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Short-Time Dynamical Behaviour of Depinning Transition in the Uniformly
Frustrated Two-Dimensional XY Model ∗
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A short-time dynamic scaling approach is extended to study the depinning transition of the two-dimensional
frustrated XY model driven by external currents. We investigate the scaling behaviour of depinning transition
in the XY model with three different flux densities f = 1/2, 1/25, 1/30. The short-time scaling behaviour in
the depinning transition of the two-dimensional XY model is clearly shown up. Besides the critical current, the
exponent θ is obtained.
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Recently, the short-time Monte Carlo (MC)
method has witnessed great success in the equilib-
rium phase transition, since Janssen et al.[1] discov-
ered that a universal dynamic scaling form exists in
the macroscopic short-time regime. A number of
MC simulations[2−6] confirmed the existence of such
a short-time dynamic behaviour after a microscopic
time scale tmic, if the system initially at a very high
temperature with small or zero magnetization or in
a ground state (GS) is relaxed toward the equilib-
rium state. This short-time dynamic scaling theory
provides a new and practical technique for the mea-
surement of the critical temperature as well as dy-
namic and static critical exponents in the second-order
phase transition. Recently, this dynamic approach has
been successfully applied or generalized to the weak
first-order phase transition [7] as well as KT phase
transition.[8] More recently, this approach has been
successfully extended to study the non-equilibrium
phase transition with small current or field.[9]

Depinning transitions are found in a large va-
riety of physical problems, such as fluid invasion
in porous media,[10,11] depinning of charge den-
sity waves, [12,13] depinning of flux line in type-II
superconductors,[14−19] field-driven motion of domain
walls in ferromagnets,[20,21] and elastic media in disor-
dered environment.[22,23] In the mixed state of type-
II superconductors, the magnetic field penetrates in
the form of flux lines each carrying one flux quantum
Φ0 = h/2e. At zero temperature the system exhibits
a depinning transition from a pinned state below the
critical driving force Fc or current Ic to a sliding state
above Fc or Ic. The property of depinning transition
is rather unconventional. Discontinuous curves of the
average velocity v versus driving force F were found in

2D and 3D vortex systems at zero temperature[16,17,24]

as well as in fully frustrated Josephson junction arrays
(JJAs) at low temperatures.[25] However, mean-field
theory on charge-density wave model predicted a con-
tinuous depinning transition for strong pinning case
with a scaling law v ∼ (F − Fc)α, and found the ex-
ponent α ≈ 1.5.[13] The renormalization-group (RG)
theory on elastic system with quenched disorder gave
α < 1,[26] by assuming a continuous depinning tran-
sition. Simulations on two-dimensional (2D) vortex
systems in the presence of random pins found concave
upwards force-velocity (v−F ) curves for weak pinning
systems[15,27] and convex upwards ones for strong pin-
ning systems.[27] They are also found in 2D colloid sys-
tem with pins.[28] Up till now, no final conclusion has
been achieved on this topic. As we known, the value
of exponent α is important to grasp the property of
the depinning transition. However, the determination
of the exponent α is based on the accurate evaluation
of the critical current Ic or force Fc. The short-time
dynamic scaling approach is just one of good ways to
obtain the critical current. It is our motivation of this
work.

In this paper we apply the short-time dynamic
scaling method to study the depinning transition of
XY model and analyse its critical behaviour. In par-
ticular, we study the time dependence of the average
voltage as a function of the applied current. We ob-
serve a continuous depinning transition and determine
the corresponding critical exponents by short-time dy-
namic scaling analysis method.

We begin with the Hamiltonian of a 2D XY model

H = −J
∑
〈ij〉

cos(θi − θj − Aij), (1)
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where θi denotes the phase of the superconducting
order parameter on grain i, and J sets the strength
of the Josephson coupling between neighbouring su-
perconducting grains, and Aij ≡ (2e/h̄)

∫ j

i
A · dl is

the integral of the vector potential A from site i to
j. We assume a constant, uniform external field B
along the z direction, for which the summation of
Aij around any unit cell is

∑
cell Aij = 2πf , where

the constant f = BS/Φ0 is the density of magnetic
flux quanta per unit cell, and S is the area. In this
work, we consider uniformly frustrated XY model
with f = 1/2, 1/25, 1/30.

