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ABSTRACT

In the traditional identity-based cryptography, a user, who holds multiple identities, has to manage multiple private keys,
where each private key is associated with an identity. In this paper, we present a key agreement protocol, which allows a
single private key to map multiple public keys (identities) that are selectable by the user. That is, the established session
key is associated with an arbitrary subset of identities held by the user, while the unselected identities remain secret to
other participants. As a bonus, our scheme can be considered as a credential-based key agreement, where the unique private
key can be treated as a credential of the user and the user only proves that his credential is associated with some selected
identities. We prove that our scheme is secure in the random oracle model. Copyright © 2010 John Wiley & Sons, Ltd.

KEYWORDS

identity-based key exchange; key management; security; pairing

*Correspondence

Hua Guo, School of Computer Science and Engineering, Beihang University, Beijing, P.R.C.
E-mail: hguo.xyz@163.com

1. INTRODUCTION

The advantage of identity-based key agreements over Public
Key Infrastructure (PKI) based key agreements lies in pub-
lic key handling, i.e., the participants do not need public
key certificates. More precisely, in an identity-based sys-
tem, a user’s identity can serve as a public key without the
need of a traditional PKI, and the corresponding private
key is created by binding the identity string with a master
secret of a trusted authority called Key Generation Center
(KGC). Inspired by Shamir’s first identity-based crypto-
graphic scheme [1], many identity-based key agreement
schemes were proposed without using bilinear pairing. The
introduction of parings to cryptography [2,3] has opened
an entirely new field for identity-based cryptography. Many
novel identity-based key agrement protocols from pairings
have been introduced (e.g., [4--8]).

We are motivated by the following identity-based sce-
nario where multiple identities of a user must be applied.
As a user, Alice holds multiple identities such as her name,
birthday, credit card nubmber/pin, bank account number,
driver’s licence number, etc; each can serve as her pub-
lic key which has a corresponding private key. Consider
the situation where she wants to establish a secure session

channel with organizations such as her bank, her insurance
company, or her lawyer. When she talks to her bank via
a computer network, she could have to use her identities
such as her name, bank account number, and credit card
number, along with the associated private keys to establish
a shared session key with the bank, while other informa-
tion could be regarded as private. When she has to talk
to her car insurance company, she might have to use her
name, birthday, and driver’s licence number, along with
the associated private keys to establish a session key. The
obvious problem is that she has to handle all those pri-
vate keys, especially when her private key set is large.
Moreover, using multiple private keys and public keys
in key agreement could result in a great computational
complexity.

The challenge to the above scenario is how to construct an
identity-based key agreement that accommodates the need
of multiple identities and simplifies private key manage-
ment. More explicitly, we are looking for a solution that
multiple identities are associated with a single private key.
We notice that recently, Guo et al. [9,10] introduced an
encryption scheme that captures the feature of multiple
identities. Their scheme provides us with an inspiration to
handle multiple identities in key agreement.
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In this paper, we present the first authenticated key agree-
ment protocol that captures the feature of multiple identities.
We name it “selectable identity key authenticated key agree-
ment.” In our scheme, each user holds multiple identities
associated with a single private key. By “selectable iden-
tity” we meant that the user can select subset of her full
identity set. Our scheme is proven secure in the random
oracle model.

We present an entire new protocol for authenticated key
exchange. Differing from Reference [9], we construct a con-
crete multi-identity key exchange protocol, which can be
considered as a credential-based key agreement protocol.
We notice that the security proof in Reference [9] is not
completely correct (See Appendix A). In this paper, to give
a sound proof of our key exchange scheme, we apply a build-
in function presented by Chen et. al. [8] to our scheme and
introduce a new assumption, k-multiple bilinear collision
attack assumption (k-MBCAA1), and show that the hard-
ness of which is equivalent to that of the known k-bilinear
collision attack assumption. We prove the security of our
scheme under the assumption of k-MBCAA1 in the random
oracle model.

The rest of this paper is organized as follows. In Section 2,
we describe the preliminaries including bilinear pairing and
introduce a new security assumption and prove its sound-
ness. In Section 3, we present a two-identity key agreement
protocol. In Section 4, we introduce a multi-identity key
agreement protocol. In Section 5, we prove the security of
the multi-identity key agreement protocol. In Section 6, we
conclude the paper.

2. PRELIMINARIES

In this section, we introduce some basic concepts, includ-
ing the pairing primitives, assumptions, and the security
model.

2.1. Bilinear pairing and security
assumptions

We briefly review some basic facts of pairings, which will
be used in our protocol.

Definition 1. Let G be an additive group of prime order
q and GT a multiplicative group of the same order. Let P
denote a generator ofG. An admissible pairing is a bilinear
map ê : G×G→ GT which has the following properties:

1. Bilinear: given Q, R ∈ G and a, b ∈ Z∗
q , we have

ê(aQ, bR) = ê(Q, R)ab.
2. Non-degenerate: ê(P, P) �= 1GT

.
3. Computable: ê is efficiently computable.

Collision Attack Assumption (k-CAA1) [11].
For an integer k, and x ∈R Z

∗
q, P ∈ G, given (P,

xP, h0, (h1,
1

h1+x
P), · · · , (hk,

1
hk+x

P)), where hi ∈R Z
∗
q

and are different from each other for 0 ≤ i ≤ k, computing
1

x+h0
P is hard.

Multiple Collision Attack Assumption (k-MCAA1).
For an integer k, and x ∈R Z

∗
q, P ∈ G, given

(P, xP, h0, (h1,
1

h1+x
P), · · · , (hk,

1
hk+x

P)), where hi ∈R Z
∗
q

and are different from each other for 0 ≤ i ≤ k, computing
1

(x+h0)(x+h1)···(x+hk ) P is hard.

Theorem 1. If there exists a polynomial time algorithm to
solve k-CAA1 problem, then there exists a polynomial time
algorithm for k-MCAA1 problem. If there exists a polyno-
mial time algorithm to solve k-MCAA1 problem, then there
exists a polynomial time algorithm for k-CAA1 problem.

