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Dynamics of a tight-binding ring threaded by time-periodic magnetic flux
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We analytically study the effects of periodically alternating magnetic fields on the dynamics of a tight-binding
ring. It is shown that an arbitrary quantum state can be frozen coherently at will by the very frequent square-wave
field as well as the monochromatic-wave field when the corresponding optimal amplitudes are taken. Numerical
simulations show that the average fidelity depends on not only the system parameters, but also the features of
the quantum state. Moreover, taking the initial zero-momentum Gaussian wave packets as examples, we show
the dependence of the threshold frequency on the width of the packet for the given average fidelities. These
observations provide a means to perform the quantum-state engineering.
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I. INTRODUCTION

Coherent quantum-state storage and transfer via a coupled
qubit system is an important problem in the emerging area of
quantum-information processing (QIP). One of the promising
methods of quantum-state transfer is the employment of a
solid-state data bus with minimal spatial and dynamical control
over the on-chip interactions between qubits [1-7]. However,
small imperfections in receiving a quantum state and storing
it coherently can seriously affect the fidelity of QIP. Stopping
and freezing a flying qubit within a region of the data bus is a
tool for this task. It has been proposed that a coupled-cavity-
array system exhibits the possibility of an all-optical coherent
control of light [8-11]. The dynamical control includes an
adiabatic scheme, under which the quantum state is fixed on
the superposition of the instantaneous eigenstates when the
Hamiltonian varies slowly, and bang-bang control techniques,
by means of a dynamical control field, at averaging to cease
the unwanted evolution of the state.

Dynamical decoupling (DD) is a well-established paradigm
of bang-bang control techniques, which employs a specially
designed sequence of control pulses applied to the qubits
in order to negate the coupling of the central spins to their
environment [ 12]. Moreover, the quantum Zeno effect has been
proposed as a strategy to protect coherence [13,14]. Recently,
it has been proposed that a periodically driven potential can
suppress the tunneling between adjacent sites in a lattice
[15,16]. In this paper, we will pay attention to a fundamental
aspect of QIP and generally study the influence of periodically
alternating magnetic fields on the dynamics of a quantum
state on a tight-binding ring. We consider the dynamics of
the states in a tight-binding ring system that is pierced by
a time-periodic magnetic flux, ®(r) = &y + P4 f(wt), with
the angular frequency w. We investigate the impact that the
amplitude and frequency of the flux might have on the efficacy
of the quantum control. We focus on the suppression of
the evolution through a bang-bang control procedure, and
study how the occurrence of a controlling field modifies
the effectiveness of the control procedure. Our analysis is
focused on the behavior of the fidelity of the evolved state
with respect to the initial state, which has been employed
to measure the efficiency of quantum-state transfer. We will
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show that the time evolution of a state in such a time-dependent
Hamiltonian can then be treated as an adiabatic process without
any approximation. Then analytical results can be obtained,
which should give more insight into quantum measurement
and control. Additionally, this scheme can be applied to a
neutral-particle system by torsional oscillation.

In Sec. II, we derive a general formalism for such a
time-dependent system. We further introduce the expressions
for the time-averaged fidelity, thus completing the description
of the controllability of the systems for the quantum states.
Sections III and IV are devoted to the applications of the
formalism. These include a detailed treatment and computation
of the time evolutions of typical initial states under the square
and monochromatic time-periodic flux, respectively. Final
conclusions and discussions are presented in Sec. V.

II. MODEL AND GENERAL FORMALISM

In this section, we present the charged-particle model under
consideration: a simple tight-binding model in an external
magnetic field. Here, the particle-particle interaction is ignored
for simplicity. Our approach is based on our previous work in
Ref. [17], where we have proposed a scheme for quantum-state
transfer. It employed a loop enclosing a static magnetic flux to
control the speed of a wave packet. Another basic operation for
the quantum-state engineering is coherently freezing a state
on demand. For instance, quantum-information processing
requires transferring, stopping, and freezing a flying qubit
within a region of the data bus. In Ref. [17], we studied
how to move a Gaussian wave packet at a certain speed on
demand by a static magnetic flux. In this work, we aim at
employing the same system with a periodically alternating flux
for freezing a wave packet. By combining the two schemes, one
can accomplish the task of “coherent storage and transfer” of a
quantum state. Here we will generalize this description of the
system in Ref. [17] by allowing for an additional time-periodic
flux. We restrict our attention to the influence of the applied
periodically alternating field on the dynamics of the particles.

