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Abstract

This paper investigates the reliable impulsive control problem for autonomous spacecraft rendezvous

under the orbital uncertainty and possible thruster faults. The orbital uncertainty is described as the

model uncertainty, and the possible thruster faults are modelled by scaling factors. By introducing a state-

feedback controller, the autonomous rendezvous problem is regarded as an asymptotic stabilization

problem of a switching system composed of impulse action phase and free motion phase. Based on

Lyapunov theory and genetic algorithms (GA), a reliable impulsive controller design approach is

proposed. With the obtained controller, the autonomous spacecraft rendezvous is accomplished by a

series of proper impulse thrust in spite of the orbital uncertainty and the possible thruster faults. The

effectiveness of the proposed approach is illustrated by simulation examples.

& 2012 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
1. Introduction

With the rapid development of astronautic technique during the last few decades, the
orbital control problem of autonomous spacecraft rendezvous has attracted considerable
attention due to its importance on many modern complicated aerospace missions such as
spacecraft intercepting, repairing, docking or formation networking. For instance, the
optimal impulsive control method for spacecraft rendezvous is studied in [6,10,15];
adaptive control theory is applied to the rendezvous and docking problem in [14];
an annealing algorithm method for rendezvous orbital control is proposed in [9];
a multi-objective robust orbital control method based on Lyapunov theory is proposed in
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[4]; the sampled-data control problem for spacecraft relative position holding is studied in
[20]; a guaranteed cost robust control strategy for spacecraft output tracking during the
rendezvous process is presented in [21]. Although there have been many results in this field,
the rendezvous orbital control problem has not been fully investigated and still remains
challenges.
Impulsive thrust is widely adopted in spacecraft control due to the simplicity for

applications. Many studies on the correlative problems have been reported, see, for
instance, [5,9–11]. In [9,10], the optimal impulse control strategies based on simulated
annealing (SA) are proposed; null controllability with vanishing energy (NCVE) property
is studied for the impulsive orbital transfer problem in [5]. However, we noticed that, for
most of the proposed methods, the impulse thrust needs to be previously designed before
the mission starts. Thus, these impulsive control strategies are actually open-loop control
methods, which are easily affected by the external unexpected disturbance or other
uncertain factors. Compared with the open-loop control method, the closed-loop
impulsive control approach determines the needed impulse thrust according to the real-
time states, and thus, the affection caused by the unexpected conditions can be reduced
effectively. Obviously, the closed-loop control approach has more advantages than the
open-loop control approach. However, the closed-loop impulsive control problem has
seldom been studied till now, and this motivates our work in this paper.
The most widely adopted model of relative motion between two adjacent spacecraft is

built based on the famous C–W equations, which is derived by Clohessey and Wiltshire in
1960 [1]. For this kind of models, the target orbit is assumed to be circle and the target
angular velocity is a constant, which is one of the important parameters of the model.
However, the circle orbit is hard to maintain and it is impossible to determine the accurate
target angular velocity due to the complex orbital uncertainty caused by external
disturbance, equipment errors, mass variation, etc. Thus, guaranteeing robustness for the
orbital uncertainty is a big challenge for studies on spacecraft rendezvous problems. In
recent years, many kinds of uncertainties existing in many different systems are widely
studied [2,12,13,24]. Some efficient approaches towards different kinds of uncertainties
have been reported, see, for instance, [3,7,8]. Nevertheless, for the spacecraft rendezvous
problem, the orbital uncertainty is always studied separately, and it is necessary to take the
design requirements into consideration simultaneously.
As mentioned before, autonomous spacecraft rendezvous is an extremely complicated