Simulations are performed on L × L square lat-
tices within resistively-shunted junction (RSJ) dy-
namics under the fluctuating twist bounding condition
(FTBC). External currents are applied in x direction
with the current density I = (ix, 0). The net cur-
rent from site i to site j is written as the sum of the
supercurrent and the normal resistive current,

Iij = I0 sin(φij = θi − θj −Aij − rij ·∆)+Vij/R, (2)

where I0 ≡ 2eJ/h̄ is the critical current of the single
junction, Vij is the voltage drop across the junction, R
is the shunt resistance, θi is periodic in both directions
(θi = θi+Lx̂ = θi+Lŷ). rij ≡ rj − ri is a unit vector
from site i to j, and ∆ = (∆x,∆y) is the fluctuating
twist variable. Supposed that I0 and R are the same
for all junctions.

The phase variable θi on the site i with position
vector ri satisfies[29]

θ̇i = −
∑

j

Gij

∑
k

′
[sin(φjk)], (3)

where Gij is lattice Green’s function, the primed sum-
mation is over nearest-neighbour sites (k) of j, and the
unit of time is h̄/2eRI0. The dynamics of ∆ is given
by[29]

d∆x

dt
=

1
L2

∑
〈ij〉x

sin(θi − θj − Aij − ∆x) − ix,
(4)

d∆y

dt
=

1
L2

∑
〈ij〉y

sin(θi − θj − Aij − ∆y), (5)

where
∑

〈ij〉x and
∑

〈ij〉y denote the summation over
all links in the x direction and y direction, respec-
tively. The current density ix ≡ Ix/I0 is in units of
I0. The voltage drop is V = −L∆̇x. For convenience,
units are taken of I0 = R = h̄/2e = J = 1 in the
following.

The applied external current I and resulted volt-
age drop V in 2D XY model are analogous to the
driving force F and vortex velocity v in a supercon-
ducting thin film. Thus the following correspondences
between the two systems apply: F ↔ I and v ↔ V .

Fig. 1. Vortex distribution in the ground state for (a)
f = 1/2 and annealing ground state for (b) f = 1/25, (c)
f = 1/30. The corresponding system size is L = 64, 100
and 120, respectively.

We perform the short-time dynamic simulations
from the ground state for f = 1/2 and annealing
ground state for 1/25, 1/30 with the fluctuating twist
variable ∆ = (0, 0). Figure 1 shows the vortex distri-
bution in these three cases. Analogy to the second-
order phase transition, we choose voltage V along x
direction as the order parameter. Simulations are per-
formed on a square lattice of area L× L with current
I near the critical current Ic. The evolution of the
system driven with current I is investigated by solv-
ing the dynamic equations (3)–(5) with a second-order
Runge–Kutta algorithm. According to the short-time
dynamics scaling theory, after the microscopic time
scale tmic the scaling behaviour emerges and the order
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parameter obeys[5]

〈V (t, i)〉 = t−θG(t1/νzi), (6)

where i = (I − Ic)/Ic is the reduced current, t is the
time, θ = β/νz, β and ν are the static critical expo-
nents, and z is the dynamical exponent. That means
at the critical current Ic, i.e. i = 0, the behaviour of
voltage shows a power law relation 〈V (t, Ic)〉 ∼ t−θ,
thus the critical exponent θ can be determined.

Fig. 2. Log-log plot of the time evolution of voltage 〈V 〉
after a microscopic time scale tmic = 10 for the FFXY
model. The solid lines represent 〈V 〉 for current I = 0.415,
0.414, and 0.412. The dotted line is at Ic = 0.4142. The
inset displays the deviation of the voltage from the power
law with current range from 0.415 to 0.412.

