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Crossed Andreev reflection (CAR) under the influence of anisotropic pairing symmetry is considered. It is
shown that CAR is sensitive to the Fermi energy and the orientation of the gap. In addition, the oscillatory
period of CAR can be not only tunable by the potential energy in the superconductor region, it also can
be modulated by the length of the superconductor region. The physical origination for those phenomena
has also been analyzed.
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1. Introduction

Almost fifty years ago, the low-energy spectrum in graphene,
a monatomic layer of carbon atoms arranged on a honeycomb
lattice, was formally described by Slonczewski and Weiss [1].
However, the real breakthrough on graphene research came with
Novoselov et al.’s report of experimental acquisition of graphene
flakes by a simple piece of adhesive tape [2]. It was this work
which bridged the gap between experimental observation and the
theoretical framework as the theoretical examples of two dimen-
sion materials. Since the pioneering work of Novoselov et al., the
study of graphene flakes has progressed rapidly [3,4]. Because of
unique linear dispersion relation in graphene, several novel phe-
nomena were found in the materials, such as unconventional quan-
tum Hall effect [5,6], strong electric-field effect [7], finite minimal
conductivity [5,8], Klein paradox [9] and so on.

In particular, since the specular Andreev reflection (SAR) was
found by Beenakker in 2006 [10], the physical properties of
graphene-based superconductor junction have attracted great in-
terest due to its novel features and potential applications in future
electronic circuits [3,4]. Theoretically, novel propagating modes of
Andreev electrons [11], oscillation of tunneling probability with
barrier width [12], and a pure crossed Andreev reflection (CAR)
[13] have been revealed in recent years. Furthermore, CAR effect
on magnetoresistance, shot noise, and spin-valves effect has also
been extensively investigated by many authors [14–16]. Experi-
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mentally, the observation of bi-polar supercurrent and multiple
Andreev reflection in graphene Josephson junction has been re-
ported by several groups [17–19].

Graphene is not a natural superconductor. Those graphene-
based superconductor leads are fabricated by means of depositing
superconducting leads on a graphene flake. Thus, except of the
conventional s-wave superconducting pairing which is the primary
focus above, the unconventional pairing in graphene-based super-
conductor leads could be achieved by proximity effect through
an unconventional superconductor lead, such as high-Tc supercon-
ductor. Consequently, some attention has been paid to how un-
conventional pairing would affect coherent quantum transport in
graphene-based superconductor junction [20,21]. It is found that
the zero-bias conductance peak only forms at the orientation of
the gap in k-space with regard to the interface which is very close
to π/4 and the Josephson current exhibits a weakly-damped, os-
cillatory dependence on the length of the junction. Indeed, those
results indicate that the effect of anisotropic pairing symmetry on
the quantum transport properties in a graphene-based supercon-
ductor junction is of considerable importance.

However, all these investigations about the unconventional su-
perconductors only focus on two-terminal device. It is interesting
to ask what kinds of new features emerge when the CAR effect is
regulated by the anisotropic pairing symmetry. Moreover, what’s
the relationship between the crossed specular Andreev reflection
(CSAR) and the anisotropic pairing symmetry is more important,
since the unusual effect-specular Andreev reflection is never ob-
served in the conventional material. To the end, in this Letter,
we investigate the CAR in a three-terminal graphene-based su-
perconductor transistor based on the Dirac–Bogoliubov–de Gennes
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Fig. 1. Schematic diagram of the three-terminal NG/IG/SG/IG/NG transistor.

(DBdG) equation. The CAR and the non-local conductivity of this
system will be calculated, and the relationship between the CSAR
and the anisotropic pairing symmetry will be discussed. The rest
of the Letter is organized as follows: we will describe the theory
and method in Section 2, present the results and discussion in Sec-
tion 3, and give a summary in Section 4.