process with many unexpected factors. Besides the external affections caused by orbital
uncertainty we just discussed above, another important issue we cannot ignored is the
possible internal problems of the spacecraft, which always happens in the thrusters. Due to
the limitation of the technique and the shocking space conditions, it is impossible to
completely avoid the thruster faults. Thus, in order to ensure the safety and the accuracy of
the rendezvous, the orbital controller with reliability against the possible thruster faults is
also significant for the studies on orbital control of autonomous spacecraft rendezvous.
Recently, many results of reliable control have been reported. For linear systems, [16,17]
present reliable controller design methods which can stabilize the systems and ensure the
performances in spite of some admissible control component outages; the reliable control
problem for network with random packet losses or missing measurements is studied in
[18,19]; a pre-compensator is utilized for a kind of systems with actuator redundancies
in [25]. Nevertheless, few results of reliable control problem have been successfully adopted
in spacecraft rendezvous process. In [22], the reliable autonomous rendezvous problem is
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studied based on a model with scaling fault factors. However, the analysis and the results
in [22] are all based on the continuous thrust control method. Therefore, it is still a
challenge to study the reliable impulsive control problem for spacecraft autonomous
rendezvous.

In this paper, the orbital uncertainty and the possible thruster faults are considered
synthetically for the impulsive autonomous spacecraft rendezvous problem. By introducing
a state-feedback controller, the relative motion system during the impulse action and the
free motion phase are regarded as closed-loop system and open-loop system respectively,
and the whole rendezvous process is regarded as a switching system composed of these two
phases. Then, based on the Lyapunov theory, the autonomous rendezvous problem is
regarded as an asymptotic stabilization problem of the switching system. The proper state-
feedback controller is obtained by solving a feasibility problem of a set of linear matrix
inequalities (LMIs), some of whose proper parameters are previously searched by genetic
algorithms (GA). The approach based on GA and LMIs we adopt here has been proven
effective for solving the relative orbital transfer problem during the spacecraft rendezvous
process, see, for instance, [23]. However, we noticed that, only the basic impulse control
problem without consideration of orbital uncertainty and possible thruster faults is studied
in [23]. The results of [23] are expanded in this paper. With the controller designed
by the proposed method in this paper, the autonomous spacecraft rendezvous process is
accomplished under the orbital uncertainty and the possible thruster faults. Some
illustrative examples are provided to show the effectiveness of the proposed method.

Notations: The notation used throughout the paper is fairly standard. The superscript ‘‘T’’
stands for matrix transposition; Rn denotes the n-dimensional Euclidean space and Rn�m

denotes the set of all n�m real matrices; J � J refers to either the Euclidean vector norm or the
induced matrix 2-norm. For a real symmetric matrix W, the notation W40 ðWo0Þ is used to
denote its positive- (negative-) definiteness. diagf. . .g stands for a block-diagonal matrix. For any
matrix S, symS} means S þ ST . In symmetric block matrices or complex matrix expressions, we
use an asterisk (n) to represent a term that is induced by symmetry. I and 0 denote the identity
matrix and zero matrix with compatible dimensions, respectively. Matrices, if their dimensions
are not explicitly stated, are assumed to be compatible for algebraic operations.
2. Problem formulation

In this section, the norm-bounded orbital uncertainties and the impulsive thrust with
possible thruster faults are considered, and the relative motion model is established based
on the C–W equations. Finally, the reliable impulsive orbital control problem is formulated.
2.1. Relative motion with orbital uncertainty

By assuming circular target’s orbit and small distance between two spacecraft, the
linearized equations of the relative motion between them can be described as

€x�2n _y�3n2x¼ ax,

€y þ 2n _x ¼ ay,

€z þ n2z¼ az,

8><
>: ð1Þ
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where x and y are the radial component and along-track component of the chaser’s
position relative to the target respectively, z is the out-plane component which completes
the right handed coordinate system, n is the target angular velocity, ai (i¼x, y, z) is the ith
component of the acceleration input of chaser.
The front two equations in Eq. (1) describe the in-plane motion and the third equation

describes the out-plane motion respectively, and the two motions are independent.
Obviously, the in-plane motion is more complicated than out-plane motion. In this paper,
we focus on the in-plane motion, whose results are also suitable for out-plane motion. By
defining the state vector xðtÞ ¼ ½x,y, _x, _y�T and the input vector uðtÞ ¼ ½ax,ay�

T , the relative
motion equations can be written as the following state space function:

_xðtÞ ¼AxðtÞ þ BuðtÞ, ð2Þ

where the matrices A and B are obtained according to Eq. (1):

