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Diffeomorphic Image Registration of Diffusion
MRI Using Spherical Harmonics
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Abstract—Nonrigid registration of diffusion magnetic resonance
imaging (MRI) is crucial for group analyses and building white
matter and fiber tract atlases. Most current diffusion MRI regis-
tration techniques are limited to the alignment of diffusion tensor
imaging (DTI) data. We propose a novel diffeomorphic registration
method for high angular resolution diffusion images by mapping
their orientation distribution functions (ODFs). ODFs can be
reconstructed using q-ball imaging (QBI) techniques and repre-
sented by spherical harmonics (SHs) to resolve intra-voxel fiber
crossings. The registration is based on optimizing a diffeomorphic
demons cost function. Unlike scalar images, deforming ODF maps
requires ODF reorientation to maintain its consistency with the
local fiber orientations. Our method simultaneously reorients the
ODFs by computing a Wigner rotation matrix at each voxel, and
applies it to the SH coefficients during registration. Rotation of
the coefficients avoids the estimation of principal directions, which
has no analytical solution and is time consuming. The proposed
method was validated on both simulated and real data sets with
various metrics, which include the distance between the estimated
and simulated transformation fields, the standard deviation of the
general fractional anisotropy and the directional consistency of
the deformed and reference images. The registration performance
using SHs with different maximum orders were compared using
these metrics. Results show that the diffeomorphic registration
improved the affine alignment, and registration using SHs with
higher order SHs further improved the registration accuracy
by reducing the shape difference and improving the directional
consistency of the registered and reference ODF maps.

Index Terms—Diffeomorphisms, diffusion magnetic resonance
imaging (MRI), orientation distribution function (ODF), ODF re-
orientation, registration, spherical harmonics.
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I. INTRODUCTION

D IFFUSION-BASED magnetic resonance imaging tech-
niques have shown promises in the study of white matter

microstructure and anatomical connectivity of the brain. Image
registration is a crucial step for accurate group analyses of
diffusion imaging data and for building white matter and
fiber-tract atlases. With the assumption of a Gaussian distri-
bution of the molecular diffusion, the second-order diffusion
tensor imaging (DTI) [7] provides a relatively simple approach
for quantifying diffusion anisotropy and for extracting local
fiber directions. DTI-based registration methods have been
developed to facilitate the alignment of DTI data [2], [10], [22],
[28], [41], [42], [45]. However, a major drawback of DTI is that
it may fail to accurately characterize the diffusion in complex
white matter, where fiber tracts with different orientations inter-
sect within an image voxel. Extension of DTI to high-angular
resolution diffusion imaging (HARDI) has been proposed to
characterize the apparent diffusion coefficient (ADC) profiles
for the intravoxel fibers [1], [17], [18], [35], [38], [43], [44].
Methods using higher order tensors [4], [5], [23], [27], [31]
and multitensor models [24], [25], [29] to quantify diffusivity
profiles have also been introduced to solve this limitation.
Another approach for solving intra-voxel fiber crossings is
q-space imaging (QSI) [39], which measures the diffusion
probability distribution function (PDF) by employing the
Fourier transform relationship between the measured diffusion
signals and the diffusion PDF. QSI is a 6-D imaging technique
since the k-space encodes spatial positions and the q-space
encodes diffusion displacements. Due to the sampling burden
and large pulse gradient requirements, q-ball imaging (QBI)
[33], [34] and hybrid diffusion imaging [40] techniques have
been proposed. QBI samples the diffusion signals on a spherical
shell and applies the Funk-Radon transform to reconstruct the
model-free diffusion orientation distribution function (ODF)
based on radial or spherical harmonic (SH) basis functions [20].

Systems with spherical symmetry are often more conve-
niently handled in a spherical basis. This leads to a natural
representation of the local diffusion using SHs. SHs form an or-
thonormal basis for complex functions on a unit sphere and are
widely used in various applications, such as shape modeling in
molecular sciences and real-time lighting in computer graphics.
Many diffusion decomposition and reconstruction techniques
also use SHs [18], [20].

Several studies have been done to register HARDI data
sets to take into account fiber crossing information during the
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registration. Barmpoutis et al. [6] proposed an affine regis-
tration method to map diffusivity profiles using fourth-order
tensor models. Another work presented by Chiang et al. [11]
performed the registration using spherical harmonics (SHs) by
minimizing the Kullback–Leibler Divergence of the diffusivity
profiles. The reorientation was done by the “preservation of
principal directions (PPD)” method [2], and the principal di-
rections were determined by the principal component analysis
(PCA).

In this work, we propose a diffeomorphic registration method
for HARDI data by mapping their ODFs represented using SHs.
The potential advantage of ODF-based registration techniques
is to align structures in locations where other image modalities
are unable to characterize, for example, fiber crossings. This
technique is not restricted to ODF registration; it can also be
applied to align the apparent diffusion profiles represented by
spherical harmonics.

The proposed registration method is based on optimizing an
energy function including the ODF shape similarity cost defined
with a -norm and regularization constraints. The large defor-
mation diffeomorphic framework was used to estimate smooth
transformations between images with large shape differences.
During the optimization, a rotation matrix is extracted at each
voxel from the local Jacobian and converted to a general spher-
ical harmonic rotation matrix to reorient the ODFs. The reori-
entation is directly applied to the coefficients without detecting
principal directions ODFs which may have multiple directions
and involve significant computation. Experimental results show
that ODF reorientation makes the registered ODF shapes con-
sistent with the local structures. Various metrics were defined
and used to evaluate the proposed method on simulated and
real diffusion data. The metrics include the distance between
the estimated and the simulated transformation fields, the stan-
dard deviation of the general fractional anisotropy and the direc-
tional consistency of the deformed and reference images. The
second-order tensors and SHs contain the same amount of in-
formation. Therefore, the comparison of registrations using the
second-order and higher order SHs can be considered as the
comparison of registrations using DTI and higher order models.
Compared to second-order SHs, registration using SHs with
higher orders provides better performance in terms of smaller
ODF shape difference and more consistent principal directions
of the registered images.