Proof. Provided in Appendix B. The proof follows
from the following Lemma. �

Lemma 1. For given integers n, m satisfying 0 ≤ n ≤
m − 1, and ( 1

h1+x
, · · · , 1

hm+x
) where x, hi ∈R Z

∗
q and hi are

different from each other for 1 ≤ i ≤ m, there exists a
unique solution (c1, · · · , cm) ∈ Zm

q for the equation

xn

(h1 + x) · · · (hm + x)
= c1

h1 + x
+ · · · + cm

hm + x

Proof. Provided in Appendix C. �

Bilinear Collision Attack Assumption (k-BCAA1) [11].
For an integer k, and x ∈R Z

∗
q, P ∈ G, ê : G×G→ GT ,

given (P, xP, h0, (h1,
1

h1+x
P), · · · , (hk,

1
hk+x

P)), where
hi ∈R Z

∗
q and are different from each other for 0 ≤ i ≤ k,

computing ê(P, P)
1

x+h0 is hard.

Multiple Bilinear Collision Attack Assumption (k-
MBCAA1).
For an integer k, and x ∈R Z

∗
q, P ∈ G, ê : G×G→

GT , given (P, xP, h0, (h1,
1

h1+x
P), · · · , (hk,

1
hk+x

P)), where
hi ∈R Z

∗
q and are different from each other for 0 ≤ i ≤ k,

computing ê(P, P)
1

(x+h0)(x+h1)···(x+hk ) is hard.

Theorem 2. If there exists a polynomial time algorithm
to solve k-BCAA1 problem, then there exists a polynomial
time algorithm for k-MBCAA1 problem. If there exists a
polynomial time algorithm to solve k-MBCAA1 problem,
then there exists a polynomial time algorithm for k-BCAA1
problem.

Proof. Provided in Appendix B. �

2.2. Security model

In this paper, we shall adopt a modified security model pro-
posed by Bellare and Rogaway [12] to analyze the security
of our multi-identity key exchange protocol.

The model includes a set of parties and each party
involved in a session is modeled by an oracle. An oracle
�s

i,j denotes an instance of a party i involved with a partner
party j in a session s where the instance of the party j is
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�t
j,i for some t. These parties cannot communicate directly;

instead they only communicate with each other via an adver-
sary. An adversary can access the oracle by issuing some
specified queries as follows.
Send(�s

i,j , m): This query models an active attack. �s
i,j exe-

cutes the protocol and responds with an outgoing message x
or a decision to indicate accepting or rejecting the session.
If the oracle �s

i,j does not exist, it will be created. Note
that if m = λ, then the oracle is generated as an initiator;
otherwise as a responder.
Reveal(�s

i,j ): �s
i,j returns the session key as its response if

the oracle accepts. Otherwise, it returns ⊥. Such an oracle
is called opened.
Corrupt(i): The party i responds with its private key.
Test(�s

i,j): At some point, the adversary can make a Test
query to a fresh oracle �s

i,j . �s
i,j , as a challenger, randomly

chooses b ∈ {0, 1} and responds with the real agreed session
key, if b = 0; otherwise it returns a random sample generated
according to the distribution of the session key.

The security of a protocol is defined using the two-phase
game G played between a malicious adversary A and a col-
lection of oracles. At the first stage, A is able to send the
above first three oracle queries at will. Then, at some point,
A will choose a fresh session �s

i,j on which to be tested
and send a Test query to the fresh oracle associated with
the test session. After this point, the adversary can continue
querying the oracles but cannot reveal the test oracle or its
partner, and cannot corrupt the entity j. Eventually, A ter-
minates the game simulation and outputs a bit b′ for b. we
say A wins if the adversary guesses the correct b.

Define the advantage of A as:

AdvA(k) = |2Pr[b′ = b] − 1|
where k is a security parameter.

The fresh oracle in the game is defined as follows.

Definition 2 (Fresh oracle [13]). An oracle �s
i,j is called

fresh if (1) �s
i,j has accepted; (2) �s

i,j is unopened; (3) j �= i

is not corrupted; (4) there is no opened oracle �t
j,i, which

has had a matching conversation to �s
i,j .

In this work, we use the concatenation of the messages in a
session to define the session ID, thus to define the matching
conversation, i.e., two oracles �s

i,j and �t
j,i have a matching

conversation to each other if both of them have the same
session ID.

A secure authenticated key agreement protocol is defined
as follows.

Definition 3. Protocol � is a secure authenticated key
agreement protocol, if:

In the presence of the benign adversary (who faithfully
relays messages between parties), on �s

i,j and �t
j,i,

both oracles always accept holding the same session
key and this key is distributed uniformly at random on
session key space;
For every probability polynomial time(PPT) adversary
A, AdvA(k) is negligible.

As mentioned in Reference [8], if a protocol is proved
to be secure with respect to the above definition, then
it achieves implicit mutual key authentication and the
basic security properties, i.e., known session key security,
key-compromise impersonation resilience and unknown
key-share resilience.

3. THE TWO-IDENTITY KEY
AGREEMENT PROTOCOL

We firstly present a simple two-identity key exchange pro-
tocol which is used to make the following multi-identity
one to be understood easily. Here we suppose two parties
A and B want to establish a shared session key using this
protocol. A has two IDs (IDA,1, IDA,2) and B has two IDs
(IDB,1, IDB,2).

3.1. The scheme

We assume the existence of a trusted KGC that is responsi-
ble for the creation and secure distribution of users private
keys.
Setup: This algorithm takes a security parameter as its input
and conducts the following steps:

1. Generate a prime q, and a bilinear pairing ê : G×
G→ GT , whereG andGT are cyclic groups of order
q. Choose two generators P, Q ∈ G∗ randomly.

2. Choose a random value s ∈ Z∗
q and compute Pk

pub =
skP , k = 1, 2. Note P0

pub = P .
3. Choose two cryptographic hash functions H1 :

{0, 1}∗ → Z
∗
q and H2 : {0, 1}∗ → {0, 1}n for some n.

The KGC publishes

params = 〈q,G,GT , ê, n, P, Q, P1
pub, P

2
pub, H1, H2〉

as the system parameters, and keeps s as his own secret
master key. The parameters are distributed to the users of
the system through a secure authenticated channel.
Extract:

The KGC takes as input params, master key s, and the
identities IDIdent,i ∈ {0, 1}∗, where Ident ∈ {A, B} and i ∈
{1, 2}, generates the private key

dIdent = 1

H1(IDIdent,1) + s
· 1

H1(IDIdent,2) + s
Q

where H1(IDIdent,1), H1(IDIdent,2) �= −s mod q, and sends it
to the user.