A¼

0 0 1 0

0 0 0 1

3n2 0 0 2n

0 0 �2n 0

2
6664

3
7775, B¼

0 0

0 0

1 0

0 1

2
6664

3
7775:

Obviously, the rendezvous process can be regarded as the asymptotic stabilization
process of the system in Eq. (2), and the main task is to determine the proper control input
vector u(t).
As we mentioned in Section 1, matrix A is obtained based on the assumption of n is

constant, which means that the target orbit is circle. However, exact circle orbit is difficult
to maintain in practice. Thus, in this paper, we consider the state matrix as an uncertain
matrix ~A ¼Aþ DA, where the orbital uncertainty is considered as a norm-bounded matrix
DA¼DF ðtÞE, and Eq. (2) is written as

_xðtÞ ¼ ~AxðtÞ þ BuðtÞ: ð3Þ

The matrices D and E are the constant matrices with proper dimension, F(t) is an unknown
real-time varying matrix with Lebesgue measurable elements bounded by F T ðtÞF ðtÞrI .

2.2. Impulsive thrust with possible thrust faults

For control input u(t), two kinds of thrusts, continuous thrust and impulsive thrust, can
be adopted during the orbital transfer process. However, it is actually difficult to directly
obtain the continuous thrust in practice, and the impulsive thrust has been widely adopted
for the practical spacecraft control. Therefore, we focus on the impulse thrust control
strategy in this paper.
Different from continuous thrust strategy, the impulse control method is realized by a

series of impulsive thrust. As the correlative analysis in [23], the whole rendezvous process
can be regarded as a series of alternations between impulse action phase and the sequent
free motion phase, which can be regarded as closed-loop system and open-loop system
respectively. These two phases can be described by the following equations:

impulse action : _xðtÞ ¼ ~AxðtÞ þ BuðtÞ, tkotrtk þ t

free motion : _xðtÞ ¼ ~AxðtÞ, tk þ totrtkþ1 ð4Þ
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where tk is the instant of the kth impulse, t is the duration of each impulse. As is well
known, the impulsive thrust is always assumed to be generated immediately at tk, which
means that t¼ 0. However, non-duration is impossible in practical engineering. Thus, the
impulse duration is taken into consideration in our study, and making it as short as
possible is one of our objectives in this paper.

For the impulse action phase, we consider state-feedback strategy as

uðtÞ ¼KxðtÞ, tkotrtk þ t, ð5Þ

where K is the state-feedback gain matrix which needs to be determined. By considering the
possible thruster faults, we introduce two parameters mx(t) and my(t) to represent the
possible thruster faults along x-and y-axes respectively. Assume that mx(t) and my(t) satisfy
0rmlirmiðtÞrmuio1, (i¼x,y), where mli and mui are given real constraints. We can see
that, if mli ¼mui ¼ 1, then miðkÞ ¼ 1, which means that there is no fault in thruster.
Reversely, if mli ¼mui ¼ 0, then miðkÞ ¼ 0, which means that the thrust is completely lost.
More generally, 0omlio mui and miðtÞa1 denote that there exists partial fault in the
corresponding thruster. Thus, by introducing a fault matrix M ¼ diagfmx,myg, the control
vector existing possible thruster faults ujðtÞ can be written as

uf ðtÞ ¼MKxðtÞ, tkotrtk þ t: ð6Þ

According to Eqs. (4) and (6), the closed-loop system of the impulse action phase can be
obtained, and the whole rendezvous process can be rewritten as

impulse action : _xðtÞ ¼ ð ~A þ BMKÞxðtÞ, tkotrtk þ t,

free motion : _xðtÞ ¼ ~AxðtÞ, tk þ totrtkþ1: ð7Þ

2.3. Problem of the controller design

According to the analysis above, the problem to be studied in this paper can be
formulated as:

For the relative motion between two spacecraft which is described by the switching
system in Eq. (7), determine the state-feedback gain matrices K such that the needed
impulsive thrust can be determined during the rendezvous process, with that the system
is asymptotically stable, which means that the rendezvous of the two spacecraft is
accomplished by the obtained impulsive thrust under the orbital uncertainty and the
possible thruster faults.
3. Controller design

