
 

 
Abstract—Near-infrared imaging mainly uses near-infrared 

band ambient light imaging reflected by the target, which has 
better atmospheric penetration performance and human skin 
penetration performance than visible light imaging. Therefore, 
near-infrared imaging is widely used in military, medical and 
many industrial production. Aiming at reducing the noise and 
improving the contrast of the near-infrared images gained from 
infrared focal plane array (IRFPA), the near-infrared image 
enhancement method based on steerable pyramid is proposed in 
this paper. First of all, the near-infrared image is decomposed 
into multi-scales using the steerable pyramid model; then the 
coefficients of low-frequency and high-frequency of the image 
are obtained. In order to improve the contrast of the original 
near-infrared image, the coefficients with low-frequency are 
nonlinearly transformed through fuzzy-set theory. Then the 
coefficients of high-frequency are dealt with threshold method 
to reduce the noise. Next, these images are reconstructed. At last, 
anti-sharpening mask is used to highlight the details of the image. 
During the reconstruction, a adaptive interpolation algorithm is 
put forward to resolve the distortion problem in the steerable 
pyramid algorithm. The experimental results show that this 
algorithm has a good effect on the enhancement of near-infrared 
images, and significantly improves the quality of near-infrared 
image produced by IRFPA device. The comparison results with 
various algorithms show that our algorithm outperforms the 
state-of-art in terms of contrast gain, comentropy, mean-square 
error, and peak signal to noise ratio. The experimental results 
illustrate that the proposed algorithm can efficiently enhance 
the near-infrared image. 
 

Index Terms—near-infrared image enhancement, steerable 
pyramid decomposition, fuzzy set, adaptive interpolation 
 

I. INTRODUCTION 

ith the rapid development of science and technology, 
new imaging methods continue to emerge. In recent 

years, the transmission characteristics of near-infrared light 
with a wavelength of 600-1300 nm in biological tissues and 
near-infrared light imaging have become the hot spots in 
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biomedical photonics research [24], [25], [26], [27], [28], 
[29]. Near-infrared image refers to the sample formed by 
reflecting or irradiating the near-infrared spectrum segment 
with the target received by the remote sensor. It belongs to a 
new type of imaging technology and is still in the stage of 
exploration and development. Near-infrared imaging mainly 
uses near-infrared band ambient light reflected by the target, 
which has better atmospheric penetration performance and 
human skin penetration performance than that of the visible 
light imaging method. Therefore, the near-infrared imaging is 
used in military, medical and many industrial production. As a 
result, the research and development of near-infrared imaging 
is of great significance, and it has potential significance in the 
early diagnosis of medical problems such as cancer diagnoses 
and cardiovascular and cerebrovascular diseases. Therefore, 
studying and exploring near-infrared imaging technology and 
enhancing near-infrared images are of great significance for 
near-infrared detection. 

The near-infrared imager (system NIR-50) is currently the 
mainstream imaging device in IRFPA, but due to hardware 

Near-infrared Image Enhancement Method in 
IRFPA Based on Steerable Pyramid 

Qinghe Zheng, Xinyu Tian, Mingqiang Yang and Shi Liu 

W

 

 

 

Fig. 1. The near-infrared image enhancement results for three scenes. The 
first column represents the original near-infrared image and the second 
column represents the enhanced image. 



 

limitations and the environmental changes, the near-infrared 
image of IRFPA has the following disadvantages compared to 
the light image: 
 Low resolution. 
 Complex noise. 
 Low contrast. 
 Low signal to noise ratio. 
 Blurred visual effects. 
 Non-linear relationship between gray distribution and 

target reflection characteristics. 
Therefore, image enhancement algorithm used for image 

processing and improving image quality is an essential step in 
the practical application of equipment. Image enhancement 
algorithms are divided into spatial domain enhancement [16] 
and frequency domain enhancement [17]. Spatial domain 
enhancement directly deals with pixel gray value. The main 
methods include grayscale stretch [1], histogram equalization 
[2], and anti-sharpening mask [3]. Histogram equalization can 
improve image contrast to a certain extent, but at the same 
time, image noise is also enhanced, and the overall effect is 
not ideal. The anti-sharpening mask enhances the edge of the 
image, but the noises are also enhanced too. The frequency 
domain based enhancement method first transforms the image 
into the frequency domain, and then the frequency domain 
filters are used to enhance the image. It mainly includes low 
pass filtering method [15], high pass filtering method [18] and 
homomorphic filtering method [19]. Single frequency domain 
enhancement method is difficult to reconcile image noise and 
edge processing: good denoising often results in the loss of 
image details. 

In recent years, in view of the actual engineering [7] and 
computational requirements [8], Li [4] has proposed adaptive 
detail enhancement of infrared images based on the sub-band 
decomposition multiscale (i.e., Retinex) [9], which can better 
enhance the details of the highlighting and dark areas of the 

image. Yun et al. [5] proposed that the near-infrared image 
enhancement method combined with histogram equalization 
and fuzzy set theory can mainly enhance image contrast. But 
the above two methods cannot deal with the ubiquitous noise 
problem in near-infrared images. Jia et al. [6] proposed that 
the near-infrared image enhancement algorithm based on the 
generalized linear operation and bilateral filtering is mainly 
aimed at eliminating the bad halo in near-infrared images. 