Suppose A and B want to use IDIdent,1 as their public keys.
Compute

Qk
IDIdent,1

= H1(IDIdent,1) · Pk
pub, k = 0, 1

Key Agreement:
To establish a shared session key, A and B take the follow

steps:
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1. A chooses x from Z∗
q as the ephemeral key, and com-

putes the corresponding ephemeral public keys

MA,1 = xQ0
IDB,1

+ xP1
pub

MA,2 = xQ1
IDB,1

+ xP2
pub

then sends TA = (MA,1, MA,2) to B.
2. Upon receiving the messages from A, B does the fol-

lowing:
Choose y from Z∗

q as his ephemeral key, and com-
pute the corresponding ephemeral public keys

MB,1 = yQ0
IDA,1

+ yP1
pub

MB,2 = yQ1
IDA,1

+ yP2
pub

then send TB = (MB,1, MB,2) to A
Compute

UB = MA,2 + H1(IDB,2) · MA,1

Compute

KBA = ê(UB, dB) · ê(P, Q)y

3. Upon receiving the messages from B, A firstly com-
putes

UA = MB,2 + H1(IDA,2) · MB,1

then computes the shared secret as

KAB = ê(UA, dA) · ê(P, Q)x

3.2. Protocol correctness

Now we verify the correctness of the protocol.

UA = MB,2 + H1(IDA,2) · MB,1

= (yQ1
IDA,1

+ yP2
pub) + H1(IDA,2)

·(yQ0
IDA,1

+ yP1
pub)

= (ysH1(IDA,1)P + ys2P) + yH1(IDA,2)

·(H1(IDA,1)P + ysP)

= (yH1(IDA,1) + s)(H1(IDA,2) + s)P

Thus the session secret is computed as

KAB = ê(UA, dA) · ê(P, Q)x

= ê(y(H1(IDA,1) + s)(H1(IDA,2) + s)P,

1

H1(IDA,1) + s
· 1

H1(IDA,2) + s
Q)

·ê(P, Q)x

= ê(P, Q)y · ê(P, Q)x

= ê(P, Q)x+y

Similarly, we can obtain

UB = x(H1(IDB,1) + s)(H1(IDB,2) + s)P

and

KBA = ê(P, Q)x+y

Thus, two secret keys computed by A and B are equal, i.e.,
A and B have successfully established the shared key K =
KAB = KBA after running an instance of the protocol. The
final shared session key is then sk = H2(A‖B‖TA‖TB‖K).

4. MULTI-IDENTITY KEY
AGREEMENT PROTOCOL

In this section, we present a multi-identity key exchange
protocol. For simplicity, we suppose that two involved par-
ties hold the same number of identities. Suppose two parties
A and B want to establish a shared session key using this
protocol. A holds p IDs (IDA,1, IDA,2, · · · , IDA,p) and B
holds p IDs (IDB,1, IDB,2, · · · , IDB,p).

4.1. The scheme

Setup:
This algorithm takes a security parameter as its input and

conducts the following steps:

1. Generate a prime q, and a bilinear pairing ê :
G×G→ GT , where G and GT are cyclic groups of
order q. Choose two generators P, Q ∈ G∗ randomly.

2. Choose a random value s ∈ Z∗
q and compute Pk

pub =
skP , k = 1, 2, · · · , p. Note P0

pub = P .
3. Choose three cryptographic hash functions H1 :

{0, 1}∗ → Z
∗
q, H2 : G→ G and H3 : {0, 1}∗ →

{0, 1}n for some n.

The KGC publishes

params = 〈q, p,G,GT , ê, n, P, Q, P1
pub,

· · · , Pp

pub, H1, H2, H3〉

as the system parameters, and keeps s as his own secret
master key. The parameters are distributed to the users of
the system through a secure authenticated channel.
Extract: The KGC takes as input params, master key s, and
the identities IDIdent,i ∈ {0, 1}∗, where Ident ∈ {A, B} and
i ∈ {1, 2, · · · , p}, generates the private key

Wirel. Commun. Mob. Comput. 2011; 11:226–239 © 2010 John Wiley & Sons, Ltd. 229
DOI: 10.1002/wcm



Authenticated key exchange protocol H. Guo et al.

dIdent = 1

H1(IDIdent,1) + s
· 1

H1(IDIdent,2) + s

· · · · · 1

H1(IDIdent,p) + s
Q

where H1(IDIdent,k) �= −s mod q, k = 1, 2, · · · , p. KGC
sends the private key to the user.

Suppose A and B want to use IDIdent,i as their public key.
Compute

Qk
IDIdent,i

= H1(IDIdent,i) · Pk
pub

where k = 0, 1, · · · , p − 1, and

S1
Ident,i =

p∑
k=1,k �=i

H1(IDIdent,k),

S2
Ident,i =

p∑
k,l=1,k,l �=i

H1(IDIdent,k)H1(IDIdent,l),

· · ·

S
p−1
Ident,i =

p∏
k=1,k �=i

H1(IDIdent,k)

Key Agreement: To establish a shared session key, A and
B conduct the follow steps:

1. A chooses x from Z∗
q as the ephemeral key, and com-

putes the corresponding ephemeral public keys

MA,1 = xQ0
IDB,i

+ xP1
pub,

MA,2 = xQ1
IDB,i

+ xP2
pub,

· · ·
MA,p = xQ

p−1
IDB,i

+ xP
p

pub

NA = xH2(MA,1)

Then sends TA = (MA,1, MA,2, · · · , MA,p, NA) to B.
2. Upon receiving the message from A, B does the fol-

lowing:
Check if the equation

ê(MA,1, H2(MA,1)) = ê(Q0
IDB,i

+ P1
pub, NA)

holds or not. If not, abort the session.
Choose y from Z∗

q as the ephemeral key, and com-
pute the corresponding ephemeral public keys

MB,1 = yQ0
IDA,i

+ yP1
pub,

MB,2 = yQ1
IDA,i

+ yP2
pub,

· · ·
MB,p = yQ

p−1
IDA,i

+ yP
p

pub

NB = yH2(MB,1).

Then sends TB = (MB,1, MB,2, · · · , MB,p, NB) to A.
Compute

UB = MA,p + S1
B,iMA,p−1 + · · · + S

p−1
B,i MA,1

Compute

KBA = ê(UB, dB) · ê(P, Q)y

3. Upon receiving the message from B, A does the fol-
lowing:

Check if the equation

ê(MB,1, H2(MB,1)) = ê(Q0
IDA,i

+ P1
pub, NB)

holds or not. If not, abort the session.
Compute

UA = MB,p + S1
A,iMB,p−1 + · · · + S

p−1
A,i MB,1

Compute

KAB = ê(UA, dA) · ê(P, Q)x

4.2. Protocol correctness

Now we verify the correctness of the protocol.