As discussed above, the autonomous spacecraft rendezvous control problem has been
transformed into a stabilization problem of the switching system in Eq. (7). Thus, we first
analyze the stabilization of the switching system. Then, the state-feedback controller
design method is proposed based on the genetic algorithms and some linear matrix
inequalities, and the calculation steps of the controller design are listed at the end of this
section.
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3.1. Stabilization analysis

In order to analyze the stability of the switching system, the following two Lyapunov
functions are introduced for the impulse action phase and the free motion phase
respectively:

impulse action : V1ðxÞ ¼ xT ðtÞP1xðtÞ, tkotrtk þ t,

free motion : V2ðxÞ ¼ xT ðtÞP2xðtÞ, tk þ totrtkþ1, ð8Þ

where P1 and P2 are symmetric positive definite matrices.
According to the Lyapunov theory, it can be seen that the asymptotic stability of the

switching system can be ensured by the degression of the total virtual energy of the two
subsystems. As we analyzed before, the free motion phase is an open-loop control process.
Thus, the motion during this phase is uncontrollable, and the exact variation of V 2ðxÞ is
difficult to determine. However, the degression of V1ðxÞ can be certainly ensured by
designing the proper state-feedback control law Eq. (6). Thus, the energy degression of the
whole switching system only depends on the degression of V1ðxÞ if V 2ðxÞ at the initial
instant of each impulse period is less than its initial value of the last impulse period, which
means

_V 2ðxt,þ1ÞoV 2ðxtk
Þ: ð9Þ

According to the correlative analysis in [23], the stabilization of the system Eq. (7) can be
ensured whether there exist two given proper positive scalars a and b such that the
derivatives of V1ðxÞ and V 2ðxÞ satisfy the following two inequalities:

_V 1ðxÞo�aV1ðxÞ, tkotrtk þ t, ð10Þ

_V 2ðxÞobV 2ðxÞ, tk þ totrtkþ1: ð11Þ

Next, we focus on these two inequality conditions. First, based on the parameters of
thruster faults, we introduce three matrices: M0 ¼ diagfm0x,m0yg, L¼ diagflx,lyg and
J ¼ diagfjx,jyg, where m0i ¼ ðmli þmuiÞ=2, li ¼ ½miðtÞ�m0i�=m0i and ji ¼ ðmui�mliÞ=ðmui þ

mliÞ with i¼x,y. Then, we have M ¼M0ðI þ LÞ and LT LrJT JrI . Thus, according to
Eq. (7) and the introduced matrices, the closed-loop system during the impulse action with
possible thruster faults can be described as

_xðtÞ ¼ ½Aþ DAþ BM0ðI þ LÞK �xðtÞ: ð12Þ

Thus, the inequality Eq. (10) can be ensured by

symfP1½AþDF ðtÞE þ BM0ðI þ LÞK �g þ aP1o0: ð13Þ

By Lemmas 1 and 2 of [22], for k140 and k240, we have

symfP1½AþDF ðtÞE þ BM0ðI þ LÞK �g

oOþ k1P1DDT P1 þ k�11 ET E þ k2P1BM0JM0BT P1 þ k�12 KT JK ,

where O¼ symfP1Aþ P1BM0Kg. Then, Eq. (13) is satisfying if

Oþ k1P1DDT P1 þ k�11 ET E þ k2P1BM0JM0BT P1 þ k�12 KT JK þ aP1o0: ð14Þ
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By Schur complement, the inequality in Eq. (14) equals to

X ½ET KT �

n diagf�k1I ,�k2J�1g

" #
o0, ð15Þ

where X¼Oþ k1P1DDT P1 þ k2P1BM0JM0B
T P1 þ aP1. Define X 1 ¼ P�11 , Y ¼KX 1.

