc N-glycans were detected in the sera of
all mice (data not shown).

We compared DENA-treated mice of the non-HCC
group (with CCC but without HCC; n = 26) and the

Table 1. Primers used for quantitative polymerase chain reaction

Forward (30–50) Reverse (50–30)

Fut8 CAGGGGATTGGCGTGAAAAAG CGTGATGGAGTTGACAACCATAG
Mgat3 ATGAAGATGAGACGCTACAAGC GGCCAGTTCTCTCGGGAAG
Mgat4a AAAGAGCGTCTTCGAGTGGC ACTTCCATTAGTCTCTGCTCCA
Mgat4b GAGGGCAGTATCCGAGAGG CGAGACGTTCCACGGCTTC

Table 2. Development of tumours in the livers of mice given diethylnitrosamine treatment

DENA administration
Non-HCC (n)
(cholangiocellular carcinoma)

HCC (n)
(cholangiocellular carcinoma and HCC)

Week 23 Control mice (n = 10) 0 0
DENA mice (n = 10) 10 0

Week 30 Control mice (n = 8) 0 0
DENA mice (n = 10) 7 3

Week 36 Control mice (n = 8) 0 0
DENA mice (n = 12) 8 4

Week 48 Control mice (n = 8) 0 0
DENA mice (n = 16) 1 15

DENA, diethylnitrosamine; HCC, hepatocellular carcinoma.
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HCC group (with both CCC and HCC; n = 22) with the
control mice (n = 34). We found that peak 8 and peak 4
gradually increased but significantly (Po 0.05) during

the development of HCC in the treated mice (Fig. 3A and
B). In contrast, peak 6 was significantly decreased
(Po 0.0001) in the treated mice compared with the
control mice, but no difference between HCC and non-
HCC mice was seen (Fig. 3C).

Most serum N-linked glycoproteins are synthesized by
the liver and B-lymphocytes. Any changes in serum total
N-glycans could reflect alteration of liver or B-lympho-
cyte physiology. To find out whether the alteration of the
glycan profile in total serum of DENA mice was at least
partly due to changes in the N–glycans of immunoglo-
bulins (mainly IgG), we examined the N–glycan profiles
of IgG in DENA-treated mice and control mice. We
purified antibodies from serum using Protein L agarose,
which binds the k light chain of all antibodies and so can
interact with a wider range of Ig molecules. N-glycan
profiles of the Ig fractions were determined by DSA-
FACE. We found no alteration of Ig glycan profiles in
DENA-treated mice compared with controls (data not
shown), which indicates that the liver is the major source
of the changes in serum glycans in DENA mice.

Regulation of N -glycosylation is altered in the liver of
diethylnitrosamine mice

The terminal glycosylation sequences produced by the
cell are presumed to reflect the expression of the corre-
sponding glycosyltransferase. To determine whether the
altered serum glycan profile in DENA mice was because

(A)

(B)

×400

(C)

×400

×200

Fig. 1. Representative sections of haematoxylin and eosin-stained
livers of diethylnitrosamine-treated mouse. (A) Proliferation of small
bile ducts, some of which are cystically dilated. No overt signs of
malignancy are present. (B) Normal liver tissue with a preserved
architecture showing some portal tracts and central veins without
fibrosis. (C) A relatively small HCC composed of atypical proliferation
of hepatocytes.
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Fig. 2. Representative serum desialylated N-glycan profiles in
C57BL/6j mouse. N-glycan profile from the total serum protein is
showed in control mouse (the upper panel) and in DENA mouse with
HCC (the lower panel). Peak 1 is an agalacto, core-a-1,6-fucosylated
biantennary glycan (NGA2F), peak 5 is a bigalacto, biantennary
glycan (NA2), peak 6 is a core-a-1,6-fucosylated biantennary (NA2F)
and peak 8 is a tri-antennary (NA3). The structures of the N-glycan
peak 6 and peak 8 are indicated in the lower panel. The symbols
used in the structural formulas are as follows: open circle stands for
b-linked galactose, square stands for b-linked N-acetylglucosamine
(GlcNAc), filled circle stands for a/b-linked mannose and triangle
stands for a-1,6-linked fucose.
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of alteration of the glycosylation biosynthesis pathway,
real-time PCR was used to analyse the expression of
several oligosaccharyltransferase genes in liver tissue of

DENA-injected mice (HCC group and non-HCC group)
and control mice.

It has been reported that a-1,6-fucosyltransferase 8
(Fut8) is the only fucosyltransferase involved in core
fucosylation in mice (14). We investigated whether the
decreased level of peak 6 (a core-a-1,6-fucosylated bian-
tennary glycan) in the serum of DENA mice was caused
by downregulation of Fut8 in the liver. Indeed, we found
that Fut8 expression was downregulated significantly
(Po 0.0001) in non-HCC (but with CCC) livers in
DENA-treatment mice compared with control mice
(Fig. 4A). The mean level of Fut8 was still lower in livers
with HCC than in control livers, but the difference was
not statistically significant (P = 0.1127) (Fig. 4B). This
transcriptional regulation of Fut8 in the liver of DENA
mice was correlated with the level of peak 6 in the serum,
which decreased sharply in the non-HCC (but with
CCC) group but was less prominent in the HCC group
compared with the control mice (Fig. 3C).

Following DENA treatment, Mgat4a, which is respon-
sible for tri-antennary glycan, Mgat4a was also signifi-
cantly increased (Po 0.001) in the liver tissue of the
non-HCC and HCC groups of DENA-treated mice (Fig.
4C and D) compared with the control mice; however,
Mga4b was significantly decreased (Po 0.0145) in the
non-HCC group, but it remained unchanged in the HCC
group (Fig. 4E and F). The changes in Mgat4 might
contribute to the altered concentration of peak 8 (trian-
tennary glycan) in the serum of DENA mice.