II. METHOD

A. Diffusion ODFs Represented as Spherical Harmonics

The diffusion ODF characterizes the relative likelihood
of water diffusion along any given angular direction with

where and are the
polar and azimuthal angles. The ODF, , is defined as the
radial projection of the diffusion probability density function
(PDF) : , where is the
relative spin displacement. is related to the measured MR
diffusion signal by the Fourier relationship,
[33]. represents an underlying diffusion-attenuated signal
at a finite set of points on a sphere and is the wavevector de-
fined as , which describes diffusion encoding

in a pulsed-gradient spin-echo experiment. Our registration
method is applied to the reconstructed ODF maps from the
QBI technique proposed by Hess et al. [20]. The ODF is
approximated by a great circle integration on the sphere, i.e.,

.
As a single-valued spherical function, the function

, can be represented as a linear combination of a set
of spherical harmonic basis with order and phase factor

: , where denotes the
harmonic series coefficient, and is the maximum harmonic
order. Since is real, it is sufficient to utilize a real basis func-
tion set , expanded as linear combinations of the complex
harmonics

if
if

if
(1)

is also assumed to be antipodal symmetric, such that the order
only takes even numbers and the function can be expressed as

(2)

where represents the real harmonic series coefficient. In gen-
eral, ODFs form an open subset of the space of spherical
functions with the norm [46]. In this
work, we define the ODF shape difference with the norm.
Given that the ODFs are represented with a complete set of or-
thonormal basis functions, they thus form a vector space ana-
logue to unit basis vectors. The invariant shape norm and the
distance between two functions can be defined as

(3)

and

(4)

The invariance of the basis functions simplifies the calculation
of shape differences which can be performed using the corre-
sponding coefficients as described in the above equation.

B. Rotation of Real Spherical Harmonics

A rotation can be decomposed to three Euler angles
using the convention with three subsequent rotations
around the , and axes by angles , , and , respec-
tively, . For complex spherical
harmonics, a rotation operator expressed in terms of the Euler
angle parametrization can be represented with a Wigner matrix
with the matrix elements given by [16]
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where

(5)

One can redefine the linear combination in (1) as
, then the rotation matrix for real spherical

harmonics is given by [30]

(6)

where is the complex conjugate transpose. The coefficients of
real spherical harmonics can be rotated in the same way as vec-
tors with Wigner matrices. The coefficients for the rotated
function can be represented as
a linear transformation of the original coefficients

(7)

The Wigner matrix is represented as a sparse block matrix

...
...

...
. . .

(8)

where corresponds to the th order. Note that rotation by
-axis mixes the spherical harmonic coefficients within an

order, but not across order. To compute , set and to be
zero, and compute (5) and (6). The detailed implementation can
be found in [30]. The -axis rotation only changes the phase,
which can be calculated as follows, without constructing

(9)

C. Reorientation of Diffusion ODFs

Image registration searches for transformations to map struc-
tures in the source to corresponding ones in the reference. By as-
sumption, the water diffusion orientation distributions reflect the
underlying fiber structures; therefore, ODF reorientation along
the transformation is required. The Jacobian of the spatial trans-
formations is the first-order linear approximation to the differ-
entiable functions at a given spatial location. Therefore, an ob-
vious approach is to apply the Jacobian to the ODF at each lo-
cation to reorient it. Using this strategy, the shape and size of
the ODFs are subject to change. To keep the shape invariant,

we apply the rotation matrix extracted from the Jacobian to re-
orient the ODFs, which is similar to the “finite strain” tensor
reorientation technique proposed by Alexander et al. [2]. A con-
venience of formulating ODFs with spherical harmonics is that
the shape rotation can be achieved by applying a rotation matrix
directly to the coefficients (see Section II-B) without changing
the basis functions and reconstructing the ODFs after reorienta-
tion during each registration step.

D. Diffeomorphic Registration Framework

Our previous work [19] applied a small deformation elastic
model to register diffusion MRI data sets. This type of registra-
tion can be generalized as a minimization problem of the fol-
lowing energy function:

where is the transformation field to be estimated that maps
image to , and is the displacement field. A
widely used similarity energy is the squared distance be-
tween intensities of the two images if they are scalars. The reg-
ularization energy can be defined as
where is a differential operator, e.g., the Laplacian operator.
A limitation is that it prevents the target image from being fully
deformed into the shape of the template image when a large de-
formation is needed to deform images.

Registrations with a large deformation model aim to solve this
problem. “Viscous fluid” registration [13] estimates the trans-
formations as the target image incrementally “flows” to the tem-
plate image by minimizing

for any , is the velocity field at time and
. A recent large deformation diffeomor-

phic metric mapping (LDDMM) algorithm [8] searches the
optimal transformation via solving the variational problem

where . These large deformation registra-
tion methods ensure that the estimated transformations are dif-
feomorphic, which are smooth invertible transformations with
a smooth inverse, but require solving large sets of partial dif-
ferential equations. A fast version of the diffeomorphic regis-
tration algorithm DARTEL [3] uses a multigrid approach and
assumes a constant-velocity flow field along time. Another effi-
cient method is called diffeomorphic demons [36], [37], which
is an extension to the demons algorithms [32] and provides
an efficient nonparametric diffeomorphic registration. Yeo [42]
applied this framework to register DTI images with exact fi-
nite-strain differential.