Consider a ring lattice with N sites threaded by a magnetic
field, as illustrated schematically in Fig. 1. The Hamiltonian
of the corresponding tight-binding model,

N
H(t)=—J 2:(61'271(I>(t)/NajajJrl +H.c.), (1)

J=1
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FIG. 1. (Color online) The schematic illustration for a tight-
binding ring threaded by a time-periodic magnetic field. The time-
dependent flux for demonstrating the influence on the evolution of
a quantum state is in two types: square and monochromatic waves,
respectively, with amplitude ¢, and period 7.

depends on the magnetic flux through the ring in units of the
flux quantum, &, = h/e. Here a']t is the creation operator of
a particle at the jth site with the periodic boundary condition
any+1 = aj. The flux does not exert force on the Bloch electron,
but can change the local phase of its wave function due to
the Aharonov-Bohm (AB) effect. Note that the particle is not
restricted to be either fermion or boson.

By taking the transformation
1 ki
a, = — e'ay, 2)
=N

where k = 2n/N,n € [1,N], the Hamiltonian can be readily
written as

H =21 coslk + ¢(t)]aja. 3)
k

with ¢(¢) = 27 P(¢)/N and the corresponding eigenstates in
the form of

1 .
k)= — ki ). 4
|k) ﬁijelj) “)

Note that the time-dependent Hamiltonian possesses fixed
eigenstates, while the flux solely affects the eigenvalues. It
will be crucial to employ such a setup to investigate the
control of a quantum state due to the rareness of the exact
solutions to a time-dependent Hamiltonian. The evolution of
an arbitrary state under the Hamiltonian H is dictated by

the unitary operator U(¢',t) = exp(—i f[t,H dt”), which yields
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the propagator represented in the momentum and spatial
eigenstates as

Ui(t' 1) = (KU 0)k) = @08,
Uy i1 = (j1U 01 j)

1 o ,
== Z MU0 gi21 1ty 5)
k
where

i@t = / cos[k + ¢(t")]dt". (6)

We note that the propagator is in diagonal form in k space.
In general, one employs the fidelity

F@t) = (¥ (O)[U.0)[v(0))] (7

to characterize the relation between the target state and the
evolved state at time t. However, when ¢(¢) is a periodic
function, F(¢) should be oscillating. Thus the long-time
average will be appropriate as a measure for the deviation
from the original state.

The average fidelity is defined as

_ 1 [T
F = lim —/ F(t)dt
T Jo

T—o0
— lim / ' > el 0\, (8)
T=oo T Jo |4
where
cr = (k¥ (0)).

In this paper, we focus on the case of periodic ¢(f) with a
period of 7,

¢(t) = ¢(t + 7). 9

In the following sections, we will apply the general formalism
to the cases of square and monochromatic waves for the
following reasons: The square-wave case is a demonstrative
example since it is the simplest model to calculate. The
exact solution for this particular case is helpful to clearly
present the main idea of the scheme without involving much
more complicated calculations. And the monochromatic-wave
case is a more practical situation. We will argue that the
quantum-state freezing can be achieved by the high-frequency
alternating flux when its amplitudes @, are optimal.