Although these methods have achieved some results, they 
cannot solve the problem of complex noises and low contrast 
in NIR-50 near infrared imager. Therefore, a near-infrared 
image enhancement method based on steerable pyramid is 
proposed in this paper. Steerable pyramid is one of the most 
famous direction controlled pyramid model, which can deal 
with image information at multiple scales. The model has 
translation invariance, rotation invariance and multi direction. 
It can better describe the feature of curved edge in the image 
and retain the details of the image. In the process of sampling, 
an adaptive interpolation algorithm is proposed to solve the 
distortion problem of steerable pyramid based method in the 
interpolation process. The experimental results show that this 
algorithm has the good enhancement effect on near-infrared 
images. The comparison results with various methods show 
that our algorithm outperforms the state-of-the-art in terms of 
the contrast gain, comentropy, mean-square error, and peak 
signal to noise ratio. The image enhancement results for some 
example scenes are shown in Fig. 1. 

The rest of the paper is organized as the follows. We first 
introduce and analyze some related works of near-infrared 
image enhancement in Section II. The details and operation 
flow of near-infrared image enhancement method in IRFPA 
are then presented in Section III. Experimental results and 
corresponding analysis are introduced in Section IV. Finally, 
we discuss what we learned, our conclusions, and the future 
works in Section V. 

 

Fig. 2. Related work in the spatial domain and frequency domain of near-infrared image enhancement. 



 

II. RELATED WORKS 

Image enhancement is one of the pivotal issues in image 
processing research [20], [21], [30], [31]. The effect can be 
judged according to human perception and understanding of 
the resulting image on the display (or image). Therefore, the 
image enhancement algorithm should consider the visual 
characteristics of the human eye. Physiological vision studies 
[22], [23], [32], [33] have found that the cellular connections 
between the retinal pyramidal cells and the brain’s visual skin 
can be divided into two opposing systems, i.e., ON and OFF. 
Both respond to light intensity in the opposite direction: the 
ON system is sensitive to the increase in light intensity, while 
the OFF system is sensitive to the reduction in light intensity. 
These two different responses make the vision system most 
sensitive to external contrast changes, and therefore can be 
used to deal with and optimize the processing procedure of 
visual information in the cerebral cortex. Specifically, the 
“structured” image of the human eye with more detail is more 
sensitive than the voucher image without detail, and the 
visibility of noise in the “structured” image is also lower than 
in the flat image. When the image is enhanced in detail by a 
magnitude greater than the amplitude of the flat image, an 
overall image enhanced visual effect will be obtained. 

Near infrared imaging began in the late 1980s. At present, 
near infrared imaging has been applied to the cardiovascular 
surgery, breast detection, brain functional imaging and so on. 
Near infrared imaging relies on the selective absorption of 
near-infrared light in biological groups. At present, there are 
two ways of near-infrared imaging: transmission imaging and 
tomography. After the light passes through tissue, projection 
images and tomographic images are formed on the imaging 
plane. According to the different light sources, near-infrared 
imaging can be divided into three modes: continuous wave 
method, frequency domain method and time domain method 
[34]. The continuous wave technology uses a light intensity 
constant light source to directly irradiate the tissue to be 
detected, and then capture the light intensity within a certain 
range of the tissue surface through the image acquisition 
equipment to form the near infrared image. Frequency domain 
method uses high frequency near infrared light as light source. 
Generally, the time domain based method uses picosecond or 
femtosecond ultrashort laser pulses to irradiate tissue. Then, 
the relationship between the intensity and time of the light is 
measured with a picosecond resolution camera at a distance 
from the incident point. 

At present, there are many image enhancement algorithms, 
which can be broadly divided into two major classes: global 
enhancement and local enhancement. Global enhancement is 
designed to achieve contrast enhancement by changing the 
overall brightness in accordance with certain rules, such as 
increasing brightness and brightness when the image is too 
dark. Typical algorithms have histogram equalization, linear 
or nonlinear stretching of brightness [34], [35], [36]. The 
global enhancement algorithm is relatively simple, but the 
global enhancement is only suitable for the images with low 
overall contrast. Actually, the local enhancement algorithm 
can improve global enhancement [37], [38]. It can be flexibly 
operated locally with a better overall performance than the 
global enhancement methods. In contrast, local enhancement 
can theoretically achieve enhancement in any situation, but 
the search for local enhancement operator is difficult, and the 
implementation in multiple complex situations is much more 

complicated than global enhancement. In recent years, people 
have also proposed algorithms that are different from local 
and global enhancements, placing emphasis on the edge (or 
high-frequency details) rather than on the change in the 
grayscale brightness of the area. Due to the human eye’s 
sensitivity to high-frequency information, it is also true from 
the point of view of the physiological vision through high 
frequency information transmission. And this edge based 
enhancement is more targeted and more advantageous than 
the previous algorithm, such as multi-scale edge enhancement 
algorithms recently emerged: SSR (single-scale Retinex) [4], 
MSR (multi-scale Retinex) [5], wavelet enhancement [6] and 
the surface waves proposed by Starch [7] (Curvelet) enhanced 
algorithms and so on. Yang (image enhancement based on 
fractional differential image) adopts the image enhancement 
method based on fractional differential operator. The visual 
effect of the enhanced image is obviously better than that of 
the traditional differential sharpening (integer differential) 
method. Starch et al has proved that surface wave (Curvelet) 
enhancement algorithm is better than SSR, MSR algorithm 
and wavelet enhancement algorithm. 