A similar framework as diffeomorphic demons was per-
formed in this work to estimate the large deformation transfor-
mation in diffeomorphisms. The overall optimization scheme
is to separate the energy function into two parts by introducing
another variable , and estimate and alternatively at each
iteration. The advantage is that optimization of a quadratic
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regularization form can be performed efficiently using a convo-
lution kernel [9]. The energy function is defined as

(10)

The second term is to constrain the separated close to . The
last two terms are the regularization terms to ensure smooth
velocity and transformation fields. We define to be an
isotropic differentiable operator . Then the optimization of
(10), except the similarity term, can be done by convolving a
Gaussian kernel on and alternatively [9]. To minimize
the first two terms, let , and assume is
given, then the similarity term can be linearly approximated
using a first-order Taylor expansion

and the first two terms become

(11)

The update of can be calculated by setting the above equation
to zero and solving for

(12)

E. Implementation of Diffeomorphic Registration

We define the similarity cost using the shape difference metric
in (4), and apply the ODF reorientation by the rotation matrix

. Then the similarity cost function can be rewritten as

(13)

where is the rotated coefficient defined in (7). The transfor-
mation fields are defined in Eulerian space, therefore the reori-
entation matrix operating on the deforming ODF should be ex-
tracted from the inverse Jacobian of the transformation ,
or from and taking the transpose afterwards

(14)

To apply the rotation to the spherical harmonic coefficients,
is decomposed intothree Euler angles using the convention.
Let denote , denote , and define , , ,
and accordingly. Then is expressed as

(15)

Therefore, the three Euler angles are obtained as

and

(16)

with the constraints of , , and
. represents the element of in the th row and

th column, and represents the angle vector coordi-
nate in the plane. Note that is almost equivalent to

except that we also take into account the quadrant
in which the point (a,b) is located.

The optimization of (10) is summarized in the Algorithm
below. The details about choosing parameters are described in
Section III-D.

Algorithm 1.

Step 1) Initialize and to be identity fields.
Step 2) Compute the reoriented SH coefficients

by extracting according to (14), decomposing it
into three angles using (16), and applying them to
the coefficients using (5), (6) and (9).

Step 3) Let . Estimate the velocity field
by minimizing (11), and the updated is

computed according to (12). After the computation
of , normalize it so that

Step 4) Regularize by taking the Gaussian kernel of it:

Step 5) Let , and

Step 6) Repeat steps 2–5 until convergence, , or
.

Technically, in (13) is itself a function of the deformation
field, therefore the update of in (12) does not fitexactly. In
this work, however, we followed the demons implementation
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Fig. 1. An example of reconstructed ODF data set represented by SH coefficients. Top row from left to right: B0 image at � � �; the� norm of the ODF map; the
� norm of the normalized ODF map; the enlarged ODF shapes within the box region. Bottom row from left to right includes the SH coefficients at � � ��� � �;
� � ��� � �; � � ��� � �; � � ��� � �; and � � ��� � �.

Fig. 2. The histograms of ODF SH coefficients. Note in (a), one color represents one subject, solid and dotted lines denote two sessions from the same subjects.

and ignored the exact differential of the ODF reorientation. This
approximation was made since taking care of reorientation in
ODF is much more complicated than in DTI [42].

III. EXPERIMENTS AND RESULTS

A. Data Acquisition and Preprocessing

Human brain QBI data from five healthy subjects were
acquired on a 3T TrioTim Siemens MRI scanner. Each
subject was scanned twice with a short out-of-scanner
break between the two sessions. Isotropic axial diffu-
sion-weighted images (DWIs) were obtained using a single
shot diffusion spin-echo echo-planar imaging (EPI) se-
quence with TR/TE ms, FOV mm, and
matrix size , yielding a 2.5 mm image resolution.
Using an electrostatic repulsion model, 162 diffusion encoding
directions with a value of 3000 s/mm and one reference
image with were acquired. Sixty slices with slice thick-
ness of 2.5 mm were obtained to cover the whole brain. The
total scan time was approximately 26 min.

The nonbrain regions were masked out using AFNI [15]
based on the baseline DWIs at , instead of a DWI at

due to its relatively low SNR. ODF maps were then
reconstructed as described in [20]. All 10 b0 maps (five sub-
jects, each subject contains two sessions) were first shifted to
align the volume centers, and then averaged. Each b0 map was
affine aligned to the average b0 map using the Hellinger metric,
the square root of Jensen–Shannon divergence. The affine ma-
trices were then applied to the corresponding SH coefficients.
The rotation was done by extracting the rotation matrix from
the matrix and applying on the coefficients similar as Step 2 in
Algorithm 1. Linear interpolation of the SH coefficients was
used throughout the preprocessing and registration steps.