2. Theory and model

We consider a three-terminal normal/insulator/superconductor/
insulator/normal (NG/IG/SG/IG/NG) transistor in a monolayer
graphene membrane occupying the xy plane, and the schematic
setting is shown in Fig. 1. Here the left and right leads are made
of the same NG, and they are separated from the central SG by
two identical thin barriers, respectively. The leads IG, modeled by
a gate voltage, extend from x = −d to x = 0 and x = l to x = l + d
while the SG lead occupies 0 < x < l. Such a local barrier can be
realized by either using the electric field effect or local chemical
doping [2]. The superconductivity is induced in region 0 < x < l via
the proximity effect, where the graphene membrane is to be kept
close to an unconventional superconductive lead (such as high-Tc
superconductor) so that it can generate a d-wave pairing symme-
try in this region [3,4,10–21]. In the following, we focus on the
case where the width (along y direction) of the graphene strip,
w , is much larger than d and l. Thus, the details of microscopic
description of the strip edges become irrelevant, and can be realis-
tically implemented in experiments [2]. The potential profile V (x)
in regions NG, IG, and SG may be adjusted independently by a gate
voltage or doping, which is taken as

V (x) =
{0, x < −d, x > l + d,

−U0, 0 < x < l,
V 0, −d < x < 0, l < x < l + d.

(1)

For the SG lead, neglecting the self-consistency of the super-
conducting pair potential, �(x) is taken in the form �(x) =
�0 cos(2θS − 2α)eiϕθ(x), where θ(x) is the Heaviside step func-
tion, �0 and ϕ are the maximum amplitude and the phase of the
induced superconductive order parameter, respectively, α models
the orientation of the gap in k-space with regard to the interface,
and θS is the transmission angle between the momentum of the
quasiparticle and the x axis. Here we consider the case where the
superconducting coherence length is larger than the wave length in
the superconducting region, namely 0 � V 0. The low energy quasi-
particles in the present system can be described by the following
DBdG equation [10](

Ha − E F �(r)
�∗(r) E F − Ha

)
Ψa = EΨa (2)

where Ψa = (ΨAa,ΨBa,Ψ
∗
Aā,−Ψ ∗

Bā) are the 4 component wave
functions for the electron and hole spinors, the index a denotes
K or K ′ for electrons or holes near K and K ′ points, ā takes value
K ′(K ) for a = K (K ′), E F denotes the Fermi energy, A and B denote
the two inequivalent sites in the hexagonal lattice of graphene, and
the Hamiltonian H0 is given by

H0 = −ih̄v F
[
σx∂x + sgn(a)σy∂y

] + V (x) (3)
where v F denotes the Fermi velocity of the quasiparticle in
graphene, V (x) represents the electrostatic potential in the five
leads, and sgn(a) takes value +(−) for a = K (K ′).

In order to solve the transport problem in our NG/IG/SG/IG/NG
transistor (sketched in Fig. 1), we assume that the electron or hole
wave propagates at an angle φ or φ′ along x axis. For an elec-
tron with an energy ε and transverse momentum q incident on
the transistor from the left NG lead (as shown in Fig. 1), taking
into account both Andreev and normal reflection processes in the
left NG lead (x < −d) and both elastic co-tunneling and Andreev
transmission processes in the right NG lead (x > l + d), the wave
functions in the five regions can be written as [14,15]

Ψ1 = Ψ e+
N + rΨ e−

N + rAΨ h−
N ,

Ψ2 = p1Ψ
e+
I + q1Ψ

e−
I + m1Ψ

h+
I + n1Ψ

h−
I ,

Ψ3 = eΨ e+
S + f Ψ h+

S + gΨ e−
S + hΨ h−

S ,

Ψ4 = p2Ψ
e+
I + q2Ψ

e−
I + m2Ψ

h+
I + n2Ψ

h−
I ,

Ψ5 = tΨ e+
N + t′Ψ h+

N , (4)

where r and rA are the amplitudes of normal and Andreev reflec-
tions in the left NG region, respectively, t and t′ are the amplitudes
of elastic co-tunneling and Andreev transmission processes in the
right NG region, respectively, p1,2, q1,2, m1,2, and n1,2 are the am-
plitudes of electron and hole in the IG region, and e, f , g , and h
are the amplitudes of electron-like and hole-like quasiparticles in
the SG region.