III. SQUARE WAVE

Let us begin the discussion with the simplest case: the flux
is in the form of

@(t) = do + pasgn[sin(wr)], (10)

where w = 2m /7 is the angular frequency and sgn indicates
the sign function. It is a toy model that demonstrates how, in
principle, the periodic alternating flux can prevent a quantum
state from spreading. The Hamiltonian can be diagonalized as

H=-21Y"&(t)ala, (11
k

ex(t) = cos{k 4+ pasgn[sin(wt)]}, (12)
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where we absorbed ¢ into k by k — k — ¢ for the sake of
simplicity. Then we have

_ 1 [T !
F(r) = Tlingof,/o Xk:|ck|2exp [i2Jf0 8k(t’)dt/i|

dt.

13)

Obviously, it is hard to get the analytical expression of
F(t). However, one can get insight into the influence of the
square wave on a quantum state from the following analysis.
During each interval, with the flux being static, the dynamics
of the quantum states in such a situation has been discussed
in Ref. [17]. In particular, for ¢4 = /2, the corresponding
Hamiltonians are

H., sgn[sin(wt)] >0

H@ = { H_, sgn[sin(wt)] <0, (14

with
Hy =427 sinkaja. (15)
k

Then the dynamics on the successive time intervals [¢,7 4 7/2]
and [t 4+ t/2,t 4 t] are time-reversal processes to each other,
ie.,
Ut +t/2,t) = Upp(t + 7,0 ) Uit + 7/2,t + T)
= Uyt + 1.t +1/2),
t €10,7/2], (16)
which leads to

(@) =¥+ 1) a7)

for an arbitrary state. Then, after a period of time t, any state
will go back to its initial state, i.e.,

F)y=F(@t+r1), Fint)=1. (18)

For small 7, the evolved state should not leave its initial state so
far at any time. Intuitively, in the limit of t — 0, the initial state
may be frozen at its initial position. Actually, the periodicity
of | (1)) admits

— 2 [T? o
F = _/ Zlck|2612./smkt dl, (19)
T Jo X
and
_ 2 /2
lim F ~ lim = L4027t ) Jex|*sink|dt = 1,
7—0 =0T 0 P
(20)

due to Y, [cx[*> =1, | Y lckl* sink| < 1. We conclude that
an arbitrary state can be frozen at will when the frequency
is sufficient high. Particularly, in the case of |ci|* being
symmetrical about k = 0, we simply have

o 2 /2
F = —/ Z lex|? cos(2J 1 sink)| dt, 1)
T Jo i
and for small 7 (zr <« J~1), it has the form of
— 1
Fo~l— gﬂrz Xk: |k |? sin” k. (22)
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Obviously, >, |cx|? sin” k determines the speed of con-
vergence: the more the contribution of |c;|? to zero k, the
faster the convergence speed. In the following, we estimate
the convergence speed of a specific state. A Gaussian wave
packet with central momentum ko can be expressed in the
form of

062 2
cr = hexp [—7(16 — ko) i| , (23)

where

A= \/Z exp[—a?(k — ko)’]
k

is the normalization factor and equal to /N/(2/mwa?) for

large N. Here o determines the width of the wave packet. We
consider such a state with ky = 0 as the initial state. For large
frequency v = 1/7, we have the frequency dependence of the
average fidelity as

2

J _L
—W[l—e 'Xz]. (24)

Then, for the given initial state, we have evaluated the threshold

frequency as
1 —e
ve=J | —& | (25)
12(1 — F,)

from which one can obtain the control of the quantum state
with fidelity F.(t). We plot Eq. (25) in Fig. 2, which shows
that the threshold frequency increases rapidly when the width
of the state gets narrow.

So far, our investigation is carried out analytically for a
particular case of s = m /2. It can be seen that the mechanism
of the perfect quantum-state freezing, expressed as Eq. (18), is
the periodicity of the evolved wave function, given by Eq. (17),
arising from the amplitude ¢ = 7 /2. It is worthwhile to
investigate what happens for other values of ¢, and finite
frequencies. In the following, we will perform a series of
numerical simulations from several aspects.