B. Diffusion ODF Represented by SH Coefficients

ODFs represented by SHs with maximum order require
number of coefficients. Registration using

coefficients reduces the computation cost compared to using the
sample points on diffusion MRI images. We use the SH coef-
ficients of non-normalized ODF maps as input. Fig. 1 shows
an example diffusion data set. The ODF was computed using

. The norm of the non-normalized SH
coefficients is proportional to the summation of the diffusion
weighted signal . The contrast was significantly reduced
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Fig. 3. Illustration of the ODF reorientation with simulated mixed three-tensor data sets. (a) The original ODF projected on the �� plane on the top and the ��
plane at the bottom. (b) The ODF rotated 30 along the �-axis. (c) The ODF rotated 30 along the �-axis. (d) The plots of corresponding ODF coefficients stored
in a �� array �� � � � � � � � � � � � �. The color encoding follows the conventional scheme: red for the direction of left–right, green for anterior–posterior, and
blue for superior–inferior.

after ODF normalization. The non-normalized SH norms have
consistent histograms across subjects [Fig. 2(a)] given the same
set of acquisition parameters, so that the simple intensity differ-
ence metric can be used as the similarity cost for registration.
Therefore, we chose the non-normalized ones to define the en-
ergy function. The majority of the energy of a SH shape can
be represented by its lower order coefficients. The bottom row
of Fig. 1 shows ODF coefficients at orders of of 0, 2, 4, 6, and
8 where all orders except order 0 share the same color scale.
Fig. 2(b) plots the histogram of different levels of coefficients
over an ODF map.

C. Synthetic Experiments of Reorientation

Diffusion tensors with three zero-mean Gaussians under a
low intravoxel water exchange model were simulated with a
SNR of 100 using “Camino” [14]. The largest eigenvalues of
the three tensors were set to be m , m ,
and m along the , , and axes, respectively.
The other two eigenvalues had a value of m
along the and axes, the and axes, and the and axes.
162 encoding directions were used for the QBI acquisition with

s/mm . Fig. 3(a) shows the reconstructed ODF pro-
jected on the and the planes. The 3D visualization was
implemented using Python. 30 rotations along the and axes
were applied separately on the spherical harmonic coefficients
according to (5), (6), and (9). Fig. 3(b) plots the coefficients of
the original and rotated ODFs.

Fig. 4 demonstrates a spatial rotation of 25 of a real diffusion
data set with and without ODF reorientation. A rotation transfor-
mation without ODF reorientation resulted in an inconsistency
between the principal directions of the ODFs and the underlying
fiber directions. With ODF reorientation of the coefficients, the
principal directions were rotated to follow the transformed fiber
structures.

To test the orientational consistency between two ODF
shapes, a directional consistency (DC) metric was used.
Given two spherical shapes, search for an angle so that

is minimized, and define to be the

Fig. 4. Illustration of ODF reorientation using real diffusion data with a 25
rotation along the �-axis. (a) the original ODF map represented using SH coef-
ficient at � � � � �. (b) the rotation ODF map. (c) the directional consistency
map between the reoriented and nonreoriented ODF maps with a color scale
from 0 to 1, and masked by thresholding the zero-order coefficients at 0.1. (d)
the enlarged original ODFs, (e) the ODFs with reorientation, and (f) without
reorientation on the rotated ODF map, and (g) ODFs with and without reorien-
tation overlaid on each other.The circled region shows visible directional incon-
sistency between with and without ODF reorientation.

measure of the DC between the two shapes. In this work, we ap-
plied an exhaustive search to compute the DC. First decompose
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Fig. 5. Plots of similarity error and regularization costs under different regularization parameter settings. A multiresolution scheme was used during the registra-
tion. The number of iterations were set to 50 for two lower resolutions and 100 for the full resolution. The discontinuity in the plots is due to the multiresolution
approach.

the arbitrary rotation ,
set the coarse searching step to be 10 , and search the angles,

, that minimized the shape difference.
Then use them as the initialization, set the fine searching
step to be 1 , and search the rotation angles in the domain of

, , 2, 3. We get (see
Appendix for the derivation)

To test the accuracy of the metric, we computed the DC
for each voxel between the reoriented and nonreoriented ODF
maps. The DC map is shown in Fig. 4. The average DC value
was 0.9096, corresponding to 24.55 , which is close to the real
rotation angle 25 .

D. Validation With Simulated Transformation

We synthesized images with known transformations and ap-
plied the proposed method to select proper weighting parame-

ters, validate the reorientation, and test the performance using
SHs with different maximum orders.

A set of deformation fields were simulated by generating sine
functions: , where .
We set , 3, 4 to simulate three fields with various ampli-
tudes. Then a real diffusion image was randomly selected and
deformed using the three fields to generate synthesized refer-
ence images.

1) Parameter Evaluation: Similar to Yeo et al.’s approach
[42], we set the similarity weight parameter

, and kept the update field to be less than 1 voxel at
each iteration by changing . To select proper weight parame-
ters for the regularization terms, we set , and varied
from 0.2 to 2. A proper was chosen so that the overall reg-
istration error including the similarity error and regularization
cost is small. The similarity error is defined by

, and the regularization cost is defined by
, where is the total volume of

the integrated region. Then was varied from 0.2 to 2, and a
proper was chosen according to the same rule. Fig. 5 plots
the similarity error and regularization cost during the registra-
tion for different parameter settings. A multiresolution scheme
was used during the registration. The images were down-sam-
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Fig. 6. ODF Registration of the simulated ODF maps. From left to right: (a) a
real ODF map, the simulated transformation field and the deformed ODF using
the simulated transformation serving as the reference; (b) estimated transfor-
mations using � � �, � � ���, � � ���, � � ���, and � � ���,
� � ���; (c) deformed, the difference between the deformed and reference
and the reference ODF maps; (d) the reference ODF shapes in the box region
with � � �, 4, 6, 8; (e) ODF shapes after registration in the same region with
� � �, 4, 6, 8; (f) ODF shapes after registration without ODF reorientation.