The wave function in Eq. (4) can be expressed clearly by the
solution of Eq. (2). In the NG region, the wave functions are given
by

Ψ e±
N = (

1,±e±iφ,0,0
)
ei(±kN x+qy),

Ψ h±
N = (

0,0,1,∓ei(±iφ′))ei(±k′
N x+qy),

sin(φ) = h̄v F q/(ε + E F ),

sin
(
φ′) = h̄v F q/(ε − E F ), (5)

where Ψ e±
N and Ψ h±

N are the wave functions traveling along the
±x direction with a transverse momentum ky = q and an energy ε
for electron and hole, respectively, and kN = (ε+ E F )×cos(φ)/h̄v F ,
k′

N = (ε − E F ) × cos(φ′)/h̄v F are the momentum along the x axis.
Note that the critical incident angle should be considered in the
scattering process, and it is given by φC = arcsin[|k′

N |/kN ]. When
the incident angle of the quasiparticle is larger than the criti-
cal angle (|φ| > φC ), one should take φ′ = sgn(φ)(π

2 sgn(k′
N ) −

iar cosh | sinφ
sinφC

|). However, the evanescent solutions in the calcu-
lations for such a case have to be included to ensure the current
conservation.

In the IG region, one can also obtain Ψ e±
I = (1,±e±iβ,0,0)×

ei(±kI x+qy) and Ψ h±
I = (0,0,1,∓e±iβ ′

)ei(±k′
I x+qy) for electron and

hole moving along ±x. Here the angle of incidence of the electron
(hole) β(β ′) is defined as sin[β(β ′)] = h̄v F q/[ε+(−)(E F −V 0)] and
kI (k′

I ) = [ε − (+)(E F − V 0)] cos[β(β ′)]/h̄v F . Note that in the limit
of a thin barrier (where V 0 → ∞ and d → 0, but χ = V 0d/h̄v F

remains finite), β , β ′ ≈ 0 and −kI d, k′
Id ≈ χ .

In the SG region, the wave functions of the DBdG quasiparticles
can be shown in the same way as

Ψ e±
S = (

u
(
θ+)

,±u
(
θ+)

e±iθ+
, v

(
θ+)

e−iϕ+
,

±v
(
θ+)

ei
(±θ+−ϕ+))

ei(±ke
S x+qy),

Ψ h±
S = (

v
(
θ−)

,±v
(
θ−)

e±iθ−
, u

(
θ−)

e−iϕ−
,

±u
(
θ−)

ei
(±θ−−ϕ−))

ei(±kh
S x+qy), (6)
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Fig. 2. (a) and (c) represent GCAR for the three-terminal NG/IG/SG/IG/NG transistor; (b) and (d) correspond to GEC for the three-terminal NG/IG/SG/IG/NG transistor. Solid
line and dashed line correspond to E F 	 �0 and E F � �0, respectively. The other parameters are shown in the figure.
where ke(h)
S = (U0 + E F + (−)

√
ε2 − |�(θ+(−))|2 ) cos θ+(−)/(h̄v F ),

the coherence factors are given by

u(θ) =
√(

1 +
√

ε2 − ∣∣�(θ)
∣∣2

/ε
)
/2,

v(θ) =
√(

1 −
√

ε2 − ∣∣�(θ)
∣∣2

/ε
)
/2,

θ+(−) = θe
S

(
π − θh

S

)
,

and eiϕ± = �(θ±)/|�(θ±)|. The transmission angle θ
e(h)
S for

the electron-like (hole-like) quasiparticle is defined as sin θe(h)

sinφ
=

(ε+E F )

(U0+E F +(−)
√

ε2−|�(θe(h))|2 )
.

All the amplitudes in Eq. (4) can be determined by demanding
wave function continuity at the interfaces:

ψ1(−d) = ψ2(−d), ψ2(0) = ψ3(0),

ψ3(l) = ψ4(l), ψ4(l + d) = ψ5(l + d). (7)

After the transmission coefficients are obtained, we can dis-
cuss the non-local conductivity. Concerning the non-local con-
ductance calculation in graphene-based s-wave superconductor
junction, the situation is exploited rapidly [13–16]. It is shown
that they have already hold some advantage towards the imple-
mentation of spin-entangled states of the electron in comparison
with the conventional one. Now, we extend these discussions to
the NG/IG/SG/IG/NG system with an anisotropic pairing symmetry
(d-wave pairing symmetry). The non-local conductivity (GC ) is de-
fined by the difference between the crossed Andreev conductivity
(GCAR) and electronic co-tunneling conductivity (GEC),

