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Abstract—In this paper, a new time domain fast dipole method (TD-
FDM) is proposed for solving time-domain magnetic field integral
equations. The proposed scheme is the extension of the frequency
domain fast dipole method (FDM) to the time domain. The principle
is based on the Taylor series expansion of far fields. The computational
complexity of TD-FDM scales as O(N3/2

s Nt) as opposed to O(N2
s Nt)

for marching-on in-time (MOT) method. Here, Ns is the number
of spatial basis functions and Nt is the number of the time steps.
Numerical results about the electromagnetic scattering from perfect
electric conductor (PEC) objects are given to demonstrate the validity
and efficiency of the proposed scheme.

1. INTRODUCTION

Time-domain integral-equation (TDIE) [1–6] methods have enjoyed
widespread engineering applications, especially the analysis of
broadband electromagnetic scattering. When analyzing the scattering
from perfect electric conductor (PEC), the TDIE methods require a
discretization of the scatterer surface and do not call for absorbing
boundary conditions in the finite difference time domain [7, 8].
However, with the electrical size of the scatterer increasing, the
memory requirement and the computational complexity become very
expensive. The computational complexity of classical marching-on in-
time (MOT) scheme for solving TDIE scales as O(N2

s Nt).
In the past decades, many fast algorithms have been presented to

reduce the memory requirement and the computational complexity of
the TDIE method. The two most famous schemes are the plane wave
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time domain (PWTD) algorithm [9–11] and time domain adaptive
integral equation method (TD-AIM) [12, 13]. The PWTD algorithm
derives from the fast multipole method (FMM) [14, 15]. It relies
on a Whittaker-type expansion of transient fields and decomposes
radiated fields into transient plane waves. The PWTD algorithm has a
computational complexity of O(N3/2

s log(Ns)Nt). The TD-AIM is the
extension of the frequency-domain adaptive integral method (AIM)
to the time domain. It projects the source onto a uniform auxiliary
grid that enclosed the scatterer and the projection matrices are block-
Toeplitz on four levels. Therefore, TD-AIM can accelerate matrix-
vector products via space-time fast Fourier transforms (FFTs). Like
AIM, the TD-AIM scheme is less efficient than the PWTD method for
solving three-dimensional surfaces structure [12].

Recently, the time domain equivalent dipole moment (TD-EDM)
method [16] has been proposed to speed up the computation of
impedance matrix. The surface current distribution containing two
adjacent triangles is replaced by an infinitely small dipole with an
equivalent dipole moment. Therefore, the TD-EDM method does
not require evaluating the usual double integrals in the conventional
TDIE method. Unfortunately, the TD-EDM method can not reduce
matrix-vector product operations and the memory requirement. The
computational complexity is still O(N2

s Nt).
In this paper, a time domain fast dipole method (TD-FDM) is

proposed for solving the electromagnetic scattering from PEC targets.
The proposed scheme builds upon the authors’ previous work TD-
EDM reported in [16]. It is the extension of the frequency domain
fast dipole method (FDM) [17–19] to the time domain. Similar to
FDM, the TD-FDM starts by grouping, the spatial basis functions
into geometrically equal-sized groups. If two groups are far-field group
pair, the transient field can be expanded through the Taylor series and
reconstructed via aggregation-translation-disaggregation procedure. It
can reduce the computational complexity to O(N3/2

s Nt). The TD-
FDM is relatively easy to implement, and efficient enough to solve
many practical problems. In this paper, we focus on magnetic field
integral equations (MFIE) to analyze the electromagnetic scattering,
because the condition numbers of MFIE are superior to electric field
integral equations (EFIE), and MFIE does not have the low frequency
breakdown problem [20].

This paper is organized as follows. Section 2 describes the
TD-EDM method for solving time domain integral equation.
Section 3 introduces the TD-FDM scheme and explores its theoretical
computational complexity and memory requirement. Section 4 gives
several numerical results to demonstrate the validity of the proposed
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method which is followed by our conclusions.