pled to , and
at the coarse levels to register larger structures, and then were
registered at the full resolution to map finer shapes. We chose

and to keep the similarity error and regular-
ization cost relatively low. The same set of parameters were used
to register the real images throughout the paper. Fig. 6(b) shows
the estimated transformation fields under , ;

, ; and , . The field gen-
erated by is over deformed in some regions, whereas

produced an overly smooth field.
2) Effect of SH Coefficients With Different Maximum Orders:

To study the effect of registrations with different SH orders,
the diffusion images were reconstructed with , 4, 6, 8.
The proposed method is general to any order of SHs. Since the
second-order tensor model can be represented using SHs with

, registration based on tensor models and SHs with
contain the same amount of information. Fig. 6 shows a reg-
istration example using the simulated sine transformation with

TABLE I
REGISTRATION PERFORMANCE IN THE SIMULATION EXPERIMENT

EVALUATED USING THE AVERAGE FIELD DISTANCE, NORMALIZED

STANDARD DEVIATION OF GFA AND DIRECTIONAL CONSISTENCY

. Fig. 6(d) and (e) show the simulated and registered ODF
shapes using SHs with , 4, 6, 8 in the box region. The
second-order model does not contain fiber crossing information,
while the higher orders can describe orientation distributions
with multiple peaks. The ODF shapes after the same registration
but without ODF reorientation were shown in Fig. 6(f). The di-
rections do not match those in the reference image, whereas the
directions of the ODFs with ODF reorientation are consistent to
the reference.

Three metrics were used to measure the performance. One
is the normalized distance between the estimated deformation
field and the “ground truth” deformation field from the simu-
lation. The second one is the normalized standard deviation of
the generalized fractional anisotropy (GFA). The third one is the
directional consistency. Similar to the FA used in DTI studies,
GFA is a shape index of the ODF and defined as [33]

where is the number of reconstructed samples (246 in this
paper) of the ODF and . The normal-
ized standard deviation of the GFA was computed between the
average and the deformed ODF maps following the equation:

(17)

where , is the reference, and the
other ODF maps are registered to . The average field
distance, nSTD of GFA and DC over a mask by thresholding the
reference GFA map at 0.1 are shown in Table I. Using higher
order SHs improved the registration performance in terms of
reducing the field distance and standard deviation of the GFA,
and increasing the DC. However the improvement percentage is
low, likely because that the higher order coefficients account for
a small portion of the overall energy. The field distance is about
half of the simulated distance. The difference map between the
reference and the registered ODF norm using is shown
in Fig. 6(c), which is very close to zero. The average error was
0.0083 over the mask with the .

E. Registration of Real Diffusion Images

After preprocessing, all diffusion images were affine aligned
to their average making them ready for the diffeomorphic reg-
istration. Each ODF map was reconstructed by four sets of SHs
with , 4, 6, 8. One image was selected as the reference,
and nine other images were registered to it using the proposed
registration method. The registration was repeated four times.
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Fig. 7. ODF registration results after diffeomorphic registration using SHs with � � �. The top row from left to right: the affine aligned ODF maps represented
using the norm of the SH coefficients for the reference, and four other subjects’ data. The second row from left to right: the reference ODF map, and the four
deformed ODF maps (with the same order as the top row) to the reference. The third row from left to right: the absolute difference of the � norm of the SH
coefficients between the reference and the data from the same subject in a different session, the difference between the reference and the four deformed ODF maps.

Fig. 8. Histograms of the normalized standard deviation of GFA and average DC after diffeomorphic registrations using SHs with � � �, 4, 6, 8.

Each time corresponded to the SH coefficients with a different
. Since each subject was scanned twice, the intra-subject reg-

istration was done to provide a upper limit of the registration
performance. Fig. 7 shows the ODF maps using the norm of the
SH coefficients with after affine alignment and diffeo-
morphic registration, and the absolute difference between the
reference and the registered ODF maps. The intra-subject reg-
istration has close to zero difference between the ODF norms.
However there are still errors in the ventricles, and in cortical
regions. The inter-subject diffeomorphic registration was a sig-
nificant improvement over affine alignment, and provided a rel-
atively small ODF shape difference.

Two metrics were computed for evaluation: the normalized
standard deviation of the GFA defined in (17); and the DC be-
tween the reference and each deformed ODF maps. A mask with
the reference was used for computing the GFA, and
its intersection with more than two principal directions was used
for the average DC. Principle directions were computed at each
voxel in the reference image using “Camino” [14]. Fig. 8 plots

the histograms of the metrics using SHs with different maximum
orders. Registrations with higher orders reduced the standard
error of the GFA, and therefore reduced the shape difference
between the registered and reference ODF maps. The deformed
ODF directions, over regions with multiple principal directions,
were more consistent with the reference ODF shapes using reg-
istration with higher order SHs compared to the second-order
SHs. There was little difference in the DC when using SHs with

.
To test the method and order effects, we did two-factor re-

peated measures ANOVA on the two metrics separately. The
two factors were method (affine and diffeomorphic) and order
( , 4, 6, 8). The analysis was first applied to the av-
erage difference GFA values between the deformed and refer-
ence ODFs normalized by the reference GFA. There were main
effects of method with ; and
order with ; , and an inter-
action between method and order with ;

. Post-hoc analyses showed that there were significant
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Fig. 9. Plots of the average GFA and DC in affine and diffeomorphic registration with different maximum orders of SHs.

differences between any two different orders and the higher or-
ders produced smaller GFA difference. The same ANOVA was
then performed on the average DC between the deformed and
reference ODF maps. There were main effects of method with

; , and order with
; , and an interaction between these two

with ; . Post-hoc analyses showed
that there were significant differences only between order 2 and
any other higher orders. Fig. 9 plots the mean and standard er-
rors of the metrics with different methods and orders. In gen-
eral, the diffeomorphic registration methods significantly re-
duced the ODF shape difference and improved directional con-
sistency compared to the affine methods. The shape difference
can be further reduced by increasing the maximum orders. Reg-
istrations with improved the directional consistency com-
pared with , but no more improvements were found by
further increasing the order.