In 1998, the American scholar E. Huang [8] proposed an 
empirical mode decomposition algorithm used to analyze 
non-stationary nonlinear data. It is an adaptive time frequency 
analysis tool based on the local feature of the data in time 
domain. And Bidimensional Empirical Mode Decomposition 
(BEMD) is a better generalization of one-dimensional EMD 
decomposition idea in two-dimensional planes, which mainly 
includes the modes of one-way two-dimensional empirical 
decomposition [9], [10] and two-dimensional empirical mode 
decomposition based on radial basis function extraction 
envelope [11] [12] [61]. Although these algorithms have been 
successfully applied in some aspects, they have a common 
defect. The decomposed intrinsic mode function components 
contain too bright and too dark areas, so-called “grayscale 
spots”, which is because of the strong nonlinear time-varying 
characteristics of the image and the overshoot and undershoot 
of the interpolation functions used. These grayscale spots 
have a very adverse effect on the subsequent processing of the 
image. The above various decomposition algorithms do not 
impose certain restrictions on the decomposition, resulting in 
the uncertainty of the frequency in the same decomposition 
(there is no limit bandwidth in the same decomposition). That 
is meaning that as long as the EMD decomposition condition 
can be decomposed, regardless of the difference of frequency, 
the pattern is mixed, so the result will appear “gray spot” in 
the same decomposition. In order to better understand the 
related work of near-infrared image enhancement for readers, 
we summarize them in mind map, as shown in Fig. 2. 

How to better understand and master the optical properties 
of near-infrared biological tissue, more perfect near-infrared 
imaging technology and image processing algorithms is still 

 
Fig. 3. Block diagram of steerable pyramid. 



 

an open field of study [49] [58] [59]. The economical, reliable, 
clear imaging near-infrared detection equipment [60] and the 
excellent near-infrared image processing software not only 
can deeply understand the near-infrared imaging detection 
technology, but also has a broad market application prospects. 
 

III. NEAR-INFRARED IMAGE ENHANCEMENT METHOD 

BASED ON STEERABLE PYRAMID 

In this section, we  introduce and analyze the near-infrared 
image enhancement method in IRFPA based on the steerable 
pyramid in detail, and then demonstrate the rationality of the 
algorithm from many aspects. Each section introduces a flow 
of the algorithm 

A. Steerable Pyramid 

The steerable pyramid algorithm is a reversible multi-scale 
image transformation algorithm [7], [8]. The transformation 
process of the manipulated pyramid decomposition theory is 
similar to the tower structure that used in orthogonal wavelet 
multi-resolution analysis, and the image is decomposed into 
the sub-band information with different scales and different 
directions. Through the decomposed sub-band images, we 
can observe and analyze the features we need from different 
scales and in different directions. The difference is that the 
manipulated pyramid decomposition uses the same number of 
directional filters in all pyramid layers, which greatly reduces 
the amount of data that is calculated and stored.  

According to the sampling theorem [23], it is necessary to 
eliminate all fine structures obtained by one-fourth sampling 
of less than the shortest wavelength by smoothing filters, so 
that a correct sub-sampling image can be obtained. From the 
scale space point of view, this indicates that the reduction of 
the size of images needs to be synchronized with the proper 
smoothing of the image. If the smooth and sub-sampling are 
repeated, a series of image pyramids can be formed (e.g., 
Gaussian Pyramid). In the pyramid image series, the image of 
each layer is half the width and height of the next layer, and 
the size of the image decreases with the increase of the 
number of layers. The missing information between the two- 
stage Gaussian pyramid needs to be obtained by interpolation. 
Therefore, it is necessary to introduce the insertion filter to 
determine the approximate degree between the predicted 
value and the input image. If the insertion filter is ignored, the 
predicted value will be the interpolation form of the input 
image, and the block effect of the duplicated pixel will 
become apparent. The insertion filter needs to double the size 
of the image in all directions, with one value inserted between 
any two pixels in each row and one line between each row. 
Laplace pyramid [50], [51] is the difference image between 
Gaussian pyramid and its upper layer by interpolation, which 
reflects the information difference between the two levels of 
Gaussian pyramid. In fact, it is the detail part of the image. 

The purpose of the pyramid decomposition is to separate 
the source images into different spatial frequency bands. Then 
the fusion process is performed separately on every spatial 
frequency layer, so that the features and details on different 
frequency bands of different decomposition layers can be 
targeted. The use of different fusion operators can achieve the 
purpose of highlighting features and details in a particular 

frequency band, i.e., it is possible to fuse features and details 
from different images. 