F—-1>~

1.0 Numerical
= 0.85+0.01
0.90 +£0.01
v 0.96 £0.01
Analytical
—0.85
> 0.5H ——0.90 7
——0.96

A N

50

FIG. 2. (Color online) Threshold frequency on the widths of
the zero-momentum Gaussian wave packet. The plots are Eq. (25)
and numerical results corresponding to the average fidelities as
0.96 +0.01,0.90 4+ 0.01, and 0.85 4 0.01. It shows that the threshold
frequency increases rapidly when the width of the state gets narrow.

052310-3



W. H. HU AND Z. SONG

10F . : . | | | | _
(a) kO =0
- 0®0
\Vuv... ...
05 pooroidd “““" ooooooouo..oooo ¥
W::AA.-I......IIIIIIIIII :’“
VoA
1or : i : I ' } } -
(b) k,=n/4
| °
=
= °%f ] |
SOUTTS
Lo WA“WO ] »
At Y
, | . | | | |
1.0 F t | . 4 | I | |
v
L (c) k,=n/2 o
4 132
T = 192 |
| e 357
- 25
0.0 , | . | | | |
0.00 0.25 0.50 0.75 100

FIG. 3. (Color online) Average fidelity as a function of field
amplitude ¢ (units of ) and frequency v (units of J) of a
square-wave flux for the Gaussian wave packet with o = 50 and
central momenta ky = 0, 77/4,7/2onan N = 1000 ring. The average
fidelity is computed over the time interval [0,25N /J]. It shows that
7 /2 is the optimal amplitude, and the fidelity becomes very sensitive
to the magnitude for the initial wave packet with high speed.

First of all, we investigate the influence of the amplitude.
The numerical simulations are performed in Fig. 3 for a
Gaussian wave packet, which has the form of Eq. (23)
with different central momenta in the systems with different
amplitudes and different frequencies. It shows that the average
fidelity approaches to unit for ¢4 = /2 when v is sufficiently
high, which is in agreement with the above analysis. And
it is noted that the locations of the maxima of the average
fidelity for moderate v shift to the left for the case of ky = 0.
This is important for practical implementation. In the case of
insufficiently high frequency, the optimal amplitude should be
smaller than 7 /2. For kg = /4, /2, the fidelity becomes
very sensitive to the magnitude of ¢,. This feature can be
exploited to select the wave packet with preferable & in the
following way. Suppose a many-particle initial state, which
consists of wave packets with various speeds. One can first
tune ¢y to meet ¢y + ko = /2. Then one can take ¢ = /2
to hold the wave packets, with ky on demand.

Second, the analysis above is based on the assumption that
not only is the amplitude of the flux 7 /2, but the frequency is
also sufficiently high. Then, even the amplitude is taken exactly
as /2; the efficiency of the scheme is different for different
quantum states under the finite frequency. For instance, the
average fidelity during the period T mainly depends on the
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FIG. 4. (Color online) Average fidelity as a function of frequency
of the square-wave flux for a Gaussian wave packet with « = 50 on
an N = 1000 ring. Panels stand for different values of the amplitudes,
oa =m/8, /4,31 /8, /2,57 /8,37 /4, T /8, and central momenta,
ko =0, m/4, /2, of the initial wave packet. It shows that when
¢a = 7/2, frequently alternating flux suppresses the evolution of the
quantum states. Here the frequency v is expressed in units of J.

overlap of the initial wave packet and its evolution driven by
H,. In order to demonstrate these analyses, the numerical
simulations are performed for two kinds of initial states: a
Gaussian wave packet (GWP) with central momentum kg,
which has the form of Eq. (23), and the single-site state
|l = ale). We consider the time evolutions of this GWP
with different ky in the system with different amplitudes
and different frequencies. The average fidelity F(t) over the
interval 7 < 25N/ J is plotted in Fig. 4. It shows the following
features: (i) The average fidelity approaches to unit for all of the
given initial wave packets with different ky when the amplitude
is /2, which is in agreement with the above analysis. (ii) The
threshold frequency in the case of ¢ = /2 gets lower as
ko goes closer to /2. This is also in accordance with the
above analysis. Actually, the velocity of a /2 wave packet
becomes zero under the Hamiltonians H.. Thus it deviates
from the initial state slightly during the interval 7, leading to a
high fidelity. (iii) The optimal average fidelity becomes more
sensitive as ko goes closer to 7 /2, which is in agreement with
the results in Fig. 3.