UA = MB,p + S1
A,iMB,p−1 + · · · + S

p−1
A,i MB,1

= (s + H1(IDA,2)) · · · (s + H1(IDA,p))MB,1

= y(s + H1(IDA,1))(s + H1(IDA,2)) ·
· · · (s + H1(IDA,p))P.

Therefore, we compute the session secret as

KAB = ê(UA, dA) · ê(P, Q)x

= ê(y(H1(IDA,1) + s)(s + H1(IDA,2))

· · · (H1(IDA,p) + s)P,
1

H1(IDA,1) + s

1

H1(IDA,2) + s
· · · 1

H1(IDA,p) + s
Q)

·ê(P, Q)x

= ê(P, Q)y · ê(P, Q)x

= ê(P, Q)x+y

Similarly, we can obtain

UB = x(H1(IDB,1) + s)(H1(IDB,2) + s)

· · · (H1(IDB,p) + s)P

230 Wirel. Commun. Mob. Comput. 2011; 11:226–239 © 2010 John Wiley & Sons, Ltd.
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Therefore,

KBA = ê(UB, dB) · ê(P, Q)y = ê(P, Q)x+y

Thus, the two secret keys computed by A and B are
equal, i.e., A and B have successfully established the
shared key K = KAB = KBA after running an instance of
the protocol. The final shared session key is then sk =
H3(A‖B‖TA‖TB‖K).

Remark 1. In the presentation, we have assumed that
users select one ID from their ID set. It is not hard to gener-
alize the protocol by allowing users to select multiple IDs.
Without loosing generality, suppose B chooses two identi-
ties IDA,i and IDA,j (i, j ∈ {1, 2, · · · , p}) as user A’s public
keys and generates the messages as follows:

MB,1 = y(P2
pub + (H1(IDA,i) + H1(IDA,j))

·P1
pub + H1(IDA,i)H1(IDA,j) · P0

pub),

MB,2 = y(P3
pub + (H1(IDA,i) + H1(IDA,j))

·P2
pub + H1(IDA,i)H1(IDA,j) · P1

pub),

· · ·
MB,p−1 = y(Pp

pub + (H1(IDA,i) + H1(IDA,j))

·Pp−1
pub + H1(IDA,i)H1(IDA,j) · P

p−2
pub )

NB = yH2(MB,1).

Remark 2. For simplicity, we suppose that both parties
hold the same number of identities. It is easy to generalize it
to the case in which they hold different numbers of identities.
All we need to do is to modify Sk

A,i, S
k
B,i, UA, and UB slightly.

5. SECURITY ANALYSIS

Theorem 3. If H1, H2 and H3 are random oracles and the
(pq1-1)-MBCAA1 assumption holds, then our multi-identity
scheme is a secure key agreement protocol. In particular,
suppose A is an adversary that attacks the multi-identity
scheme in which each party has p identities in the random
oracle model with non-negligible probability ε and makes at
most q1, q3 queries to H1 and H3, respectively, and creates
at most qo oracles. Then there exists an algorithmB to solve
the (pq1-1)-MBCAA1 problem with advantage

Adv
(pq1−1)−MBCAA1
B ≥ 1

p · q1 · q0 · q3
· ε

Proof. Firstly, we define Session ID as a concatenation
of TA ‖ TB. We focus on how to construct an algorithm B
using the adversaryA to solve a (pq1-1)-MBCAA1 problem
with non-negligible probability.

Given an instance of the (pq1-1)-MBCAA1 problem

〈
q, p, n,G,GT , ê, P, Q, sQ,

(
h1,1,

(
h1,2,

1

h1,2 + s
Q

)
,

h1,3,
1

h1,3 + s
Q

)
· · · ,

(
hq1,p,

1

hq1,p + s
Q

))〉

where hi,j ∈R Z
∗
q for 1 ≤ i ≤ q1 and 1 ≤ j ≤ p, ê is a

bilinear pairing ê : G×G→ GT , B’s task is computing

ê(Q, Q)
1

(h1,1+s)(h1,2+s)···(hq1 ,p+s) . �

Setup: B simulates the Setup algorithm as follows:
With Lemma 1, compute

P = 1

(s + h1,2)(s + h1,3) · · · (s + hq1,p)
Q

=
p∑

j=2

c1,j

s + h1,j

Q +
q1,p∑

i=2,j=1

ci,j

s + hi,j

Q

where ci,j are computable from hi,j .
For k = 1, 2, · · · , p, by Lemma 1 compute

skP = sk

(s + h1,2)(s + h1,3) · · · (s + hq1,p)
Q

=
p∑

j=2

c1,j,k

s + h1,j

Q +
q1,p∑

i=2,j=1

ci,j,k

s + hi,j

Q

where ci,j,k are computable from hi,j .
After computing Pk

pub = skP where s is the mas-
ter key which is unknown to the simulator, B
sends the system parameters 〈q, p, n,G,GT , ê,

P, Q, P1
pub, · · · , Pp

pub, H1, H2, H3〉 to A. The hash functions
H1, H2, and H3 are random oracles controlled by B.

AlgorithmB randomly chooses I ∈R {1, · · · q1} and J ∈R

{1, · · · , q0} and begins its simulation. Here we should note
that the notation IDi,u means the uth identity of the user i,
Mk

i,u denotes this is the kth message generated by user i using
uth identity from user jas the public key where j is the user
with whom i wants to communicate, and�s

i,j is the sth oracle
among all the created oracles. Another thing we should note
is that all of the superscripts and subscripts in a message
during the proof are all known to the simulator. Algorithm
B answers the queries which are asked by adversary A in
arbitrary order as follows.
H1(IDi,u) queries: Algorithm B maintains an ini-

tially empty list Hlist
1 with entries of the form

(i, IDi,u, (hi,1, hi,2, · · · , hi,q), di). When A queries the ora-
cle H1 at a point IDi,u, B responds to the query in the
followig way:

If IDi,u already appears on the Hlist
1 in a tuple

(i, IDi,u, (hi,1, hi,2, · · · , hi,q), di), then B responds with
H1(IDi,u) = hi,u.