The block diagram of one layer in the manipulated pyramid 
decomposition and reconstruction are shown in Fig. 3. In the 

graph, 1_1( , )H u v  represents the high-pass filter, 1_1( , )L u v  

represents the low-pass filter, u and v are frequency-domain 
variables. 1_1( , ) 1_ ( , )B u v B k u v  are directional band-pass 

filters, which outputs k directional filtering results. 1_ 2( , )L u v  
is a low-pass filter corresponding to the band-pass filter and 
outputs the low frequency information of the current scale. 
The variables outside the frame represent the input and output 
images. The up and down arrows represent the up and down 
sampling of the image with a stride of 2×2. Ellipsis partially 
repeats the block diagram, which is the critical point between 
adjacent scales, and is also the division of the current scale 
decomposition and reconstruction. In order to ensure that the 
image information is not lost, the above filter banks must 
satisfy the following three conditions: 
 Flat system response, i.e., 

 
 2 2 2 2 2| 1_1( , ) | + | 1_1( , ) | | 1_ 2( , ) | + | 1_1( , ) | + + | 1_ ( , ) | 1H u v L u v L u v B u v B k u v   

(1) 
 
 Recursion cycle, i.e., 
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 No aliasing, i.e., 

 

1_ 2( , ) 0, / 2NL u v s f                           (3) 
 

where fN is Nyquist sampling frequency and 2 2s u v   is 

frequency domain radius. 
During the experiments, we use the following filter banks: 
(1) Low-pass filter is defined as 
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where a and b determine the band limit of the low pass filters. 
f1, f2, and fN are manually defined hyper-parameters in the 
process of experiments. 

(2) High-pass filter is defined as 
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(3) Directional band-pass filter: 
The formula of k directional filter is defined as 

 
11_ ( , ) 1_ 2( , ) cos ( / )kB m u v H u v nm k    (10) 

 
where 
 

1tan ( / )v u                                (11) 

 
where m = 0, 1, … , k-1. 

B. Low-Pass Coefficient Processing 

Low pass coefficients retain the general features of the 
original image. In this paper, we use fuzzy set theory [9] to 
deal with the low pass coefficients of all scales to enhance 
image contrast. The main steps of its theory are as follows: 

(1) First, we transform image into fuzzy domain by linear 
membership function. The linear membership function is 
selected as  
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where xmax and xmin represent the maximum and minimum 
values of the original image pixels, respectively. xij is the pixel 
value of each point. The membership function normalize the 
pixel value of digital image to 0 and 1. 

(2) Then, the fuzzy contrast is calculated according to the 
following equation: 
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(3) The transformation function )(x  are selected to 

stretch the grayscale of the image to complete the nonlinear 
transformation of fuzzy contrast [10], which satisfies the 
following equation: 
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where )(x  is defined as 
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(4) Inverse transformation: the value of the fuzzy contrast 

is processed and transformed by the transformation function 

in the step (3). Then we get the image pixel value after the 
transformation of fuzzy contrast by inverse transformation, 
according to 
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C. High-Pass Coefficient Processing 

During image processing, the high frequency coefficients 
preserves the detailed information of original image, which is 
usually accompanied by noises. Therefore, in this paper, we 
use the threshold method to deal with the coefficients of high 
frequency. In the high frequency coefficient, the image signal 
is generally larger and the noise signal is usually smaller. 
Therefore, through choosing the appropriate hard threshold, 
the signal coefficient and noise figure can be separated by the 
threshold function [62]. 

The results of threshold processing are mainly determined 
by two factors: the threshold size and threshold function. The 
selection of threshold is usually based on general threshold 
rule [11]: 
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where σ represents the mean square deviation of noise signal 

 
Fig. 4. Schematic diagram of adaptive interpolation. 

         
(a)                                      (b)                                        (c) 

         

(d)                                      (e)                                        (f) 

Fig. 5. Filter bank schematic diagram of the first scale. (a) L1_1; (b) H1_1; 
(c) L1_2; (d) B1_1; (e) B1_2; (f) B1_3. 



 

and n is the signal length of the steerable pyramid. The mean 
square error of the noise signal is estimated by the median of 
high frequency coefficients as 
 

median( )I                           (20) 

 
The selected threshold is the minimum value of the minimum 
scale high frequency coefficient threshold. Then the threshold 
function is set to hard threshold function [12]: when the signal 
value is greater than the threshold, it remains unchanged, and 
when it is less than the threshold, it is set to zero. It is defined 
as 
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Because there is a large difference in the input image itself, 
the fixed threshold must not have the best effect on all images. 
Experiments show that this fixed threshold is better for most 
image processing. However, if the threshold is fine-tuned, the 
image quality can be further improved. 

D. Adaptive Interpolation 

In fact, the traditional interpolation algorithms such as the 
zero interpolation [34], bilinear interpolation [35], and cubic 
interpolation [13] both have their own advantages, but they 
usually fail to restore the high-frequency information of the 
image. In the steerable pyramid based algorithms, the above 
interpolation methods will lead to large distortion of the final 
image reconstruction results. Therefore, aiming at the above 
problem, we propose an adaptive interpolation method which 
can effectively reduce the up sampling distortion and achieve 
significant results. 