GC = GCAR − GEC. (8)

Here, GCAR and GEC are expressed as [15]

GCAR = G0

π/2∫ ∣∣t′∣∣2
cos

(
φ′)dφ and
−π/2
GEC = G0

π/2∫
−π/2

|t|2 cos(φ)dφ, (9)

where G0 = 4e2N(eV )/h is the ballistic conductivity of the graph-
ene, eV is the bias voltage, and N(eV ) = (ε + E F )w/(π h̄v F ) de-
notes the numbers of available channels for the graphene sample
with width w . Based on Eqs. (8) and (9) three kinds of conduc-
tivity (GC , GCAR , and GEC) for our three-terminal transistor can be
obtained easily by the numerical calculations.

3. Numerical results and discussion

We first calculate GCAR and GEC (without the insulating re-
gion) as a function of l in the two cases of α = 0 (Fig. 2(a) and
(b)) and α = π/4 (Fig. 2(c) and (d)), and the results are plotted
in Fig. 2. The solid lines and dashed lines represent the regime
E F 	 � and E F � �, respectively. Here we set the superconduct-
ing gap �0 = 1 and the other energy parameters are scaled in
terms of �0. The other parameters are denoted in the figures. In
the case of α = 0, the superconducting pair potential is taken as
�(x) = �0 cos(2θS )eiϕθ(x), and the d-wave pair potential is es-
sentially identical to the s-wave case, since �(θ+) and �(θ−)

have the same sign independent of θ . Thus the previous results
of the three-terminal graphene-based normal/insulator/s-wave su-
perconductor/insulator/normal transistor are reproduced [15], as
shown in Fig. 2(a) and (b). However, in the case of α = π/4,
there are some intriguing features summarized here. First, for GEC

(Fig. 2(d)), one might find that little divergence between E F � �

and E F 	 �, which is different from the case of α = 0. On the
other hand, although GEC decreases almost monotonically from
a peak at l = 0 which is similar to the case of α = 0, but the
magnitude of GEC decays rapidly as an exponential form with the
distance l between the leads on a scale fixed by the superconduct-
ing coherence length ξ . Second, as seen from Fig. 2(c), unlike GEC ,
GCAR is sensitive to the change of E F . That is to say, for E F 	 �0
where only the CAR takes place, GCAR reaches its maximum around
l ∼ ξ , and vanishes for l = 0 and l 	 ξ . While, for E F � �0 where
only the CSAR takes place, the value of GCAR always equates to a
negligible value although it has a similar structure as the case of
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Fig. 3. (a) and (b) represent GCAR for the NG/IG/SG/IG/NG transistor; (c) and (d) correspond to G for the NG/IG/SG/IG/NG transistor. The parameters are shown in the figure.

Fig. 4. Zero-bias GCAR for the NG/IG/SG/IG/NG transistor as a function of χ . The solid lines and dashed lines represent α = 0 and α = π/4, respectively. We set l = 0.5ξ and
U0 = 103�0 in (a), l = 0.5ξ and U0 = 0 in (b), and l = 5ξ and U0 = 103�0 in (c).
E F 	 �0. Meanwhile, by comparing the values of GCAR of α = 0
and of α = π/4, we can conclude that the angle α has a sup-
pressed effect on GCAR for 0 � α � π/4. Physically, the maximum
contribution of GCAR occurs when the modulus of the pair potential
is maximum. Since GCAR is an integral quantity, the key contri-
bution of GCAR is obtained when the electron is incident on the
interface normally. Thus, GCAR reaches its maximum when α = 0
but is suppressed to a negligible value when α = π/4.