The registration computation time was about 6 min with
, 10 min with , 22 min with , and 50 min with
. All real data registrations data were implemented following a

three-level multiresolution registration scheme:
resolution with 50 iterations, res-

olution with 50 iterations, and full resolution with 20 iteration.
The image dimension is and all registrations were
run on a 2.4 GHz AMD Opteron Linux system.

IV. DISCUSSION

The registration performance improvement using SHs with
higher orders compared to the second order can be explained in
that the higher order coefficients provide more information in
fiber crossing regions, and this additional information helps the
registration to better align the ODF shapes and therefore better
align the local structures to the corresponding ones in the refer-
ence. Complex structures such as crossing fibers occur not only
in white matter, but also in gray matter. Therefore, compared to
tensor based methods, registrations using higher order models
have the potential to better align white and gray matter regions.

Unlike scalar based registrations, vector-based registrations
require reorientation of the vectors when deforming the images.
Chiang et al. [11] proposed a reorientation method that first

detected the principal direction of the diffusivity functions by
shape-based PCA, and then applied PPD to reorient the diffu-
sivity function. A major difference of our approach is that, in-
stead of computing the diffusion attenuation signal at each re-
oriented direction, we apply the rotation matrices directly to the
coefficients to get the reoriented ODF. As QBI techniques nor-
mally acquire several hundred sampling directions, performing
operations on much fewer coefficients reduces the computation
cost significantly. The calculation of the rotation matrix is
relatively computationally intensive compared to . A fast
spherical harmonic rotation approximation using a truncated
Taylor expansion of [26] can be used to speed up the calcu-
lation, however the accuracy is compromised.

Although there were significant improvement of the shape
similarity and directional consistency when increasing the SH
order, the percentage improvement is small. This may be due
to the relatively insensitive shape metric to the higher orders.
In this work, we define the ODF shape difference with the
norm. The same weight factors were given to the zero-order
and other order coefficients. Metrics more sensitive to rotation
and higher order coefficients would potentially magnify the im-
provement. An alternative metric, the Kullback-Leibler Diver-
gence introduced by Chiang et al. [11], [12], can also be applied
to define the shape similarity.

Due to the relatively low SNR (around 10) in QBI data, in
many white and gray matter regions the ODF peaks may not
truly reflect the underlying structures. The peaks in those re-
gions between source and reference have large differences to
begin with and are hard to match even with ODF reorientation.
This may explain the results that, when increasing the SH order
from four to higher ones, the improvement of the directional
consistency was not significant.

The calculation of the differential of the ODF reorientation is
ignored in this work as we mentioned in Section II-E. Taking it
into account may improve the registration performance [42]. We
only considered to reorient ODFs using rotation matrices during
the registration procedure. The transformation of ODFs may be
further improved by accounting for shearing effect [21] Another
limitation of the proposed ODF-based registration is that it fully
depends on the quality of the reconstructed ODF maps. Metrics
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(18)

derived from other models (such as fractional anisotropy from
DTI) may help to validate the registration performance and an-
alyze how much the reconstructed ODF would affect the regis-
tration results.

V. CONCLUSION

We presented a diffeomorphic diffusion MRI registration al-
gorithm based on the reconstructed ODFs represented by spher-
ical harmonics. The ODF reorientation was performed during
the registration procedure. The reorientation matrices were ob-
tained by extracting the rotation part from the local Jacobian and
directly applied to the spherical harmonic coefficients. Compu-
tation of the principal directions and reconstruction of the ODFs
during each registration iteration are avoided. The similarity
cost was computed based on a shape difference metric defined
using the norm of the SH coefficients. The diffeomorphic de-
formation framework makes the registration suitable to map im-
ages with large shape differences. ODF reorientation was tested
using synthetic and real q-ball data with known rotation angles
and simulated transformation fields. The registration method
was evaluated using the field distance metric, the normalized
standard deviation of the GFA and the average directional con-
sistency. Registrations using SHs with different maximum or-
ders were compared using both simulated and real data. Results
show that higher order SHs reduced the ODF shape difference
and improved directional consistency compared to lower order
SHs.

APPENDIX

The rotation matrix about a unit length vector by
angle has the form shown in (18), shown at the top of the
page. We get

REFERENCES

[1] D. Alexander, G. Barker, and S. Arridge, “Detection and modeling of
non-Gaussian apparent diffusion coefficient profiles in human brain
data,” Magn. Reson. Med., vol. 48, no. 2, pp. 331–340, 2002.

[2] D. Alexander, C. Pierpaoli, P. Basser, and J. Gee, “Spatial transfor-
mations of diffusion tensor magnetic resonance images,” IEEE Trans.
Med. Imag., vol. 20, no. 11, pp. 1131–1139, Dec. 2001.

[3] J. Ashburner, “A fast diffeomorphic image registration algorithm,”
NeuroImage, vol. 38, pp. 95–113, 2007.