The data of the even-numbered columns of the original 
image is down-sampled, and the ratio of the data of the culled 

data (called non-retained values) to the average value of the 
even-numbered columns (called retention values) in the 
surrounding 3×3 fields is recorded [53], [54]. After the 
zero-interpolation of the up-sampled interpolator, the value of 
each zero is reassigned. The size of the new assignment is 
determined by the ratio of the average value of retained 
outputs in the surrounding neighborhood (with a windows 
size of 3×3) and the ratio recorded in the down-sampling 
process. As shown in Fig. 4, the ratio of the data X33, X43 in the 
down-sampling process to the average of the retention values 
in the 3×3 neighborhood is 
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Then the updated new sample of this position X33’ and X43’ 
are 
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E. Anti-sharpening Mask 

As shown in Fig. 3, after reconstructing the image, we use 
the anti-sharpening mask algorithm to compensate for the 
unavoidable details loss. The anti-sharpening mask algorithm 
is defined as 
 

( )v x x y                             (26) 

 
where v represents an enhanced image and x represents an 
input image Ir. y is the result of the linear low pass filter, 

                     
(a)                                   (b)                                    (c)                                    (d)                                   (e)                                    (f) 

 (i) 

                     
(a)                                   (b)                                    (c)                                    (d)                                   (e)                                    (f) 
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(a)                                   (b)                                    (c)                                    (d)                                   (e)                                    (f) 

 (iii) 

Fig. 6. Enhanced results of three scenarios in different algorithms. (a) original image; (b) histogram equalization; (c) gray stretch; (d) method in paper [5]; (e) 
method in paper [36]; (f) proposed algorithm. 



 

which uses the filter L1_2 in the first layer of steerable pyramid. 
γ (γ>0) is the weighting factor, which is selected as 1 in this 
paper. 
 

IV. EXPERIMENTAL RESULTS AND ANALYSIS 

In this part, we describe the algorithm flow and parameter 
settings in the experimental process, and finally compare the 
subjective effects and objective evaluation criteria of each 
algorithm on datasets. 

In this paper, 3 layers of pyramid decomposition method is 
adopted. Each layer selects k (k=3) directions, which are 60°, 
80°, and 120°, respectively. The size of the input image is 
256×320. The visualization results of each filter (take the first 
level as an example) are shown in Fig. 5. 

A. Subjective Evaluation 

Subjective evaluation generally considers image quality to 
the extent that an image under test (i.e., a target image) 
produces an error in the human visual system relative to a 
standard image (i.e., the original image). In other words, 
compared with the original image, the human eye thinks that 
the target image has almost no degradation or damage, and the 
quality of the target image is high, otherwise the image quality 
is poor [52]. Another definition is that in the absence of the 
original image, the human eye can clearly distinguish the 
things in the image, and the foreground and the background in 
the image, the outline of the object, the texture, etc., which 
can be better differentiated, then the image quality is good. 

Otherwise, the image quality is poor. 
In this part, we show the image enhancement results of the 

three sets of scenes. Each experiment is compared with the 
proposed algorithm in five methods, which are histogram 
equalization, gray stretch, and infrared image enhancement 
with histogram equalization and fuzzy set theory to enhance 
[5]. The experimental results of various methods are shown in 
Fig. 6. 

In Fig. 6 (i)-(a), it shows the original near-infrared image of 
the first scene that formed by the device NIR-50. This image 
has undergone the removal of blind pixels and non-uniformity 
correction. It can be seen from the figure that the original 
image has low contrast, blurred image and poor visual effect. 
Fig. 6 (i)-(b) shows the results of the histogram equalization. 
The over-enhancement of the image leads to a large loss of 
detail information in the original image. Fig. 6 (i)-(c) shows 
the results of the grayscale stretching process of the image, 
and the grayscale stretching has the significant enhancement 
effect compared to the original image. The image resolution is 
good, but the image still has a lot of noise, and some details 
are not obvious. Fig. 6 (i)-(d) shows the results of the infrared 
image enhancement algorithm in the [5], [55] combined with 
histogram equalization and fuzzy set theory. It can be seen 
that the image is bright but the noise is obvious. Fig. 6 (i)-(e) 
shows the enhancement results of the hybrid method [36] 
combining the color information, information of entropy, and 
16-neighborhood local features. It overemphasizes details 
and causes distortion in image contrast. Fig. 6 (i)-(f) is the 
result of the algorithm that proposed in this paper. It can be 

 
(a)                                   (b)                                    (c)                                    (d)                                    (e)                                    (f) 

(i) 

 
 (a)                                   (b)                                    (c)                                    (d)                                    (e)                                    (f) 

(ii) 

 
 (a)                                   (b)                                    (c)                                    (d)                                    (e)                                    (f) 

(iii) 

Fig. 7. The grayscale histogram of each enhanced result of three scenarios in different algorithms. (a) original image; (b) histogram equalization; (c) gray 
stretch; (d) method in paper [5]; (e) method in paper [36]; (f) proposed algorithm. 



 

seen that the contrast of the image is improved obviously, the 
noise is less, and the details are more real. 

Fig. 6 (ii)-(a) is the original near-infrared image of the 
second scene that formed by the device NIR-50, which has 
low contrast and blurred edges. Fig. 6 (ii)-(b) shows the result 
of the histogram equalization. The gray scale is larger and the 
image is too bright, resulting in the loss of detail. Fig. 6 (ii)-(c) 
is the grayscale stretch result, from which we can see that a lot 
of detail information is obviously lost. The result of Fig. 6 
(ii)-(d) shows that the brightness is greatly improved, but the 
brightness is not balanced, such as the difference between the 
brightness of the leaves and the trunk. Method in [36] results 
in the abnormal illumination (Fig. 6 (ii)-(e)). The algorithm 
proposed in this paper (in Fig. 6 (ii)-(f)) highlights the detail 
information while preserving the original brightness ratio of 
the image, and has obvious improvement effect. 