Otherwise, if IDi,u is the Ith unique query to H1, then B
stores (i, IDi,u, (h1,1, h1,2, · · · , h1,q), ⊥) into the tuple list
and responds with H1(IDi,u) = h1,u.
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Otherwise, B randomly selects hi,k(i > 1,

k = 1, 2, · · · , p) from the (pq1-1)-MBCAA1 instance
according to hi,u which has not been chosen by B, then
computes

di = 1

(s + hi,1)(s + hi,2) · · · (s + hi,p)
Q

=
p∑

j=1

ci,j

s + hi,j

Q

where ci,j are computable from hi,j .
After that, B inserts (i, IDi,u, (hi,1, hi,2, · · · ,

hi,q), 1
(hi,1+s)(hi,2+s)···(hi,q+s) Q) into the tuple list and

responds with H1(IDi,u) = hi,u.
H2(M1

i,u) queries: AlgorithmBmaintains an initially empty
list Hlist

2 with entries of the form (M1
i,u, mi,u, Ri,u, wi,u). B

responds to the query in the follows way:
If a tuple (M1

i,u, mi,u, Ri,u, wi,u) has already appeared on
the Hlist

2 , then B responds with Ri,u.
Otherwise, B randomly selects mi,u (i > 0) ∈R Z

∗
q and

inserts (M1
i,u, mi,u, mi,uQ, ⊥) into the tuple list. B responds

with mi,uQ.
H3(IDi,v, IDj,u, T

t
i,v, T

t
j,u, K

t
i,j) queries: B maintains

an initially empty list Hlist
3 with entries of the form

(IDi,v, IDj,u, T
t
i,v, T

t
j,u, K

t
i,j, ζ

t) which is indexed by
(IDi,v, IDj,u, T

t
i,v, T

t
j,u, K

t
i,j). B responds to the query in the

following way.
If a tuple indexed by (IDi,v, IDj,u, T

t
i,v, T t

j,u, K
t
i,j) is on

the list, then B responds with ζt .
Otherwise, B chooses a random string ζt ∈ {0, 1}n and

inserts a new tuple (IDi,v, IDj,u, T
t
i,v, T t

j,u, Kt
i,j, ζ

t) into the
list Hlist

3 and returns ζt .
Corrupt(i) queries: When receiving this query, B goes
through list Hlist

1 . If i is not on the list, B randomly chooses
u ∈ {1, 2, · · · , p}, and queries H1(IDi,u). If H1(IDi,u) =
h1,u, then B aborts the game (Event 1). Otherwise, B sends
di to A.
Send(�t

i,j, ((M1
j,u, M

2
j,u, · · · , Mp

j,u), Nj,u)) queries: B
maintains a list for each oracle of the form (�t

i,j, trant
i,j ,rt

i,j ,
Kt

i,j ,SKt
i,j) where Mk

j,u means this is the kth message
generated by user j using uth identity from user i’s p
identities as the public key; trant

i,j is the transcript of the
oracle so far; rt

i,j is the random integer used by the oracle
to generate the messages; Kt

i,j and SKt
i,j are set ⊥ initially.

This list is updated in other queries as well. B proceeds in
the following way:

B looks through the list Hlist
1 . If i is not on the list, B ran-

domly chooses u′ ∈ {1, 2, · · · , p}, and queries H1(IDi,u′ ).
B computes

Qk
i,v = H1(IDj,v)Pk

pub + Pk+1
pub

(k ∈ {0, 1, · · · , p − 1})
and

Ri,v = H2(M1
i,v).

After that, B checks t.

If t = J , B checks the value of dj and gives the different
response depending on it as below.

* If dj �=⊥ or H1(IDj,v) �= h1,1, B aborts the game
(Event 2).

* Otherwise,
If Tj,u = ((M1

j,u, M
2
j,u, · · · , Mp

j,u), Nj,u) is not the
last message, randomly sample x ∈ Z∗

q such that xP
is not shown on the list of Hlist

2 as some M1
i,v, and

then randomly sample wi,v ∈ Z∗
q and insert the tuple

(xP, ⊥, wi,v · (h1,1 + s)Q, wi,v) into Hlist
2 .

If Tj,u = λ, compute

Mk+1
i,v = xskP = xPk

pub,

k = 0, 1, · · · , p − 1

and

Ni,v = rRi,v

= x

h1,1 + s
· (wi,v · (h1,1 + s)Q)

= xwi,vQ

where r = x

h1,1+s
which is unknown to the simulator.

Obviously the equation

ê(M1
i,v, H2(M1

i,v)) = ê(Q0
IDj,v

+ P1
pub, Ni,v)

holds. Then respond with Ti,v = ((M1
i,v,

M2
i,v, · · · , Mp

i,v), Ni,v).
If Tj,u = ((M1

j,u, M
2
j,u, · · · , Mp

j,u), Nj,u) is the first
message of the session, then check if the equation

ê(M1
j,u, H2(M1

j,u)) = ê(Q0
IDi,u

+ P1
pub, Nj,u)

holds or not. If so, compute

Mk+1
i,v = xskP = xPk

pub,

k = 0, 1, · · · , p − 1

and

Ni,v = rRi,v

= x

h1,1 + s
· (wi,v · (h1,1 + s)Q)

= xwi,vQ

where r = x

h1,1+s
which is unknown to the simulator.

Then respond with Ti,v = ((M1
i,v, M

2
i,v, · · · , Mp

i,v), Ni,v)
and accept the session. Otherwise, reject the session.

If Tj,u = ((M1
j,u, M

2
j,u, · · · , Mp

j,u), Nj,u) is the last
message of the session, then check if the equation

ê(M1
j,u, H2(M1

j,u)) = ê(Q0
IDi,u

+ P1
pub, Nj,u)
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holds or not. If so, do nothing but accept the session.
Otherwise, reject the session.

If t �= J , B proceeds the protocol as follows.

* If Tj,u = ((M1
j,u, M

2
j,u, · · · , Mp

j,u), Nj,u) is not the sec-
ond message on the transcript:

If di �= ⊥, randomly sample rt
i,j ∈ Z∗

q.
Otherwise, randomly sample rt

i,j ∈ Z∗
q, compute

Mk+1
i,v = rt

i,jQ
k
i,v + rt

i,jP
k+1
pub ,

Ni,v = rt
i,jRi,v

where k = 0, 1, · · · , q − 1, so that they have not been
shown on Hlist

3 as a part of some Ti,v if �t
i,j is the

initiator or Tj,u otherwise.
* If ((M1

j,u, M
2
j,u, · · · , Mp

j,u), Nj,u) = λ, compute

Mk+1
i,v = rt

i,jQ
k
i,v + rt

i,jP
k+1
pub ,

Ni,v = rt
i,jRi,v

where k = 0, 1, · · · , p − 1. Then respond with Ti,v =
((M1

i,v, M
2
i,v, · · · , M

p

i,v), Ni,v).
* Otherwise, check if the equation

ê(M1
j,u, H2(M1

j,u)) = ê(Q0
IDi,u

+ P1
pub, Nj,u)

holds or not. If the equation does not hold, reject the
session. Otherwise,

- If Tj,u = ((M1
j,u, M

2
j,u, · · · , Mp

j,u), Nj,u) is the first
message of the session, compute

Mk+1
i,v = rt

i,jQ
k
i,v + rt

i,jP
k+1
pub ,

Ni,v = rt
i,jRi,v

where k = 0, 1, · · · , p − 1.
Then respond with Ti,v = ((M1

i,v, M2
i,v, · · · ,

M
p

i,v), Ni,v).
- If Tj,u = ((M1

j,u, M
2
j,u, · · · , Mp

j,u), Nj,u) is the last
message of the session, then accept the session.