First, we consider XY model with f = 1/2
(FFXY) and select three values of current which en-
close the critical current. Figure 2 shows the decay
of the average voltage 〈V 〉 as a function of time at
zero temperature in a log–log scale for three different
currents. At the onset of the evolution, all curves de-
crease with time in a similar way. Different behaviour
only emerges after a microscopic time scale tmic = 10.
Since for large currents, 〈V 〉 reaches a finite steady
value V > 0, while for small currents, V = 0. Thus
the log–log 〈V 〉 − t curves are concave for small cur-
rents and convex for large currents as shown in Fig. 2.
Therefore, there is a drastic change of behaviour be-
tween I = 0.415 and I = 0.412. We can judge that Ic

is between 0.415 and 0.412.
In order to precisely determine the critical current

Ic, we present the time evolution of voltage 〈V 〉 for
current range from I = 0.415 to I = 0.412. With
the voltage obtained at these three currents, we cal-
culate the values of voltage for current within (0.415,
0.412) with a current step 0.001 by quadratic inter-
polation. For each value of current, the deviation of
the voltage from the power law is calculated as the
square deviations SD =

∑
[〈V (t)〉− y(t)]2 in the time

interval [10, 100], where the function y(t) = C1t
−C2

is obtained by linear fitting of log–log 〈V 〉 − t curves

in Fig. 2. In the inset of Fig. 2, the deviation of 〈V 〉
is plotted as a function of current. The current at
which the square deviation takes the minimum is de-
fined as the critical current Ic. The resulting value of
Ic = 0.4142(3) is in agreement well with that obtained
from theoretical calculation

√
2− 1. Furthermore, the

voltage at Ic is also plotted in Fig. 2 with a dotted
line. The slope of this curve yields the critical ex-
ponent θ = 1.6873(5). We therefore conclude that
the short-time dynamic scaling analysis method can
be used to determine the critical current of depinning
transition of 2D XY model. The advantage of short-
time scaling approach is spare much more time which
is free of critical slowing down. The accurate evalua-
tion of Ic is very important since even a small error in
its value can strongly affect the determination of the
scaling exponents.

Fig. 3. Log–log plots of the voltage V versus time t with
three currents denoted in the figure for (a) f = 1/25 and
(b) f = 1/30. The dotted lines are at Ic = 0.1168 for
f = 1/25 and Ic = 0.1156 for f = 1/30. The inset dis-
plays the deviation of the voltage from the power law with
current range from 0.116 to 0.118 (a) and from 0.115 to
0.117 (b).

Following the short-time scaling approach de-
scribed above, we accurately find the critical current
and scaling exponents for f = 1/25 and 1/30, re-
spectively. All the results are listed in Table 1. The
corresponding log–log plots of V − t are presented in
Fig. 3. On the other hand, with the voltage at each
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current obtained from long-time steady-state simula-
tions we observe the continuous depinning transition
which obeys V ∼ (I − Ic)α for these flux densities.
Figure 4 plots the value of V as a function of I − Ic

for f = 1/25 in a log–log scale. A power-law be-
haviour V ∼ (I − Ic)α is shown in Fig. 4. The best fit
to the data yields Ic = 0.1169, which agrees well with
the result obtained from short-time dynamic scaling
approach.

Table 1. Critical currents and the critical exponents for the 2D
XY model with f = 1/2, 1/25, 1/30.

f = 1/2 f = 1/25 f = 1/30

Ic 0.4142(2) 0.1168(3) 0.1156(4)
θ 1.6873(3) 1.6013(2) 1.6435(2)

Fig. 4. Log-log plot of the steady-state average voltage
as a function of the reduce current I −Ic with Ic = 0.1169
for f = 1/25.

From Table 1, we observe that the critical current
Ic increases with the density of flux f . The more the
vortices, the larger the values of f , and the stronger
the interaction between vortices, then the higher the
depinning potential.[30] Therefore large critical current
to make the vortices flow is needed. It is interest-
ing that the exponent θ is roughly independent of the
value of flux density. However, we cannot give the
value of exponents β, ν and z in the framework of
short-time dynamical scheme. With the help of long-
time simulation results, we can obtain more informa-
tion of depinning transition.

In conclusion, we have studied the depinning tran-
sition in the square lattice of the frustrated XY model
by the short-time dynamic approach. It is observed
that the resulting Ics are consistent with those ob-
tained from the steady-state long time simulations.
We therefore conclude that the short-time scaling
analysis method can be applicable to the depinning
transition of frustrated XY model driven by exter-

nal current. We also find that the critical current Ic

increases with the flux density f .
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