Pre- and post-multiplying Eq. (15) by diagfX 1,I ,Ig, the inequality Eq. (15) is transformed as

F ½X 1ET Y T �

n diagf�k1I ,�k2J�1g

" #
o0, ð16Þ

where F¼ symfAX 1 þ BYg þ k1DDT þ k2BM0JM0BT þ aX 1. Then, the inequality con-
dition Eq. (10) is transformed into the linear matrix inequality in Eq. (16). By defining
X 2 ¼ P�12 and the similarly steps, we can easily transform Eq. (11) into

X 2AT þ AX 2�bX 2o0: ð17Þ

Thus, we can see that, the conditions in Eqs. (10) and (11) are all transformed into linear
matrix inequalities.

Next, we consider the impulse duration t and built some connections among t and the
scalars a and b based on the condition in Eq. (9). According to Eq. (10), we also have the
following result:

V ðxtkþ1
ÞoebðT�tÞV ðxtkþtÞoebðT�tÞe�atV ðxtk

Þ: ð18Þ

Thus, the condition Eq. (9) can be ensured by ebðT�tÞ�atV 2ðxtk
ÞoV2ðxtk

Þ, which equals to

t4bTðaþ bÞ�1: ð19Þ

The inequality in Eq. (19) describes the relationship between the impulse duration t, the
impulse period T and the scalars a and b.

Therefore, we can see that, the asymptotic stability of the switching system can be
ensured by Eqs. (16), (17) and (19). For given impulse period T, if there exist proper scalars
a, b and t, matrices X1, X2 and Y, such that the conditions in Eqs. (16), (17) and (19) are
satisfied, then the switching system in Eq. (7) is asymptotic stable and the desired state-
feedback matrix K can be obtained by K ¼YX�11 . It can be seen that if the scalars a and b
are given scalars, then the inequalities in Eqs. (16) and (17) are LMIs, which can be solved
by standard software tools and the desired controller can be calculated based on the
feasible solution of them. Thus, the next problem that needs to be solved is how to
determine the proper scalars a, b and t which make the LMIs (16) and (17) feasible.

3.2. Controller design algorithm

According to the analysis above, the conditions Eqs. (9)–(11) are transformed into (19),
(16) and (17). Obviously, if the scalars a and b are all given scalars, then the conditions (16)
and (17) are linear matrix inequalities for X1, X2 and Y, which can be solved by standard
software tools based on the convex optimization theory. With the solution (X1, X2, Y), the
desired feedback gain matrix K can be calculated by K ¼YX�11 . Next, an approach that
combines convex optimization theory and GA is proposed.

As is well known, GA is a probabilistic search procedure based on the mechanism
of natural selection and natural genetics. It has been successfully applied to different
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controller synthesis problems. In order to deal with our problem in this paper, an approach
which combines the feasible solution of LMIs and the random search of GA is proposed.
GA is used to generate the scalars a, b and t which satisfy the inequality in Eq. (19). If
Eq. (19) is feasible, then this set of scalars constitutes a solution with the corresponding
feasible solution (X1, X2, Y) of Eqs. (16) and (17). As we discussed in Section 2, the impulse
duration should be kept as short as possible, thus the minimized t is our objective of this
problem. The minimization problem can be described as

min t s:t ð19Þ, ð16Þ and ð17Þ:

Summarizing the above analysis, the controller design process can be generalized by the
following four calculation steps based on GA and LMIs:

Step 1: Initialization. Encode the parameters a, b, t by using the floating string as
j¼ ½ja,jb,jc�, where jj,ðj ¼ a,b,cÞ are three floating numbers corresponding to the scalars
a, b and t respectively. Randomly generate an initial population of N chromosomes jr,
r¼1,2,y,N.

Step 2: Evaluate the objective and assign fitness. Check the feasibility of Eq. (19) for
each set of ar, br and tr. If (19) is infeasible, then the objective value to this group is
assigned a larger value. For the sets of ar, br and tr satisfying (19), further check the
feasibility of the LMIs (16) and (17). If there exists feasible solution of the LMIs, the
objective value to this group is assigned as tr and go to Step 3. If the LMIs are not feasible,
then the objective value to this group is also assigned a larger value and go to Step 3.