For both cases, compute SKt
i,j as below. If di �= ⊥,

compute

Ui,u = M
p

j,u + S1
i,uM

p−1
j,u + · · · + S

p−1
i,u M1

j,u

and

Kt
i,j = ê(Ui,u, di) · ê(P, Q)r

t
i,j

where Mk+1
j,u (k = 0, 1, · · · , p − 1) are a part of the

incoming messages and rt
i,j is selected randomly by

oracle �t
i,j . If di = ⊥, similarly we have

Ui,u = M
p

j,u + S1
i,uM

p−1
j,u + · · · + S

p−1
i,u M1

j,u,

and

Kt
i,j = ê(Ui,u, di) · ê(P, Q)r

t
i,j .

However, the simulator can not compute Kt
i,j directly

since the secret key di is unknown to the simulator.
If M1

j,u �= xP and h1,u �= h1,1, since (h1,u,
1

h1,u+s
Q)

is known to B, thus compute

Kt
i,j = ê(Ui,u, di) · ê(P, Q)r

t
i,j

= ê(M1
j,u,

1

h1,u + s
Q) ·

ê(P, Q)r
t
i,j .

If M1
j,u �= xP but h1,u = h1,1, since 1

h1,1+s
Q is unknown

to B, following the equation

ê(M1
j,u, H2(M1

j,u)) = ê(Q0
IDi,u

+ P1
pub, Nj,u),

where H2(Nj,u) = mj,uQ (find mj,u in the Hlist
2 ), com-

pute

ê(Ui,u, di) = ê(M1
j,u,

1

s + h1,1
Q)

= ê(P,
1

mj,u

Nj,u).

Thus

Kt
i,j = ê(Ui,u, di) · ê(P, Q)r

t
i,j

= ê(P,
1

mj,u

Nj,u) · ê(P, Q)r
t
i,j

where Nj,u is a part of the incoming messages and rt
i,j

is selected randomly by �t
i,j .

If M1
j,u = xP , do nothing.

If Kt
i,j is computed, then set SKt

i,j = H3(IDi,v,

IDj,u, T
t
i,v, T

t
j,u, K

t
i,j) if i is the initiator, or SKt

i,j =
H3(IDj,u, IDi,v, T

t
j,u, T

t
i,v, K

t
i,j) otherwise. If Kt

i,j is not
computed, then randomly sample SKt

i,j .

Reveal(�t
i,j) queries: B answers the queries as follows:

If oracle �t
i,j has not accepted, then respond with ⊥.

If t = J or if the J th oracle has been generated as �J
a,b

and IDa,u = IDj,u, IDb,v = IDi,v and two oracles have the
same session ID, then abort the game (Event 3).

Return SKt
i,j .

Test(�t
i,j) query: If t �= J or (t = J but) and there is an

oracle �s
j,i which has the same session ID as �t

i,j that has
been revealed, B aborts the game (Event 4). Otherwise, B
responds to A with a random number ζ ∈ {0, 1}n.

After A finishes the queries, it returns its guess. Then B
proceeds with the following steps:
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1. Firstly compute

Ui,u = M
p

j,u + S1
i,uM

p−1
j,u + · · · + S

p−1
i,u M1

j,u

then compute D = ê(Ui,u, di) where Mk+1
j,u (k =

0, 1, · · · , p − 1) are messages generated by user j who
uses the uth identity of user i as the public key, di is
found from Hlist

1 corresponding to IDi,u of fresh oracle
�J

i,j . Note that H(IDj,v) = h1,1. Thus

KJ
i,j = ê(Ui,u, di) · ê(P, Q)

x
h1,1+s

= D ·
(
ê(P, Q)

1
h1,1+s

)x

= D ·
(
ê(Q, Q)

1
(h1,1+s)(h1,2+s)···(hq1 ,p+s)

)x

2. B randomly samples Kl from the Hlist
3 , and returns

(Kl/D)
1
x as the response to the (pq1-1)-MBCAA1

challenge.

Claim 1. If B did not abort the game, A could not find
inconsistence between the simulation and the real world.
More precisely, if A noticed the inconsistence between the
simulation and the real world when B did not abort the sim-
ulation, then the probability B solves the (pq1-1)-MBCAA1
problem is non-negligible.

Proof. B gives the satisfying response to most
of the oracles by following the protocol specification
honestly, except for the one �t

i,j whose private key
is ⊥ and H(IDi,u) = h1,1 and the incoming messages
((M1

j,u, M
2
j,u, · · · , Mp

j,u), Nj,u) is from the tested oracle
where M1

j,u = xP . Note that the transcripts are one part
of the input to H3 which is modelled as the random ora-
cle to compute the session key. If there is some difference
between the reveal query on �t

i,j and a query on H3, it must
have queried H3 with �t

i,j such that

Ui,u = M
p

j,u + S1
i,uM

p−1
j,u + · · · + S

p−1
i,u M1

j,u

and

Kt
i,j = ê(Ui,u, di) · ê(P, Q)r

t
i,j

= ê(P, Q)r
t
i,j ·

(
ê(P, Q)

1
h1,1+s

)x

.

If A can distinguish the session key Kt
i,j in the simulation

from the real world, then B can return (Kl/ê(P, Q)r
t
i,j )

1
x

as the response to the (pq1-1)-MBCAA1 challenge with
probability 1

p·q1·q0 ·q3
, where Kl is a random value choosing

from H3 by B. This completes the proof. �

Claim 2. During the simulation, the probability thatB did
not abort the game is non-negligible.