As we mentioned above, no a-1,3-fucose N-glycan
structures were detected in any mice sera; in agreement,
expression of their corresponding genes (Fut9) was not
evidenced in mouse liver (data not shown). In contrast,
bisecting GlcNAc residue was not observed in both
control and DENA mice sera; however, expression of
Mgat3 encoding for GlcNAc TIII, which is responsible
for synthesizing a bisecting GlcNAc residue, was drasti-
cally increased (Po 0.001) in the liver tissue of the non-
HCC and HCC groups of DENA-treated mice compared
with age-matched controls (Fig. 4G and H).

Discussion

Examination of liver biopsies showed that administra-
tion of DENA to C57BL/6 mice induced CCC in bile duct
cells after 23 weeks and HCC after 30 weeks of treatment.
We demonstrate that alteration of serum N-glycan pro-
files in mice with CCC and HCC is associated with the
transcriptional regulation of glycosylation in the liver.

N-glycans are synthesized in the ER and Golgi by the
subsequent addition of oligosaccharides, such as GlcNAc
and fucose molecules, by the corresponding oligosac-
charyltransferases (15, 16). Changes in the N-glycan
profile in the serum could be related to changes in the
expression levels of glycosyltransferases in liver cells,
which would lead to modifications in both the core
structures and the terminal structures of glycans (15).
Indeed, we found that alterations of serum N-glycans in
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Fig. 3. Correlation of the N-glycan marker with the progression of
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DENA mice were closely correlated with the regulation of
glycotransferase genes. For instance, the decreased ex-
pression of Fut8 was associated with a lower level of peak
6 (NA2F) in the serum, whereas the increased expression
level of N-acetylglucosaminyltransferase4a was asso-
ciated with a higher level of peak 8 (NA3) in the serum.
However, the mechanism behind the alteration of glyco-
sylation during HCC development is not fully under-
stood. The function of FUT8 has been associated with
transforming growth factor-b1 (TGF-b1), a potent
growth inhibitor and apoptosis inducer. Signalling
through the TGF-b1 receptor is downregulated in Fut8
KO mice because ligand affinity for the receptor is
decreased (17). Moreover, the EGF-induced phosphory-
lation of EGFR was substantially blocked in Fut8 KO
cells, and the binding of EGF to its receptor (EGFR)
requires core fucosylation of N-glycans (17). EGFR is
thought to be involved in the development of cancer
because its gene is often amplified and/or mutated in
cancer cells. It would thus be interesting to further study
whether early downregulation of Fut8 in DENA mice is
associated with glycosylation changes in the TGF-b1
receptor leading to reduce apoptosis on the one hand
and with altered glycosylation of EGFR to suppression of
the early progression of cancer on the other.

In our previous studies, the abundance of a bisecting
biantennary N-glycan (NA2FB) and a branched a-1,3-
fucosylated triantennary N-glycan (NA3Fb) was altered
in human HCC patients with HBV infection (8). How-
ever, unlike human serum N-glycoproteins, the bisecting
GlcNAc NA2FB and the a-1,3-fucosylated NA3Fb were
detected neither by DSA-FACE nor by MALDI-TOF in
mouse serum. This discrepancy can probably be ex-
plained by species-specific differences in N-glycosylation
between humans and mice (18, 19). However, to our
surprise, expression of Mgat3 (encoding GlcNAc-TIII,
which synthesizes a bisecting GlcNAc residue) was dras-
tically elevated in the liver of DENA mice. This finding is
in the line with previous results showing that the expres-
sion of the Mgat3 gene is correlated with hepatic
tumorigenesis in rats (20–23) and humans (24). Mice
lacking GlcNAc-TIII because of mutation in Mgat3
exhibited retarded progression of DENA-induced liver
tumours (25). On the other hand, the development of
DENA-induced tumours was unaltered by high levels of
GlcNAc-TIII in the liver of transgenic mice, which leads
to the hypothesis that retarded progression of tumours
in mice lacking GlcNAc-TIII is because of the absence of
the bisecting GlcNAc residue on N-glycans of one or
more circulating glycoproteins from a tissue other than
the liver (25). Although the function of N-acetylgluco-
saminyltransferase III is not clear, it has been suggested
that it is involved in determining the conformation and
the function of the modified proteins, including cell-
surface receptors and adhesion molecules (26).

In summary, the quantitative desialylated N-glycan
analysis system, based on DSA-FACE, is a high-through-
put technology platform designed to profile N-glycans

on proteins in the serum. Because the desialylated glycan
profile is reproducible and quantitative, it is suitable for
longitudinal and follow-up studies. The limitation of this
method is that the sialic acid cannot be characterized
because sialic acid adds an extra negative charge on the
structures, which is a disadvantage in CE-based methods.

As HCC induction by DENA is an artificial model that
may bear no relation to glycosylation changes that arise
in human HCC, conclusions drawn from these experi-
ments cannot be directly applied to humans. Never-
theless, we found that the levels of three N-glycans (peak
8, peak 4 and peak 6) changed remarkably in response to
DENA treatment. To our knowledge, this is the first
report on serum N-glycan changes during cancer pro-
gression in DENA-treated mice. The changes in serum
glycans were closely correlated with cancer progression,
demonstrating that they can be used to monitor the
progress of HCC and to follow up treatment of liver
tumours in this DENA mouse model.
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