Fig. 6 (iii)-(a) shows the original near-infrared image of the 
third scene that formed by the device NIR-50. It can be seen 
that the image is dark, the details are blurred, and the visual 
effect is poor. Fig. 6 (iii)-(b) shows the histogram equalization 
results. The overall scene is bright, and the trees in the lower 
right are too bright and distorted. Fig. 6 (iii)-(c) shows the 
result of grayscale stretch method, which has a low contrast 
and blurred details. There is a bad phenomenon of uneven 
brightness in the result of Fig. 6 (iii)-(d). Similarly, method in 
[36] (Fig. 6 (iii)-(e)) enhances the details of the image and 
also brings noise. Fig. 6 (iii)-(f) shows the result of our 

proposed algorithm. It can be seen that the gray changes are 
more uniform, the contrast changes most obviously, and the 
images have the best visibility. 

B. Grayscale Histogram 

The grayscale histogram is a function reflecting gray level 
distribution and is a statistic of the gray level distribution in 
the image. The purpose of gray histogram is to count all the 
pixels in the digital image according to the size of the gray 
value. And a grayscale histogram is the function of grayscale 
value, which represents the number of pixels in a picture that 
have a certain gray level, reflecting the frequency at which a 
certain gray level appears in the image. 

In this section, in order to observe the changes brought by 
different enhancement algorithms to the original image, we 
counted the grayscale histogram of each result to observe the 
connections and differences between different algorithms, as 
shown in Fig. 7. Each grayscale histogram corresponds to the 
image of the corresponding experimental result in Fig. 6. 
Graphs (i), (ii), and (iii) correspond to the three scenarios, 
respectively. 

Observing the graphs (i)-(b), (ii)-(b) and (iii)-(b) of three 
scenarios, it can be seen that the histogram equalization loses 
a large amount of image information, and the enhancement 
results of the natural image is completed without difference. 
Grayscale stretching also ensures that the original distribution 
does not change, but in some cases it fails (e.g., Fig. 7 (ii)-(c)). 
The distribution of the method in [36] results in an extreme 

TABLE I 
FOUR KINDS OF OBJECTIVE INDICATOR DATA OF SCENE I THAT PROCESSED 

BY DIFFERENT ALGORITHMS 
Methods Contrast gain Comentropy MSE PSNR 
Original 1.00 5.19 --- --- 

Histogram 6.33 5.04 6839.5 9.79 
Gray stretch 3.88 5.19 782.5 19.19 

Yun et al. [5] 3.88 5.94 4146.0 11.95 
Guo et al. [36] 3.27 6.02 1223.5 8.24 
Lin et al. [41] 5.10 6.74 1384.3 10.84 

Yeom [42] 2.41 3.99 5524.1 5.49 
Li et al. [43] 1.98 4.51 943.3 7.22 
Dubey [44] 3.96 5.50 3152.2 13.61 

Xu et al. [45] 2.50 5.64 2004.2 10.40 
Cao et al. [46] 3.36 4.22 952.4 7.85 
Qi et al. [47] 5.11 4.32 3371.2 9.28 

Zhu et al. [48] 2.04 3.19 1052.2 8.57 
Our method 6.59 6.84 708.8 19.63 

TABLE II 
FOUR KINDS OF OBJECTIVE INDICATOR DATA OF SCENE II THAT PROCESSED 

BY DIFFERENT ALGORITHMS 
Methods Contrast gain Comentropy MSE PSNR 
Original 1.00 5.70 --- --- 

Histogram 5.27 5.53 5124.9 11.03 
Gray stretch 3.37 5.49 1479.1 16.43 

Yun et al. [5] 3.88 6.90 1870.0 15.41 
Guo et al. [36] 6.56 6.11 2239.2 11.20 
Lin et al. [41] 6.24 6.48 2642.1 12.35 

Yeom [42] 2.95 3.39 1992.4 8.84 
Li et al. [43] 2.02 5.02 1924.1 9.22 
Dubey [44] 4.83 6.08 1552.9 13.59 

Xu et al. [45] 2.57 5.66 1362.7 14.27 
Cao et al. [46] 4.15 3.83 1594.3 7.79 
Qi et al. [47] 2.33 5.34 1221.0 10.19 

Zhu et al. [48] 3.88 4.40 3258.1 11.67 
Our method 6.91 6.84 1124.0 16.03 

 

TABLE III 
FOUR KINDS OF OBJECTIVE INDICATOR DATA OF SCENE III THAT PROCESSED 

BY DIFFERENT ALGORITHMS 
Methods Contrast gain Comentropy MSE PSNR 
Original 1.00 4.45 --- --- 

Histogram 6.71 4.32 8769.2 8.70 
Gray stretch 4.61 4.44 3794.7 19.12 

Yun et al. [5] 6.65 6.45 5051.8 11.10 
Guo et al. [36] 3.27 5.13 3951.1 8.95 
Lin et al. [41] 4.47 5.52 2741.5 5.95 