[4] A. Barmpoutis, M. S. Hwang, D. Howland, J. R. Forder, and B. C. Ve-
muri, “Regularized positive-definite fourth order tensor field estimation
from dw-mri,” NeuroImage, vol. 45, pp. S153–S162, 2009.

[5] A. Barmpoutis, B. Jian, B. C. Vemuri1, and T. M. Shepherd, “Sym-
metric positive 4th order tensors & their estimation from diffusion
weighted MRI,” Inf.n Process. Med. Imag., pp. 308–319, 2007.

[6] A. Barmpoutis, B. C. Vemuri, and J. R. Forder, “Registration of high
angular resolution diffusion MRI images using 4th order tensors,” in
MICCAI, 2007, pp. 908–915.

[7] P. J. Basser and C. Pierpaoli, “Microstructural and physiological fea-
tures of tissues elucidated by quantitative-diffusion-tensor MRI,” J.
Magn. Reson., ser. B, vol. 111, pp. 209–219, 1996.

[8] M. F. Beg, M. I. Miller, A. Trouve, and L. Younes, “Computing large
deformation metric mappings via geodesic flows of diffeomorphisms,”
Int. J. Comput. Vis., vol. 61, no. 2, pp. 139–157, 2005.

[9] P. Cachier and N. Ayache, “Isotropic energies, filters and splines for
vector field regularization,” J. Math. Imag. Vis., vol. 20, no. 3, pp.
251–265, 2004.

[10] C. Ceritoglu, K. Oishi, X. Li, M.-C. Chou, L. Younes, M. Albert, C.
Lyketsos, P. C. van Zijl, M. I. Miller, and S. Mori, “Multi-contrast
large deformation diffeomorphic metric mapping for diffusion tensor
imaging,” NeuroImage, vol. 47, pp. 618–627, 2009.

[11] M. Chiang, A. Klunder, K. McMahon, G. de Zubicaray, M. Wright,
A. Toga, and P. Thompson, “Information-theoretic analysis of brain
white matter fiber orientation distribution functions,” Inf. Process. Med.
Imag., pp. 172–182, 2007.

[12] M.-C. Chiang, A. D. Leow, A. D. Klunder, R. A. Dutton, M. Barysheva,
S. E. Rose, K. L. McMahon, G. I. de Zubicaray, A. W. Toga, and P. M.
Thompson, “Fluid registration of diffusion tensor images using infor-
mation theory,” IEEE Trans. Med. Imag., vol. 27, no. 4, pp. 442–456,
Apr. 2008.

[13] G. Christensen, R. Rabbitt, and M. Miller, “Deformable templates
using large deformation kinematics,” IEEE Trans. Image Process.,
vol. 5, no. 10, pp. 1435–1447, Oct. 1996.

[14] P. A. Cook, Y. Bai, S. Nedjati-Gilani, K. K. Seunarine, M. G. Hall, G.
J. Parker, and D. C. Alexander, “Camino: Open-source diffusion-MRI
reconstruction and processing,” in 14th Sci. Meeting Int. Soc. Magn.
Reson. Med., 2006.

[15] R. W. Cox, “AFNI: Software for analysis and visualization of func-
tional magnetic resonance neuroimages,” Comput. Biomed. Res., vol.
29, pp. 162–173, 1996.

[16] A. Edmonds, Angular Momentum in Quantum Mechanics. Princeton,
NJ: Princeton Univ. Press, 1996.

[17] L. R. Frank, “Anisotropy in high angular resolution diffusion-weighted
MRI,” Magn. Reson. Med., vol. 45, no. 6, pp. 935–939, 2001.

[18] L. R. Frank, “Characterization of anisotropy in high angular resolu-
tion diffusion-weighted MRI,” Magn. Reson. Med., vol. 47, no. 6, pp.
1083–1099, 2002.

[19] X. Geng, T. J. Ross, W. Zhan, H. Gu, Y.-P. Chao, C.-P. Lin, G. E.
Christensen, N. Schuff, and Y. Yang, “Diffusion MRI registration using
orientation,” Inf. Process. Med. Imag., pp. 626–637, 2009.

[20] C. Hess, P. Mukherjee, E. Han, D. Xu, and D. Vigneron, “Q-ball recon-
struction of multimodal fiber orientations using the spherical harmonic
basis,” Magn. Reson. Med., vol. 56, pp. 104–117, 2006.

[21] X. Hong, L. R. Arlinghaus, and A. W. Anderson, “Spatial normal-
ization of the fiber orientation distribution based on high angular
resolution diffusion imaging data,” Magn. Reson. Med., vol. 61, pp.
1520–1527, 2009.



758 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 30, NO. 3, MARCH 2011

[22] M. O. Irfanoglu, C. G. Koay, S. Pajevic, R. Machiraju, and P. J. Basser,
“Nonlinear registration of diffusion MR images based on fiber bun-
dles,” in Proc. MICCAI, 2009, pp. 181–189.

[23] M. Jayachandra, N. Rehbein, C. Herweh, and S. Heiland, “Fiber
tracking of human brain using fourth-order tensor and high angular
resolution diffusion imaging,” Magn. Reson. Med., vol. 60, pp.
1207–1217, 2008.

[24] B. Jian and B. Vemuri, “A unified computational framework for decon-
volution to reconstruct multiple fibers from diffusion weighted MRI,”
IEEE Trans. Med. Imag., vol. 26, no. 11, pp. 1464–1471, Nov. 2007.

[25] B. W. Kreher, J. F. Schneider, I. Mader, E. Martin, J. Hennig, and
K. A. Il’yasov, “Multitensor approach for analysis and tracking of
complex fiber configurations,” Magn. Reson. Med., vol. 54, no. 5, pp.
1216–1225, 2005.