Step 3: According to the assigned objective value in Step 2, choose the offspring by
tournament selection approach. The group with smaller objective value has higher
opportunity to be selected. In each pair of randomly selected chromosomes, the elements
are probabilistically and independently swapped at each element position with a given
probability (pc) to produce pairs new chromosomes. In the population of chromosomes,
the mutation operation randomly selects some elements and change them with a small
probability (pm). Elitist reinsertion guarantees that the best chromosomes in the population
always survive and is retained in the next generation.

Step 4: Select a chromosome with the minimized objective value and solve the feasibility
problem of LMIs. With the solution (X1, X2, Y), the desired state-feedback gain matrix K is
calculated by K ¼YX�11 .

Remark 1. In above analysis, the impulse period T is assumed to be a given scalar.
Actually, the period could be a variable scalar in practical engineering, and different
impulse periods cause different transfer orbits. In this paper, we consider T as a constant
scalar, which means that the interval between any two adjacent impulses is constant. For a
given T, the controller can be calculated by the algorithm listed above. However, the
similar algorithm can also be used to deal with the case where T is not previously given. If
T is an undefined constant and its range can be generally determined, it can also be
regarded as another searching objectives besides a, b and t. Then, in calculation Step 1, the
floating string j should be defined as j¼ ½ja,jb,jc,jd �, where jj,ðj ¼ a,b,c,dÞ are four
floating numbers corresponding to the scalars a, b, t and T respectively. After searching
process of GA, the proper impulse period T can be found out during the given range and
the state-feedback gain matrix K can also be calculated by the feasible solution (X1, X2, Y)
of the LMIs.



Z. Li et al. / Journal of the Franklin Institute 350 (2013) 2455–2473 2463
4. Illustrative example

In this section, we provide three examples to illustrate the usefulness of the controller
design method proposed in the above section. In Case 1, we consider a simple example where
the initial relative velocity between the spacecraft is zero and the impulse period is given. In
Case 2, the initial relative state becomes more complicated and the given impulse period is
much longer than Case 1. In Case 3, we consider the case without given impulse period.

Case 1. Firstly, we consider a target spacecraft which is moving in a geosynchronous
circular orbit with height h¼400 km and its angular velocity is n¼1.117� 10�3 rad/s and
the orbital period is 5622 s. The initial parameters of the two spacecraft are listed in
Table 1.

As we analyzed in Section 2, the orbital uncertainty of the rendezvous process is given by
the matrix DA¼DF ðtÞE. According to the structure of A, assume that

D¼

0 0 0 0

0 0 0 0

0 0:002 0 0:004

0:002 0 0:004 0

2
6664

3
7775, E ¼

1 0 0 0

0 1 0 0

0 0:25 1 0

�2:25 0 0 1

2
6664

3
7775:

For the possible thruster faults, assume that mli ¼ 0:8 and mui ¼ 1:2 where i¼x,y. Then, the
matrices M0 and J can be readily obtained. In this case, we consider the impulse period T is
given. Assume T¼100 s. Next, according to the calculation steps, we adopt GA to search
the proper scalars a, b and t and solve the feasibility problem of LMIs (16) and (17). The
GA parameters we choose are shown in Table 2.

By the calculation of GA, the following chromosome with the minimized objective value
is obtained:

jcase1 ¼ ½0:083303 1:7315� 10�7 0:13921�: ð20Þ

We can see that the minimized objective min t is 0.13921 s. The evolution of t in the
population is shown in Fig. 1.
Table 1

Parameters of the target and chaser in Case 1.

Parameters Values

Target orbital height 400 km

Target orbital period 5622 s

Mass of chaser 200 kg

Mean angular velocity of chaser 1.117� 10�3 rad/s

Initial relative position (1 km, 0.8 km)

Initial relative velocity (0 m/s, 0 m/s)

Table 2

Parameters used by GA in Case 1.