Proof. We now evaluate the probability that B did not
abort during the game, i.e., Events 1 - 4 did not happen. B

aborts the game only when at least one of following events
happens:

Event 1, denoted as F1: A corrupted party i whose pri-
vate key is represented by ⊥, i.e., A made a query to party
i to get its private key if it chose �s

j,i as the fresh oracle,
which is disallowed according to the definition of the fresh
oracle.

Event 2, denoted as F2: A impersonated party i whose
private key is represented by ⊥ in the sth session.

Event 3, denoted as F3: A revealed the J th oracle or its
partner oracle, which is against the definition of the fresh
oracle.

Event 4, denoted as F4: A did not choose the J th oracle
as the challenge fresh oracle or the parter of the fresh oracle
has been revealed, which made that the test query cannot
work.

According to the rules of the game, we have

¬F4 ∧ ¬F2 → ¬F1

and

¬F4 → ¬F3.

Let F21 be the event that dj �= ⊥ during the simulation of
the send query, and F22 be the event that H1(IDj,v) �= h1,1.
Then we have

Pr[¬F2] = Pr[¬(F21 ∨ ¬F22)]

= Pr[¬F21 ∧ ¬F22]

= Pr[¬F22]

= 1

pq1

Now letF be the event thatB did not abort during the game.
Then, we get

Pr[F] = Pr[¬F1 ∧ ¬F2 ∧ ¬F3 ∧ ¬F4]

= Pr[¬F2 ∧ ¬F4]

= Pr[¬F2] · Pr[¬F4]

≥ 1

pq1
· 1

qo

= 1

p · q1 · qo

.

�

Claim 3. Let H be the event that

K = ê(Ui,u, di) · ê(P, Q)
x

h1,1+s

was not queried on H3. Then

Pr[¬H] ≥ ε.
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Proof. Similar to the analysis of Reference [14], we
have

Pr[A wins| H] ≤ 1

2
.

Thus

Pr[A wins] = Pr[A wins|¬H] · Pr[¬H]

+ Pr[A wins|H]

· Pr[H]

≤ Pr[A wins|¬H] · Pr[¬H]

+ Pr[A wins|H]

≤ 1

2
Pr[¬H] + 1

2
.

So we have

Pr[¬H] ≥ 2

(
Pr[A wins] − 1

2

)
= ε.

Thus, the claim is correct.
Let I be the event that B found the correct Kl. Then

combining all of the above results, we have

Pr[B wins] = Pr[F ∧ ¬H ∧ I]

≥ 1

p · q1 · qo · q3
· Pr[¬H]

≥ 1

p · q1 · qo · q3
· ε,

which contradicts to the hardness of the (pq1-1)-MBCAA1
problem.

This completes the security analysis of the protocol.
�

6. CONCLUSION

We proposed the first selectable identity authenticated key
agreement protocol and proved it in the random oracle
model and the k-multiple bilinear collision attack assump-
tion (k-MBCAA1). To justify our security proof, we proved
that k-MBCAA1 is equivalent to the hardness of the known
k-bilinear collision attack assumption (k-BCAA1), where
both were recognized as cryptographic hard problems.

Our scheme can be considered as a credential-based key
authenticated key agreement, since the private key can be
regarded as a credential authorized by the KGC. We believe
that our protocol has great applicability as highlighted in the
introduction.
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Appendix A

We provide some comments on the security proof in Guo
et al.’s encryption scheme [9]. The main problem in the
security proof of Guo et al.’s encryption scheme is due to
the hash function H0, i.e., the hash function H0 is treated
improperly. Consider the following two cases:

H0 is not treated as a random oracle. In this case, when
the adversary queried H0, the simulator should respond the
right value as H0(ID) = bi − s when coin =0, or H0(ID) =
bis−s

1−bi
otherwise. In this way the simulator can compute the

correspondent values of Qk
i when he is queried H1-queries

by the adversary. Although bi is chosen by the simulator,
the master key s is unknown to him.

H0 is treated as a random oracle. In this case, when
queried H0-queries, the simulator would select a random
value σ ∈ Z∗

p. Then, the adversary A can use this value
to compute Qk

i . Also, the adversary A can obtain another
value of Qk

i by H1-queries. When A compared the two val-
ues, he would realize the difference since the probability
the two values equal is no more than 1

p
. Thus, from A’s

point of view, the simulation offered by the simulator is
distinguishable from the real world.

The reason lies in the incompatibility between the scheme
they presented and the proof they offered. In their scheme,
they used the exponent inversion family [15] to generate
the private keys; while in their security proof, they adopted
the method from BF-IBE scheme which is based on the
full-domain hash family [15] to generate the private keys.

In our paper, to relieve the tension between the scheme
and the security proof, we apply the build-in function pre-
sented in Reference [8] to our key exchange protocol and
the security proof.

Appendix B

Proof of Theorem 1.
If there is a polynomial time algorithm A to solve the

k-CAA1 problem, we construct a polynomial time
algorithm B to solve the k-MCAA1 problem.

Given an instance of k-MCAA1 problem

〈
P, xP, h0,

(
h1,

1

h1 + x
P

)
, · · · ,

(
hk,

1

hk + x
P

)〉
,
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B computes 1
(x+h0)(x+h1)···(x+hk ) P as follows: Pass A the k-

CAA1 challenge

〈
P, xP, h0,

(
h1,

1

h1 + x
P

)
, · · · ,

(
hk,

1

hk + x
P

)〉

and get

A = 1

x + h0
P

By Lemma 1, we can compute

C = 1

(x + h0)(x + h1) · · · (x + hk)
P

= c0

x + h0
P +

k∑
i=1

ci

x + hi

P

= c0 · A +
k∑

i=1

ci

x + hi

P

where ci ∈ Zq.
If there is a polynomial time algorithm A to solve the

k-MCAA1 problem, we construct a polynomial time algo-
rithm B to solve the k-CAA1 problem.

Given an instance of k-CAA1 problem

〈
P, xP, h0,

(
h1,

1

h1 + x
P

)
, · · · ,

(
hk,

1

hk + x
P

)〉

B works as follows to compute 1
x+h0

P : Pass A the k-
MCAA1 challenge

〈P, xP, h0, (h1,
1

h1 + x
P), · · · , (hk,

1

hk + x
P)〉

and get

C = 1

(x + h0)(x + h1) · · · (x + hk)
P

By Lemma 1, there exists unique (c0, c1, · · · , ck) ∈ Zk+1
q

satisfying

1

(x + h0)(x + h1) · · · (x + hk)
P

= c0

x + h0
P +

k∑
i=1

ci

x + hi

P

Thus, we have the solution

1

x + h0
P = 1

c0
(C −

k∑
i=1

ci

x + hi

P)

�

Proof of Theorem 2.
If there is a polynomial time algorithm A to solve the k-

BCAA1 problem, we construct a polynomial time algorithm
B to solve the k-MBCAA1 problem.