Based on these features, one can design a scheme to
achieve the maximal fidelity. In the ideal case, for any given
frequency of the field, ¢ = 7 /2 is always preferable. When
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FIG. 5. (Color online) Average fidelity as a function of frequency
of the square-wave flux for a single-site state on an N = 1000
ring. Plots are presented for different values of the amplitudes,
¢a =7m/8, /4, 3n/8, w/2, 57 /8, 3w /4, and T /8. It shows that
when ¢ = 7/2, frequently alternating flux suppresses the evolution
of the quantum states, while other cases exhibit small fidelity. Here
the frequency v is expressed in units of J.

the frequency is not sufficiently high, one can tune ¢, to match
ko in order to achieve a lower threshold frequency. However,
the accuracy of the field may affect the fidelity due to the
sensitivity of it around ¢, = /2 in practice. Then one can
tune ¢y to stabilize the fidelity.

Finally, in order to demonstrate the applicability of our
findings to control a quantum state, we also plot the average
fidelity for a single-site state |[) = a;|0) in Fig. 5. Such a
state has |cx|> = 1/N and is the narrowest limit of a wave
packet. It shows that the average fidelity approaches to unit
only in the case of ¢pp = m/2 and a relative high frequency.
And to demonstrate the efficiency of this method, we take
an initial zero-momentum Gaussian wave packet as examples.
Numerical simulation is performed in Fig. 2 for the dependence
of the threshold frequency on the widths for the given average
fidelities. For a comparison, we draw the curves from Eq. (25)
and numerical results corresponding to the average fidelities
as 0.96 +£0.01, 0.90+0.01, and 0.85 £ 0.01. The width
coefficient « of the wave packet is taken from 1 to 50, ranging
from a single-site state to a very wide wave packet that is
approximately a plane wave with zero momentum. As can
be seen from the figure, analytical and numerical results both
indicate that the threshold frequency increases rapidly when
the width of the state gets narrow. Then for a finite-frequency
field, such a scheme has a high efficiency for a broad wave
packet.

IV. MONOCHROMATIC WAVE

The simplicity of the square-wave field makes it easy to
make an analytical investigation for the problems of concern
here because the exact solution of this model is helpful to
clearly present the main idea of the scheme without involving
much more complicated calculations. However, such a toy
model is not exactly accessible in experiments due to the
sudden change of the flux. In this section, we will consider
the monochromatic-wave field, which is more practical. It will
been shown analytically and numerically that both cases are
similar qualitatively.
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The monochromatic-wave field is in the form of

@(t) = Po + Pasinwt. (26)

Unlike the square-wave field, even in the special case of
¢a = m/2, the fidelity is no longer a periodic function due to
the breaking of the time-reversal symmetry. Thus one should
consider the integral to the whole time duration. However, the
analytical function of ¢(¢) may lead to some analytical results.
Here we still neglect ¢ for simplicity. We first investigate some
special cases analytically to seek the optimal ¢4 satisfying the
relation Eq. (18), and then perform numerical simulations for
more general cases.

By considering the evolved state at the instant nt, where n
is an integer, we have

filnt) = / cos[k + ¢ sin wt]dt’ 27
0
= nt cos kJo(pa).
Here,
1 T
TIn(x) = — / cos[mO — x sin(0)]d6O (28)
T Jo
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FIG. 6. (Color online) Average fidelity as a function of field
amplitude ¢ (units of 7) and frequency v (units of J) of a
monochromatic-wave flux for the Gaussian wave packet with @ = 50
and central momenta kg = 0, 7/4, /2, on an N = 1000 ring. The
average fidelity is computed over the time interval [0,25N/J]. It
shows that 0.765r is the optimal amplitude and the fidelity becomes
very sensitive to the magnitude for the initial wave packet with high
speed.