For the next step, we will investigate how GCAR and G (with-
out the insulating region) will change when the orientation of
superconductor gap varies from α = 0 to α = π/4, and the results
are plotted in Fig. 3. The solid lines, dashed lines, dotted lines,
and dashed–dotted lines represent α = 0, α = 0.1π , α = 0.15π ,
and α = π/4, respectively. The parameters used in the calcula-
tion are shown in the figure. Intuitively, for α = 0, one might find
that a minimal divergence of GCAR occurs when eV is compara-
ble in magnitude to �0 [15]. In particular, for the case of CSAR
(E F � �0), this seems to be more justifiable since just like the
case of a two-terminal junction where the local Andreev reflec-
tion reaches a certain value (a value smaller than 1), GCAR can also
reach an appropriate value but not equate to zero. We have verified
that the result of α = 0 would coincide with the result obtained by
using the s-wave superconducting pairing when the wave vector
ke(h)

S = (U0 + E F + (−)
√

ε2 − |�(θ+(−))|2 ) cos θ+(−)/(h̄v F ) is sub-
stituted by ke(h)
S = (U0 + E F + (−)i�0) cos θ+(−)/(h̄v F ). We believe

that this displacement may be acceptable for eV � �0, but unfit
for the case of eV ≈ �0. Furthermore, it is also important to note
in Fig. 3(a) and (b) that the orientation of superconductor gap α
plays an important role in GCAR . As α changes from 0 to π/4, a dip
of GCAR is shown which centres at eV = �0. The amplitude of GCAR

is sharply reduced for α = π/4 and E F � �0 in the whole energy
region. While for α = π/4 and E F 	 �0, a sharp peak is observed
at eV ∼ 0. One distinct feature is that, at eV = 0, GCAR reaches a
constant value as α increases from 0 to π/4, but only drops to
zero for α = π/4. Physically, this phenomenon is consistent with
the conductivity in two-terminal devices calculated in Ref. [20].
At zero bias, for α = π/4, a perfect zero-energy state forms at
the interface of transistor which gives rise to a zero-bias conduc-
tance peak. Thus, for the three-terminal devices, GCAR equates to
zero when eV = 0 and α = π/4. Fig. 3(c) and (d) show the cal-
culated results of G . It means that G is dominated by electronic
co-tunneling.

Finally, to investigate the effect of the barrier potential, zero-
bias (eV = 0) GCAR of the present transistor as a function of the
barrier strength χ is calculated in Fig. 4. The parameters are de-
noted in the figure. It is clearly shown that the GCAR for α = 0
exhibits novel periodic oscillatory behavior as a function of χ . Ba-
sically, GCAR for α = π/4 always shows the same features as the
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case of α = 0. However, due to its negligible value, it seems to
be almost independent on χ which is shown in the figure. In
particular, the oscillatory period can be tunable by the potential
strengths U0 in SG. That is to say, as shown in Fig. 4(b), GCAR

exhibits a π periodic oscillatory behavior as a function of χ for
U0 = 0 which recovers the results in Ref. [12]. However, the strik-
ing feature is that GCAR exhibits a new π/2 periodic oscillatory
behavior for U0/E F = 103 (in Fig. 4(a)), which is consistent with
the study in Ref. [22]. This phenomenon can be intuitively under-
stood from the fact that a large potential strength U0 in SG acts
as an additional effective barrier for the electron transport through
the transistor. As a consequence, it leads to a new π/2 periodic
oscillatory character for U0/E F = 103. Furthermore, the oscillatory
period can be not only tunable by U0, but also sensitive to the
length of SG. Fig. 4(c) describes GCAR as a function of χ at a large l
(l/ξ = 5). The π periodic oscillatory behavior is observed again.
Physically, the oscillation originates from the fact that the relativis-
tic massless fermions with the purely real momenta may interfere
in the barrier regions. For a large U0 and a certain l, an coherent
interference effect would be induced in SG. Therefore, it results
in the change of the oscillatory period of GCAR for this transis-
tor. Whereas, for a large l, as the interference effect decay in SG,
the present structures degenerate into the single junction case and
then the results (in Fig. 4(c)) are identical with that in Ref. [12].
For G , it is also a periodic function of χ and behave like GCAR (not
plotted here).

4. Summary

Here we undertake a study for CAR through the three-terminal
graphene-based superconductor transistor with the anisotropic
pairing symmetry by using the DBdG equation. We have found that
GCAR is sensitive to the change of E F due to the dominant of CAR
or CSAR. Meanwhile, it is also sensitive to the orientation of the
gap α. Furthermore, we have found that GCAR exhibits a periodic
oscillatory behavior as a function of χ . Especially, the oscillatory
period can be not only tunable by U0, but also can be modulated
by the length of SG. The physical reason for those features has also
been discussed.
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