Given an instance of k-MBCAA1 problem

〈P, xP, h0, (h1,
1

h1 + x
P), · · · , (hk,

1

hk + x
P)〉

B computes ê(P, P)
1

(x+h0)(x+h1)···(x+hk ) as follows:
By Lemma 1, we can compute

C = 1

(x + h0)(x + h1) · · · (x + hk)
P

= c0

x + h0
P +

k∑
i=1

ci

x + hi

P

= c0 · A + R

where ci ∈ Zq and

R =
k∑

i=1

ci

x + hi

P

Compute

B = ê(P, R) = ê(P,

k∑
i=1

ci

x + hi

P)

=
k∏

i=1

ê(P,
ci

x + hi

P) =
k∏

i=1

ê(P,
1

x + hi

P)ci

Pass A the k-BCAA1 challenge

〈P, xP, h0, (h1,
1

h1 + x
P), · · · , (hk,

1

hk + x
P)〉

and get

A = ê(P, P)
1

x+h0

Since

1

(x + h0)(x + h1) · · · (x + hk)
P = c0

x + h0
P + R

compute

ê(P, P)
1

(x+h0)(x+h1)···(x+hk )

= ê(P, P)
c0

x+h0
+
∑k

i=1

ci
x+hi

= ê(P, P)
c0

x+h0 · ê(P, P)
∑k

i=1

ci
x+hi

= ê(P,
1

x + h0
P)c0 · ê(P,

k∑
i=1

ci

x + hi

P)

= Ac0 · B
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If there is a polynomial time algorithm A to solve the
k-MBCAA1 problem, we construct a polynomial time algo-
rithm B to solve the k-BCAA1 problem.

Given an instance of k-BCAA1 problem

〈P, xP, h0, (h1,
1

h1 + x
P), · · · , (hk,

1

hk + x
P)〉

B computes ê(P, P)
1

x+h0 as follows:
By Lemma 1, we can compute

1

(x + h0)(x + h1) · · · (x + hk)
P

= c0

x + h0
P +

k∑
i=1

ci

x + hi

P

= c0 · 1

x + h0
P + R

where ci ∈ Zq and

R =
k∑

i=1

ci

x + hi

P

Hence,

c0

x + h0
P = 1

(x + h0)(x + h1) · · · (x + hk)
P − R

Compute

B = ê(P, R) =
k∏

i=1

ê(P,
1

x + hi

P)ci

Pass A the k-MBCAA1 challenge

〈P, xP, h0, (h1,
1

h1 + x
P), · · · , (hk,

1

hk + x
P)〉

and get

C = ê(P, P)
1

(x+h0)(x+h1)···(x+hk )

Compute

ê(P, P)
c0

x+h0

= ê(P, P)
1

(x+h0)(x+h1)···(x+hk ) /ê(P, P)
∑k

i=1

ci
x+hi

= C/B

Finally, compute

ê(P, P)
1

x+h0 = (C/B)c
−1
0

�

Appendix C

Proof of Lemma 1.
Since

m∑
i=1

ci

x + hi

= (c1

m∏
i=2

(hi + x) + c2

m∏
i=1,i �=2

(hi + x)

+ · · · + cm

m−1∏
i=1

(hi + x))/((x + h1) · (x + h2)

· · · (x + hm))

let

f (c1, · · · , cm)

= c1

m∏
i=2

(hi + x) + c2

m∏
i=1,i �=2

(hi + x) + · · · +

cm

m−1∏
i=1

(hi + x)

= xm−1

m∑
i=1

ci + xm−2(c1

m∑
i=2

hi + c2

m∑
i=1,i �=2

hi +

· · · + cm

m−1∑
i=1

hi) + · · · + (c1

m∏
i=2

hi + c2

m∏
i=1,i �=2

hi +

· · · + cm

m−1∏
i=1

hi)

= xm−1

m∑
i=1

ci + xm−2

m∑
i=1

ci

m∑
j=1,j �=i

hj + · · ·

+
m∑

i=1

ci

m∏
j=1,j �=i

hj.

Now let f (c1, · · · , cm) = xm−1−n (0 ≤ n ≤ m − 1). Then,
we have




c1 + c2 + · · · + cm = 0,

c1

∑m

i=2 hi + c2

∑m

i=1,i �=2 hi + · · · +
cm

∑m−1
i=1 hi = 0,

...

c1

∑
i1 �=1,···,in �=1

∏n

j=1 hij + · · ·

+cm

∑
i1 �=m,···,in �=m

∏n

j=1 hij = 1,

...

c1

∏m

i=2 hi + c2

∏m

i=1,i �=2 hi + · · · +
cm

∏m−1
i=1 hi = 0.
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To show that the above linear equation system has a solu-
tion, it suffices to prove that the coefficient matrix is
non-degenerative. In fact, the determinant of the matrix is

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 · · · 1∑m

i=2 hi · · · ∑m−1
i=1 hi

...∑
i1 �=1,···,in �=1

∏n

j=1 hij · · · ∑
i1 �=m,···,in �=m

∏n

j=1 hij

...∏m

i=2 hi · · · ∏m−1
i=1 hi

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
By using row operations, it can be reduced to

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 · · · 1

0 · · · h1 − hm

0 · · · (h1 − hm)(h2 − hm)

...

0 · · · (h1 − hm)(h2 − hm) · · · (hm−1 − hm)

∣∣∣∣∣∣∣∣∣∣∣∣∣

it equals ∏
1≤i<j≤m

(hi − hj) �= 0

Thus, by the theory of linear algebra, there exists
a unique solution (c1, · · · , cm) ∈ Zm

q for every equa-
tion f (c1, · · · , cm) = xm−1−n(0 ≤ n ≤ m − 1). Hence there
exists a unique solution (c1, · · · , cm) ∈ Zm

q for the equation

xn

(h1 + x) · · · (hm + x)
= c1

h1 + x
+ · · · + cm

hm + x

For example, the solution for the case of n = 0 is

c1 = 1
(h2−h1)(h3−h1)···(hm−h1) ,

c2 = 1
(h1−h2)(h3−h2)···(hm−h2) ,

· · ·
cm = 1

(h1−hm)(h2−hm)···(hm−1−hm) .

�
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