2. BASIC PRINCIPLE OF THE TD-EDM METHOD

Consider a closed perfect electric conductor (PEC) with surface S
which resides in free space. A transient electromagnetic field is incident
on the object and this field will induce a surface current J(r, t) on S
that generates a scattered field. Enforcing the boundary conditions on
the surface of the conductors, the time-domain MFIE formulation is
obtained

n̂× [Hi(r, t) + Hs(r, t)] = J(r, t), (1)

where n̂ represents the outward normal vector to S. The surface
current density J(r, t) can be approximately expanded as

J(r, t) =
Ns∑

n=1

fn(r)In(t) =
Ns∑

n=1

fn(r)
Nt∑

j=1

In,jTj(t). (2)

Here, fn(r) is the RWG basis functions, Tj(t) = T (t − j∆t) (∆t is
the time step size) the temporal basis function, and In,j the unknown
expansion coefficient.

As shown in Fig. 1, each RWG common edge contains two inner
adjacent triangles. If the electric size of the triangles is sufficiently
small, we can assume that the surface current distribution does not
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Figure 1. Configuration of the source and the testing functions.
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change within the triangle. When the observation point is far away
from the RWG element, each RWG element can be replaced by an
infinitely small dipole having an equivalent dipole moment [21]. The
dipole mn(t) can be obtained by the integration of the surface current

mn(t) =
∫

T±n
Jn(r, t)dS =

∫

T±n
fn(r)

Nt∑

j=1

In,jTj(t)dS

=
∫

T±n
fn(r)dS

Nt∑

j=1

In,jTj(t) = mn

Nt∑

j=1

In,jTj(t), (3)

where mn = ln(rc−
n − rc+

n ). ln is the length of the common edge and
rc±
n the centers of T±n . Referring to [16] and considering Eq. (3), the

radiated magnetic fields of the dipole mn(t) can be expressed as

Hs
n(r, t) =

1
4π

(mn×R)


 1

cR2

Nt∑

j=1

In,j∂tTj(τ)+
1

R3

Nt∑

j=1

In,jTj(τ)


 , (4)

where R = r− r′ and R = |R|. c is the speed of light in free space and
τ = t−R/c the retarded time.

Substituting Eq. (4) into Eq. (1) and applying a spatial Galerkin
testing procedure at ti = i∆t yields the following matrix equation

Z0Ii = Vi −
i−1∑

j=0

Zi−jIj , (5)

for 0 ≤ i ≤ Nt. The currents at all time steps can be computed
recursively. The matrix element in the EDM region can be expressed
as

[Zk]mn =
1
4π

mm · [̂nm×(mn×R)]
[

1
cR2

∂tTj(τ)+
1

R3
Tj(τ)

] ∣∣∣∣
t=k∆t

. (6)

Note that Eq. (6) does not evaluating the surface integrals, which
greatly simplifies the matrix element computation and makes matrix
filling efficient.

3. TIME DOMAIN FAST DIPOLE METHOD

3.1. Implementation of the TD-FDM

From the proceeding discussion, the TD-EDM method can make the
matrix filling efficient, but the drawback is that it can not accelerate the
matrix-vector products of the right-hand side (RHS) of Eq. (5). The
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computational bottleneck of the TD-EDM method can be alleviated
with the time domain fast dipole method (TD-FDM). To apply the
TD-FDM to accelerate the matrix-vector products, the scatterer must
be enclosed in a fictitious cubical box and divided into several equal-
sized groups. The side length of each group is D. If two groups are
separated by βD (β ≥ 1), we assume they are a far-field pair. Now let
us consider a far-field group pair as shown in Fig. 2. The source group
Gi contains the equivalent dipole mn located at rn and the observation
group Gj contains the equivalent dipole mm located at rm. The centers
of the two groups are located at ri and rj , respectively. The vector R
connecting the two dipoles can be rewritten by

R = rmj + rji − rni = Rm −Rn, (7)

where rji = rj − ri, rmj = rm − rj , rni = rn − ri, Rm = rmj + rji/2,
and Rn = rni − rji/2. For the convenience of explanation, the dipole
mn(t) can be expanded as

mn(t) = mn

Nt∑

j=1

In,jTj(t) = mnIn(t). (8)

The time signal In(t) can be broken up into L consecutive subsignals
In, l(t), and each subsignal duration is Ts = Mt∆t (LMt = Nt). Thus
the dipole mn(t) can be rewritten as

mn(t) = mn

L∑

l=1

In, l(t), (9)
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Figure 2. Configuration of a far-field group pair.
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where

In, l(t) =
lMt∑

j=(l−1)Mt+1

In,jTj(t), (10)