052310-5



W. H. HU AND Z. SONG

1.0 MM:\N\/\N{/\/WV\'/\NW\'ANVMWW
N

05 —

0.0 . ! . ! . ! . ! .
0 5 10 15 20 25

FIG. 7. (Color online) Average fidelity as a function of frequency
of the monochromatic-wave flux for a Gaussian wave packet with
o =50 on an N = 1000 ring. Panels stand for different values of
the amplitudes, ¢ = /8, 7 /4, 37 /8, w/2, 57/8, 0.7657, T /8,
and central momenta, ky = 0, /4, /2, of the initial wave packet. It
shows that when ¢, = 0.7657, frequently alternating flux suppresses
the evolution of the quantum states. Here the frequency v is expressed
in units of J.

are the Bessel functions of the first kind. Then the correspond-
ing fidelity is

F(n_c) — Z |ck|2ei2.]nf COSij((ﬁA) . (29)
k

Note that by taking ¢ = 0.7657, we have Jy(¢a) = 0, which
leads to F(nt) = 1 for an arbitrary initial state. This fact is
quite similar to the case of the square-wave field with ¢ =
/2.

Now we apply our numerical investigation to the more
general cases. We perform the numerical simulations for the
same states discussed in the last section. The numerical results
are plotted in Figs. 6, 7, and 8. They show that the square
and monochromatic waves lead to the similar result, but with
different optimal ¢4. The corresponding numerical result for
the threshold frequency v (o) as a function of the width of the
wave packet is plotted in Fig. 9.

Based on the numerical results presented in the two above
sections, we conclude that the evolution of a quantum state
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FIG. 8. (Color online) Average fidelity as a function of frequency
of the monochromatic-wave flux for a single-site state on an N =
1000 ring. Plots are presented for different values of the amplitudes,
oa =m/8, w/4, 37/8, w/2, 57/8, 0.7657, and 7w /8. It shows
that when ¢, = 0.7657, frequently alternating flux suppresses the
evolution of the quantum states, while other cases exhibit small
fidelity. Here the frequency v is expressed in units of J.

can be suppressed through the time-periodic flux. In both
situations, the efficiency of the schemes depends on the
parameters ¢a, ¢o, w, ko, and « in a similar manner. The
features can be exploited to control quantum dynamics for
quantum-information and computation purposes.

V. DISCUSSION

We have seen that the threaded magnetic flux, instead of
the electric field, plays an important role in controlling a
state. It can be applied to a more extended system to control
an uncharged particle. Actually, if the system is rotated, an
effective magnetic field will be induced in the rotating frame
of references. Therefore, a neutral-particle state in a ring lattice
can be controlled via torsional oscillation.

For a rotating ring with angular frequency €2, an additional
term

N
Hg = —QL.=—-QK Y (idlaj +He)  (30)
j=1

1.0 Numerical
v = 0.85+0.01
4 0.90 +£0.01
v 0.96 £0.01
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R
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25 50
o

FIG. 9. (Color online) The same as Fig. 2, but with only the
numerical result for the monochromatic-wave field.
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should be added on the Hamiltonian with ¢ =0 in the
noninertial frame [18], where K is a constant that depends
on the geometry of the ring.

In summary, we have studied the influence of periodically
alternating magnetic fields on the dynamics of a quantum
state on a tight-binding ring. Our analytical and numerical
calculations indicate that the evolution of a quantum state can
be suppressed through the time-periodic flux. The efficiency
of the scheme depends on not only the system parameters ¢a,
¢0, and w, but also the state parameters ky and «. Based on the
features of the dynamics, one can choose an appropriate system
to freeze a given state with an expected average fidelity. It can

PHYSICAL REVIEW A 84, 052310 (2011)

also be exploited to select and hold a specific wave packet
among the many-body particles, thus providing a means to
perform the quantum-state engineering. We expect that such
an observation has applications for information processing and
quantum-device physics.
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