Parameter Population Generations pc pm Bounds of a Bounds of b Bounds of t
Value 100 200 0.9 0.06 [0.08, 0.12] [0, 10�6] [0, 0.5]
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Fig. 1. Evolution of t in the population of Case 1.
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From Fig. 1, we can see that the minimized impulse duration t can be found after nearly
70 generations. From Eq. (20), we can also obtain the proper scalars a¼ 0:083303 and
b¼ 1:7315� 10�7, which make the LMIs (16) and (17) are feasible and the feasible
solution (X1, X2, Y) can be readily obtained. Then, the state-feedback gain matrix K can be
calculated:

Kcase1 ¼YX�11 ¼
�3:8348 �0:0228 �67:8073 �0:8738

�0:0987 �3:7223 �0:8738 �66:1275

� �
:

Thus, the state feedback controller with the form in Eq. (5) is obtained. Based on the
controller, the proper impulse thrust can be calculated and generated once every 100 s.
In this case, we assume that the thruster faults occur periodically during the rendezvous

process, and the percentage of the signal loss is 15% when the faults occur. Then, with the
obtained state-feedback gain matrix Kcase1, the relative position between chaser and target
during the rendezvous process is shown in Fig. 2, the relative velocities along the x- and
y-axes are shown in Figs. 3 and 4, respectively, and the input accelerations of chaser along
the x- and y-axes are shown in Figs. 5 and 6, respectively.
From Figs. 1–6, we can see that a series of proper impulsive thrusts are generated every

100 s, and the relative position converges to zero in less than half an orbital period. Due to
the longer distance along the x-axis, the needed impulse thrust along the x-axis is greater
than the thrust along the y-axis. However, the convergence process along the two axes
takes nearly the same time.

Case 2. Next, we consider another more complicated case. Assume that the initial
velocity between two spacecraft is not zero, and the impulse period is longer than it in
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Fig. 2. Relative position along x- and y-axes between chaser and target with Kcase1.
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Fig. 3. Relative velocity along the x-axis with Kcase1.

Z. Li et al. / Journal of the Franklin Institute 350 (2013) 2455–2473 2465



0 500 1000 1500 2000 2500 3000 3500 4000
-10

-5

0

5

10

15

20

Time (s)

R
el

at
iv

e 
ve

lo
ci

ty
 a

lo
ng

 y
 -a

xi
s 

(m
/s

)

Fig. 4. Relative velocity along the y-axis with Kcase1.
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Fig. 5. Acceleration input of chaser along the x-axis with Kcase1.
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Fig. 6. Acceleration input of chaser along the y-axis with Kcase1.

Table 3

Parameters of the target and chaser in Case 2.

Parameters Values

Mass of the chaser 400 kg

Initial relative position (�2 km, �1 km)

Initial relative velocity (5 m/s, 3 m/s)

Impulse period 200 s
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Case 1. The parameters that are different from Case 1 are listed in Table 3. The other
parameters are same as Case 1.

Different from Case 1, the initial relative state in this case becomes xðt0Þ ¼

½�2000,1000,5,3�T . Here, we still adopt the GA parameters which are listed in Table 2.
Then, the evolution of t in the population is shown in Fig. 7.

From Fig. 7, we can see that the minimized impulse duration t can also be found after
nearly 70–80 generations, and the obtained min t here is longer than the min t in Case 1.
The selected chromosome with the minimized objective value is

jcase2 ¼ ½0:14145 5:1851� 10�7 0:21928�:

By solving the feasibility problem of the LMIs, the state-feedback gain matrix K can be
calculated by the set of feasible solution (X1, X2, Y)

Kcase2 ¼YX�11 ¼
�21:3716 �0:0867 �226:4831 �1:7998

�0:3397 �20:9646 �1:7999 �222:9688

� �
:
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Fig. 7. Evolution of t in the population of Case 2.
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Same thruster faults pattern as Case 1 is considered here. Then, with the obtained state-
feedback controller, the relative position during the rendezvous process is shown in Fig. 8.
Correspondingly, we also give the relative velocity and the acceleration inputs along the
x- and y-axes in Figs. 9–12 respectively.
From the figures, we can see that the rendezvous process can also be completed and the

process take nearly half an orbital period, which is similar to the Case 1. However, it can also
be seen that the needed impulse thrust is much greater than Case 1. This is because the initial
relative position and relative velocity are all larger than Case 1. And, obviously, the longer
impulse period is another important reason of the greater impulse thrust. By comparing Figs. 8
and 9 with Figs. 3 and 4, we can also find the obvious difference between these two cases. The
variation of the relative velocity between the spacecraft during the rendezvous process is
heavily affected by the impulse period T, which has been illustrated in Remark 1.