Then, the magnetic field Hs
n, l(r, t) in the observation excited by the

lth time subsignal can be written as

Hs
n, l(r, t) =

1
4π

(mn ×R)
[

1
cR2

∂tIn, l(τ) +
1

R3
In, l(τ)

]
. (11)

To further investigate TD-FDM, the inner product of n̂m ×Hs
n, l(r, t)

with the basis function can be written as

〈mm, n̂m ×Hs
n, l(r, t)〉

=
1
4π

mm · [n̂m × (mn ×R)]
[

1
cR2

∂tIn, l(τ) +
1

R3
In, l(τ)

]

=
1
4π

(mm×n̂m) · (mn×R)δ(τ)∗
[

1
cR2

∂tIn, l(t)+
1

R3
In, l(t)

]
, (12)

where ∗ denotes the temporal convolution. Referring to [14], we
consider R in τ and expand it using the Taylor series as

R = |R| = |rji + rmj − rni| ≈ rc + rm + rn, (13)

where

rm =
[
r̂ji · rmj +

(rmj · rmj)− (r̂ji · rmj)2

2rji

]
, (14)

rn =
[
−r̂ji · rni +

(rni · rni)− (r̂ji · rni)2

2rji

]
. (15)

Here, rc = rji = |rji| is the distance between the two group centers
and r̂ji = rji/rji. Consequently, substituting Eq. (13) into Eq. (12),
we can obtain the following equation

〈
mm, n̂m ×Hs

n, l(r, t)
〉

=
1
4π

(mm × n̂m) · (mn ×R)δ(t− rm/c)

∗ δ(t− rc/c) ∗ δ(t− rn/c) ∗
[

1
cR2

∂tIn, l(t) +
1

R3
In, l(t)

]
. (16)

For the amplitude approximation of Eq. (16), 1/Rα for α > 0 can also
be expanded using the Taylor series as

1
Rα

=
1
rα
ij

[
1− α

(
r̂ji · rmj

rij
+

r̂ij · rni

rij

)]
=

1
rα
ij

[
x(α)

m + x(α)
n

]
, (17)
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where

x(α)
m =

1
2
− α

r̂ji · rmj

rij
, (18)

x(α)
n =

1
2
− α

r̂ij · rni

rij
. (19)

Substituting Eq. (7) and (17) into Eq. (16), we can obtain

〈mm, n̂m ×Hs
n, l(r, t)〉

=
1
4π

{[
x(3)

m (m′
m ×Rm)δ(τm)

]†
∗

[
δ(τc)
r3
c

]
∗ [mnδ(τn)] ∗ In, l(t)

+
[
(m′

m ×Rm)δ(τm)
]† ∗

[
δ(τc)
r3
c

]
∗

[
x(3)

n mnδ(τn)
]
∗ In, l(t)

+
[
x(3)

m m′
mδ(τm)

]†
∗

[
δ(τc)
r3
c

]
∗ [(mn ×Rn)δ(τn)] ∗ In, l(t)

+
[
m′

mδ(τm)
]† ∗

[
δ(τc)
r3
c

]
∗

[
x(3)

n (mn ×Rn)δ(τn)
]
∗ In, l(t)

+
[
x(2)

m (m′
m ×Rm)δ(τm)

]†
∗

[
δ(τc)
cr2

c

]
∗ [mnδ(τn)] ∗ ∂tIn, l(t)

+
[
(m′

m ×Rm)δ(τm)
]† ∗

[
δ(τc)
cr2

c

]
∗

[
x(2)

n mnδ(τn)
]
∗ ∂tIn, l(t)

+
[
x(2)

m m′
mδ(τm)

]†
∗

[
δ(τc)
cr2

c

]
∗ [(mn ×Rn)δ(τn)] ∗ ∂tIn, l(t)

+
[
m′

mδ(τm)
]†∗

[
δ(τc)
cr2

c

]
∗
[
x(2)

n (mn×Rn)δ(τn)
]
∗∂tIn, l(t)

}
, (20)

where m′
m = mm × n̂m, τm = t − rm/c, τc = t − rc/c, τn = t − rn/c.