Yeom [42] 3.28 7.03 3225.4 18.22 
Li et al. [43] 3.91 6.44 2053.0 14.27 
Dubey [44] 5.94 5.45 3337.5 12.67 

Xu et al. [45] 3.23 4.22 2532.1 8.05 
Cao et al. [46] 4.19 7.22 4585.2 13.24 
Qi et al. [47] 3.65 5.57 3696.7 11.94 

Zhu et al. [48] 3.81 3.98 3521.4 7.22 
Our method 7.12 7.46 1997.9 19.36 

TABLE IV 
COMPARISON OF SINGLE IMAGE PROCESSING SPEED OF VARIOUS 

ALGORITHMS 
Algorithms Platform Time/frame (s) 

Original --- --- 
Histogram Matlab 0.4 

Gray stretch Matlab 1.5 
Yun et al. [5] Matlab 4.2 
Guo et al. [36] C/C++ 2.7 
Lin et al. [41] Matlab 3.9 

Yeom [42] C/C++ 1.4 
Li et al. [43] C/C++ 1.9 
Dubey [44] Python 2.2 

Xu et al. [45] C/C++ 1.1 
Cao et al. [46] C/C++ 0.9 
Qi et al. [47] Python 2.0 

Zhu et al. [48] Matlab 3.4 
Our method Matlab 2.3 

 



 

unimodal phenomenon (i.e., in Fig. 7 (i)-(d), Fig. 7 (ii)-(d), 
and Fig. 7 (iii)-(d)) that over-emphasizes some of the details 
and causes partial distortion of the image. Compared to each 
natural image in the same scenario, it can be clearly seen that 
the maximum degree of the obtained gray histogram of the 
enhancement results obtained by our algorithm preserves the 
distribution of the original image and makes a certain degree 
of change. We think that these changes are the key to achieve 
image enhancement. Therefore, we should strengthen the 
detailed information of the image based on preserving the 
general information, so as to achieve the purpose of natural 
image enhancement. 

C. Objective Evaluation 

Objective evaluation method refers to comparing the local 
differences between the distorted image and the reference 
image by designing features, then finding a total average 
statistic over the entire image, and correlating this statistic 
with the image quality. 

The most commonly used quality evaluation algorithms are 
Mean Squared Error (MSE) [37] and peak signal-to-noise 
ratio (PSNR) [38]. MSE is defined as  
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where f and f̂  represent the original image and the enhanced 

image, respectively. Then the PSNR is defined as 
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MSE and PSNR are two widely used index in the image 
processing because of their small computational complexity 
and easy implementation. But the drawback is that there is no 
necessary connections between the output value given and the 
perceived quality of the sample image. Comenentropy [39] is 
a measure of the amount of information needed to eliminate 
uncertainty, i.e., the amount of information that an unknown 

event may contain. It is defined as 
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where P(x) represent the probability of event X = x. It can be 
seen from the formula that information entropy is actually a 
mathematical expectation of information quantity of a random 
variable. On the other hand, the impact of contrast [40] on 
visual effects is very critical [56]. In general, the greater the 
contrast, the clearer and brighter the image, the brighter the 
color, and the less contrast, the whole picture will be gray. 
Therefore, observing and contrasting the contrast gain of each 
algorithm [57] has practical significance for measuring the 
effectiveness of the image enhancement algorithm. 

The results of the objective evaluation criteria for each 
algorithm in the three scenarios are shown in Tables I, II, and 
III, respectively. All optimal values are highlighted in bold. It 
can be seen from Table I that the contrast of the algorithm is 
obviously improved and the information entropy is increased. 
Compared with the traditional image enhancement method 
and the methods MSE and PSNR in the [5], the algorithm has 
obvious good effects in the near-infrared image enhancement 
processing. In Table II, we can see that the algorithm in this 
paper is basically the best in all data, only the contrast gain of 
paper [5] is slightly greater than this algorithm, but the other 
three indexes are superior to the index value of paper [5], so 
the results of this algorithm are better. As can be seen from the 
data in Table III, the PSNR of the gray-scale stretched image 
is large, and the reason for analyzing the samples is that the 
gray-scale stretch does not significantly change the original 
image data, resulting in the smaller mean square error and the 
larger PSNR. The outstanding results cannot reflect absolute 
superiority of the method. Considering the contrast gain and 
information entropy, the proposed algorithm in this paper is 
more ideal. 

The contrast gain, Comentropy, MSE, and PSNR of our 
proposed near-infrared image enhancement algorithm in three 
scenarios outperform the state-of-the-art performance with 
4.2%, 5.5%, and 4.6%, 4.7%, 5.0%, and 3.9%, 4.2%, 5.3%, 
and 5.6%, respectively, which show the better performance of 
our algorithm. 

Algorithm complexity refers to the resources needed for the 
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Fig. 8. The SSIM performance of various image enhancement algorithms in three scenarios. The first, the second, and the third column represent the SSIM
values of Scene 1, Scene 2, and Scene 3, respectively. 