Case 3. Next, we consider how to determine the impulse period T due to its importance
as we discussed before. As we analyzed in Remark 1, the impulse period T can also be
regarded as another item of chromosome of GA. Thus, we next consider another case
where T is not given. The spacecraft parameters we adopted here are same as which in
Case 2, and the GA parameters are listed in Table 4. The evolution of t in the population is
shown in Fig. 13.
From Fig. 13, we can see that the minimized impulse duration t can also be found after

nearly 70–80 generations. And by the proposed algorithm, we can also obtain some sets of
(a, b, t, T) which make the LMIs feasible. The chromosome with the minimized objective
value is

jcase3 ¼ ½0:12215 4:5425� 10�7 0:12012 117:15�:



0 500 1000 1500 2000 2500 3000 3500
−100

−80

−60

−40

−20

0

20

40

60

80

100

120

Time (s)

R
el

at
iv

e 
ve

lo
ci

ty
 a

lo
ng

 x
−a

xi
s 

(m
/s

)

Fig. 9. Relative velocity along the x-axis with Kcase2.
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Fig. 8. Relative position along the x- and y-axes between chaser and target with Kcase2.
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Fig. 10. Relative velocity along the y-axis with Kcase2.
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Fig. 11. Acceleration input of chaser along the x-axis with Kcase2.
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We can see that, in this case, the minimized objective min t is 0.12012 s which is shorter
than both Case 1 and Case 2, and the obtained impulse period T is 117.15 s which is
between the impulse periods of Case 1 and Case 2. Obviously, the proper impulse period T
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Fig. 12. Acceleration input of chaser along the y-axis with Kcase2.

Table 4

Parameters used by GA in Case 3.

Parameter Population Generations pc pm

Value 100 150 0.95 0.08

Parameter Bounds of a Bounds of b Bounds of t Bounds of T

Value [0.05, 0.15] [0, 10�6] [0, 1] [100, 200]
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is also determined by the proposed algorithm. Of course, there maybe exists more proper
values of impulse period if we choose other region and GA parameters.

With jcase3, the LMI conditions can also be solved readily according to the similar steps.
By the feasible solution (X1, X2, Y), the state-feedback gain matrix is calculated as

Kcase3 ¼YX�11 ¼
�15:9555 �0:0757 �195:6924 �1:8045

�0:2944 �15:6047 �1:8045 �192:1820

� �
:

For the limitation of the length, the simulation results of the rendezvous process with
Kcase3 are omitted here.

From above cases and the analysis, we can see that the proposed algorithm is useful for
the rendezvous cases whether the impulse period T is given or not. With the obtained
controller, the autonomous rendezvous process can be accomplished under the orbital
uncertainty and the possible impulse faults. And, it should be noted that, the designed
controller is not unique. The calculation process and the results heavily depend on the
parameters of the GA.
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5. Conclusions

This paper studies the reliable impulsive control problem for autonomous spacecraft
rendezvous. The orbital uncertainty and possible thruster faults are considered simultaneously.
Based on the Lyapunov theory, the rendezvous problem is transformed into an asymptotic
stabilization problem of a switching system composed of impulse action phase and free motion
phase which are regarded as closed-loop system and open-loop system respectively. The proper
reliable impulsive controller is obtained by solving a set of LMIs, some of whose parameters are
determined by GA. With the designed controller, the needed impulse thrust is calculated
according to the real-time relative state, the impulse duration is kept as short as possible, and the
autonomous spacecraft rendezvous is accomplished in spit of the orbital uncertainty and the
possible thruster faults. Some illustrative examples have shown the effectiveness of the proposed
approach.
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