The superscript † denotes a transpose.
It can be seen that there are eight terms in Eq. (20), and each

term has three convolutions. Corresponding to three convolutions, the
calculation of each term can be divided into three steps: aggregation;
translation; disaggregation. It achieves the separation of the mth
dipole and the nth dipole. Compared with the PWTD algorithm,
the aggregation, translation and disaggregation processes do not
require the calculation of the spherical Bessel functions, the Legendre
polynomial and spherical integration, so it is relatively easy to
implement. The aggregation-translation-disaggregation process will be
detailed in the next subsection.
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3.2. Computational Cost and Complexity

The preceding subsection outlined the procedure of the TD-FDM
scheme. In this subsection, we further investigate the detail of
TD-FDM and analyze its theoretical computational complexity and
memory requirement. Assume that there are Ng nonempty groups,
each containing approximately Ms = Ns/Ng unknowns. In order
to implement TD-FDM, first appropriate subsignal duration must be
defined. The fundamental subsignal duration Ts is defined as

Ts = Mt∆t =
(⌊

βD

c∆t

⌋
− 1

)
∆t. (21)

This is because the field has been constructed via the three
convolutions for the closest interaction of far-field pair.

After Ts has been defined, the TD-FDM for the fast evaluation
of the sum on the RHS of Eq. (5) is divided into 4 steps: near-
field evaluation, aggregation, translation and disaggregation. In what
follows, implementation dependent constants are denoted as α1–α4.
For the simplicity of discussion, we only consider the first term of
Eq. (20) as an example to illustrate how the TD-FDM works.

(1) Near-field evaluation: At each time step, the sum
i−1∑

j=0

Zα,α′
i−j Iα′

j , (22)

is computed for all near-field group pairs (α, α′). Zα,α′
i−j denotes the

submatrix of Zi−j . Assuming every group has Np groups in its near
region, the total number of groups need to be calculated and associated
with near region interaction is NgNp. And there are M2

s impedance
elements needed to be calculated in each group pair. The cost of all
near-field interactions for all Nt time step is

T1 = α1NgNpM
2
s Nt ≈ α1N

2
s Nt/Ng. (23)

(2) Aggregation: For each far-field pair, outgoing rays V1(t)
generated by subsignals of the duration Ts are constructed every Mt

time steps. This contribution aggregating the signal from the nth
equivalent dipole to the group center Oi can be obtained by the
rightmost convolution of Eq. (20)

V1(t) = [mnδ(t− rn/c)] ∗ In, l(t). (24)

Constructing outgoing rays involves the aggregation of all current
elements in the nonempty group pair for all Nt time steps. Since each
group has Ng−Np groups in its far-field region, there are Ng(Ng−Np)
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far-field group pairs and each pair needs Ms operations. The cost of
computing all aggregation is

T2 = α2Ng(Ng −Np)MsNt ≈ α2NgNsNt. (25)

(3) Translation: Once outgoing rays V1(t) aggregated for each far-
field pair, outgoing rays are immediately translated from the group
center Oi to the group center Oj . Each outgoing ray is converted to
an incoming ray by the middle convolution of Eq. (20)

V2(t) =
[

1
r3
c

δ(t− rc/c)
]
∗ V1(t), (26)

where 1
r3
c
δ(t − rc/c) is termed the translation operator, and V2(t)

represents incoming rays. The translation operator is nothing but
a time delay temporally. Apparently, an outgoing ray requires one
translation operation for a far-field group pair, so the cost of computing
all translation is

T3 = α3Ng(Ng −Np)Nt ≈ α3N
2
g Nt. (27)

(4) Disaggregation: Finally at each time step, the field at the
observer can be formed by the left convolution of Eq. (20)

V3(t) =
[
x(3)

m (m′
m ×Rm)δ(t− rm/c)

]†
∗ V2(t). (28)

This process disaggregates the incoming rays from the the group center
Oj to the mth equivalent dipole. This process involves a very similar
operation to the aggregation process. Hence, the cost of computing all
disaggregation is

T4 = α4Ng(Ng −Np)MsNt ≈ α4NgNsNt. (29)

From the above discussion, the total computational cost associated
with the TD-FDM is

Ttotal = T1 + T2 + T3 + T4. (30)

The computational cost is minimized by choosing Ng proportional to√
Ns. With this choice, the computational complexity of using the TD-

FDM is of order O(N3/2
s Nt). The TD-FDM has the less computational

complexity than the MOT method O(N2
s Nt).