 

algorithm to run when it is written into executable programs. 
Resources include time resources and memory resources. The 
time complexity of the algorithm qualitatively describes the 
running time of the algorithm, which is very important for the 
practical application of the algorithm. Therefore, we compare 
the processing time of different algorithms for a single image, 
as shown in Table IV. The algorithm implementation platform 
includes Matlab, Python, and C/C++, which runs under the  
windows 10 system. And the computer used foe extensive 
experiments is configured as an i7-8750H CPU, 16G RAM, 
1T hard drive space, and a NVIDIA GTX 1050Ti graphics 
card. As we can see from the experimental results, although 
our algorithm has not achieved the fastest speed, the speed of 
43 fps fully meets the real-time applications in most scenes. 

D. Structural Similarity Index 

The structural similarity index (SSIM) defines the structure 
information as independent of brightness and contrast, which 
reflects the properties of object structure in the scene, and 
models distortion as a combination of three different factors: 
brightness, contrast and structure. The mean value of SSIM is 
used as the luminance estimation, the standard deviation as 
the contrast estimation, and the covariance as the measure of 
the degree of structural similarity. 

The SSIM of the two images P and Q can be calculated as 
follows: 
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where μ represents the mean value, σ represents the variance, 
and σpq represents the covariance. c1 and c2 are constants used 
to maintain stability, in which k1=0.01 and k2=0.03. L is the 
dynamic range of pixel values. The structural similarity index 
ranges from -1 to 1, and the value of SSIM equals 1 when two 
images are identical. 

Then, we compare the SSIM performance of various image 
enhancement algorithms in three scenarios, as shown in Fig. 8. 
It can be clearly seen that our proposed algorithm achieves the 
acceptable SSIM value in the three scenarios (i.e., 0.89, 0.91, 
and 0.88), which illustrates the superiority of our proposed 
algorithm (our proposed algorithm can improve the quality of 
the image based on slightly changing the image.). 

E. Hyper-parameters Sensitivity 

In the processing of near-infrared image enhancement, the 
algorithm introduces three hyper-parameters f1, f2, and fN with 
a range of (0, 1). The selection of hyper-parameters is of great 
significance to the enhancement capability of our proposed 
algorithm, which determines the practical application value of 
the algorithm. Therefore, in this section, we observe the 
robustness of the algorithm to the hyper-parameters according 
to the objective evaluation criteria. The sensitivity of the 
algorithm to hyper-parameters in the three scenarios is shown 
in Fig. 9 where (a), (b), and (c) represent the evaluation results 
of three hyper-parameters f1, f2, and fN. 

It can be clearly seen from the experimental results that the 
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Fig. 9. The sensitivity performance (Contrast gain, Comentropy, MSE, and PSNR) of proposed algorithm in three scenarios. The first row (a), the second row 
(b), and the third row (c) represent the hyper-parameters f1, f2, and f3, respectively. 



 

algorithm is robust to the three hyper-parameters: even if the 
change of the hyper-parameter exceeds 0.5, the contrast gain 
does not change by more than 2, the change of Comentropy 
does not exceed 2, the change of MSE does not exceed 100, 
and the PSNR changes no more than 5 in three scenarios. 
Moreover, comparing (a), (b), and (c), the algorithm is more 
sensitive to fN than f1 and f2, which is due to the its location in 
the algorithm. 

V. CONCLUSION 

Near-infrared imaging is a mainly used method in various 
imaging techniques, which has better atmospheric penetration 
performance and human skin penetration performance than 
other visible light imaging methods. Therefore, near-infrared 
imaging method is widely used in the military, medical and 
industrial production. This paper proves that the steerable 
pyramid based near-infrared image enhancement algorithm is 
superior to the traditional image enhancement methods in 
improving the performance of the image quality by theory 
analysis and experiments. Generally speaking, near-infrared 
image enhancement mainly starts from two aspects, one is to 
improve contrast, and the other is to reduce noise. Traditional 
methods often fail to take account of both two aspects. In this 
paper, the algorithm is proposed to improve the contrast of the 
low pass image by nonlinear transformation in fuzzy set in the 
multi-scale processing, and the high pass images utilize the 
threshold method to reduce the noise. To a certain extent, the 
above two aspects are taken into consideration in the method. 
The final image is used to compensate for the slight details 
lost in the process of anti-sharpening masking. At the same 
time, the adaptive up-sampling and interpolation algorithm 
proposed in this paper has the “memory”, which is better to 
restore the information. It is useful to reduce the distortion in 
the steerable pyramid algorithm, and it is very important to the 
application of the whole algorithm. And experimental results 
illustrate that the near-infrared image enhancement method 
proposed in this paper is effective. 

In general, extensive experimental results show that this 
algorithm has a good influence on the near-infrared image 
enhancement, and significantly improves the quality of near 
infrared imaging of IRFPA devices. The comparison results 
with various methods show that our algorithm outperforms 
the state-of-the-art in terms of the contrast gain, comentropy, 
mean-square error, and peak signal to noise ratio. The results 
of the experiments illustrate that the proposed algorithm 
efficiently enhance the image. 

At the same time, the experiments and analysis point out a 
few lessons and future directions, which we summarize as the 
followings: 
 In addition to subjective evaluation method, we need an 

objective and effective image evaluation method to 
evaluate the quality of enhanced images obtained by not 
using the method. 

 In order to complete real-time computation of the image 
enhancement algorithm on mobile terminal devices, the 
time complexity needs to be further reduced. 

 How to enhance the image while avoiding noise is still a 
key issue. 

We are actively pursuing the above directions in the future 

studies. 
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