[26] J. Krivanek, J. Konttinen, S. Pattanaik, K. Bouatouch, and J. Zara, “Fast
approximation to spherical harmonic rotation,” in Int. Conf. Comput.
Graphics Interactive Tech., 2006.

[27] A. D. Leow, S. Zhu, L. Zhan, K. McMahon, G. I. de Zubicaray, M.
Meredith, M. J. Wright, A. W. Toga, and P. M. Thompson, “The tensor
distribution function,” Magn. Reson. Med., vol. 61, pp. 205–214, 2009.

[28] H. Li, Z. Xue, L. Guo, and S. T. Wong, “Simultaneous considera-
tion of spatial deformation and tensor orientation in diffusion tensor
image registration using local fast marching patterns,” Inf. Process.
Med. Imag., pp. 63–75, 2009.

[29] A. A. Qazi, A. Radmanesh, L. O’Donnell, G. Kindlmann, S. Peled, S.
Whalen, C.-F. Westin, and A. J. Golby, “Resolving crossings in the
corticospinal tract by two-tensor streamline tractography: Method and
clinical assessment using fmri,” NeuroImage, vol. 47, pp. T98–T106,
2009.

[30] D. W. Ritchie and G. J. L. Kemp, “Fast computation, rotation, and com-
parison of low resolution spherical harmonic molecular surfaces,” J.
Computat. Chem., vol. 20, no. 4, pp. 383–395, 1999.

[31] T. Schultz and H.-P. Seidel, “Estimating crossing fibers: A tensor
decomposition approach,” IEEE Trans. Visualization and Computer
Graphics, vol. 14, no. 6, pp. 1635–1642, Nov./Dec. 2008.

[32] J. Thirion, “Image matching as a diffusion process: An analogy with
maxwell’s demons,” Med. Image Anal., vol. 2, pp. 243–260, 1998.

[33] D. S. Tuch, “Q-ball imaging,” Magn. Reson. Med., vol. 56, pp.
1358–1372, 2004.

[34] D. S. Tuch, T. G. Reese, M. R. Wiegell, and V. J. Wedeen, “Diffu-
sion MRI of complex neural architecture,” Neuron, vol. 40k, no. 5, pp.
885–895, 2003.

[35] D. Tuch, R. Weisskoff, J. Belliveau, and V. Wedeen, “High angular
resolution diffusion imaging of the human brain,” in Proc. 7th Annu.
Meeting ISMRM, 1999, p. 321.

[36] T. Vercauteren, X. Pennec, E. Malis, A. Perchant, and N. Ayache, “In-
sight into efficient image registration techniques and the demons algo-
rithm,” Inf. Process. Med. Imag., pp. 495–506, 2007.

[37] T. Vercauteren, X. Pennec, A. Perchant, and N. Ayache, NeuroImage,
vol. 45, pp. s61–S72, 2009.

[38] E. von dem Hagen and R. Henkelman, “Orientational diffusion reflects
fiber structure within a voxel,” pp. 454–459, 2002.

[39] V. J. Wedeen, P. Hagmann, W.-Y. I. Tseng, T. G. Reese, and R. M.
Weisskoff, “Mapping complex tissue architecture with diffusion spec-
trum magnetic resonance imaging,” Magn. Reson. Med., vol. 54, pp.
1377–1386, 2005.

[40] Y.-C. Wu, A. S. Field, and A. L. Alexander, “Computation of diffusion
function measures in q-space using magnetic resonance hybrid diffu-
sion imaging,” IEEE Trans. Med. Imag., vol. 27, no. 6, pp. 858–865,
Jun. 2008.

[41] P.-T. Yap, G. Wu, H. Zhu, W. Lin, and D. Shen, “Timer: Tensor image
morphing for elastic registration,” NeuroImage, vol. 47, pp. 549–563,
2009.

[42] B. T. Yeo, T. Vercauteren, P. Fillard, J.-M. Peyrat, X. Pennec, P. Gol-
land, N. Ayache, and O. Clatz, “Dt-refind: Diffusion tensor registration
with exact finite-strain differential,” IEEE Trans. Med. Imag., vol. 28,
no. 12, pp. 1914–1928, Dec. 2009.

[43] W. Zhan, H. Gu, S. Xu, D. A. Silbersweig, E. Stern, and Y. Yang,
“Circular spectrum mapping for intravoxel fiber structures based on
high angular resolution apparent diffusion coefficients,” Magn. Reson.
Med., vol. 49, no. 6, pp. 1077–1088, 2003.

[44] W. Zhan, E. A. Stein, and Y. Yang, “Mapping the orientation of in-
travoxel crossing fibers based on the phase information of diffusion
circular spectrum,” NeuroImage, vol. 23, no. 4, pp. 1358–1369, 2004.

[45] H. Zhang, B. B. Avants, P. A. Yushkevich, J. H. Woo, S. Wang, L. F.
McCluskey, L. B. Elman, E. R. Melhem, and J. C. Gee, “High-dimen-
sional spatial normalization of diffusion tensor images improves the
detection of white matter differences: An example study using amy-
otrophic lateral sclerosis,” IEEE Trans. Med. Imag., vol. 26, no. 11, pp.
1585–1597, Nov. 2007.

[46] H. Zhang, P. A. Yushkevich, D. C. Alexander, and J. C. Gee, “De-
formable registration of diffusion tensor MR images with explicit ori-
entation optimization,” Med. Image Anal., vol. 10, no. 5, pp. 764–785,
2006.