One thing in the above description of the proposed scheme should
be worth pointing out. The time variable t was assumed to be
continuous. In the practical scheme, time is discretized by time step
∆t. In far-field evaluation, there are three temporal convolutions. Each
convolution operation is nothing but a time shift. These convolutions
do not require using fast Fourier transforms and it can be carried out
in the time domain.
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In the memory requirement aspect, the TD-FDM only needs to
store the impedance elements of near region. For far field analysis,
the storage of the translation operator is not necessary in TD-FDM.
Furthermore, because once the outgoing ray finished aggregation, it
immediately performs translation and disaggregation, TD-FDM needs
not to store outgoing rays and incoming rays for different groups.
Therefore, it requires less memory than the MOT method.

4. NUMERICAL RESULTS

This section provides several numerical results that serve both to
validate the TD-FDM and to demonstrate its efficiency. All simulations
are performed on a shared memory workstation equipped with Intel(R)
Xeon(R) Dual CPU W5580 3.2GHz (only one core is used) and 28 GB
of RAM. In our implementation, we use the generalized minimal
residual (GMRES) iterative solver for each time step and choose the
identical residual error ≤ 10−6. The temporal basic function T (t)
is constructed using third order Lagrange interpolation [22]. The
threshold of TD-FDM is chosen β = 1. The larger β is, the more
costly and accurate the TD-FDM becomes.

In the first example, we consider a shallow cube with dimension

Table 1. Comparison of CPU time and memory cost.

Method CPU Time RAM
MOT 18m20 s 2GB

TD-FDM 6 m46 s 458MB

Time (lm)

Jx
 (

A
/m

)

the MOT method
the TD-FDM

0.0012

0.0008

0.0004

0.0000

-0.0004

-0.0008
0 20 40 60 80 100

Figure 3. The current density at (0 m, 0 m, 0 m).
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Figure 4. Back-scattered far field response.
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Figure 5. Comparison of the computational complexity.

1.0m×6.0m×0.1 m. The surface of the scatterer is discretized in terms
of 4020 RWG basis functions. The incident wave is a Gaussian plane
wave parameterized as Ei(r, t) = p̂ 4

T0
√

π
exp[− 16

T 2
0
(ct−ct0−r·k̂)2]. Here

T0 = 4 lm is the pulsewidth of the Gaussian impulse, ct0 = 6 lm is the
time delay, k̂ = −ẑ denotes the travel direction of the incident wave,
and p̂ = −x̂ is a unit vector of its polarization. The size of each group
is 0.4m, the time step size is 166.6 ps, and Nt = 2000. Both CPU
time and memory requirement of each method are listed in Table 1.
The current density for x direction observed at the point (0m, 0 m,
0m) computed using both the TD-FDM and the MOT schemes are
compared in Fig. 3. The back-scattered far field signal for x direction
are compared in Fig. 4. The results are in good agreement with each
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other. Furthermore, we fix Nt and discretize the shallow cube with
different number of unknowns. Fig. 5 shows the computational time
using the two methods for varying Ns. With Ns and Nt increasing,
the classical MOT scheme will cost more CPU time and memory, so
the following simulations are compared against the results computed
using the frequency algorithm.

Next, transient scattering from a sphere of diameter 4 m is
analyzed. The surface of the sphere is discretized using 18447 RWG
basis functions. The incident wave is a Gaussian pulse with p̂ = −x̂,
k̂ = −ẑ, T0 = 2 lm, and ct0 = 6 lm. The size of each group is
0.35m, ∆t = 133.3 ps, and Nt = 3000. The temporal far-field signals
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Figure 6. Comparison of the bistatic RCS at 100 MHz.
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Figure 7. Comparison of the bistatic RCS at 200 MHz.
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Figure 8. Comparison of the bistatic RCS at 300 MHz.
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Figure 9. Comparison of the bistatic RCS at 700 MHz.

are Fourier transformed into the frequency domain. The bistatic
radar cross-section (RCS) patterns computed using the TD-FDM are
compared with the Mie method. The RCS was computed for φ = 0◦,
and θ between 0◦ and 360◦. Figs. 6–8 show the RCS patterns of the
sphere at 100MHz, 200 MHz, and 300MHz. At 300MHz, the power of
the incident wave become relatively small. The results agree well with
each other.

Finally, to further verify the validity of the TD-FDM, scattering
from a PEC pencil target is analyzed. The pencil consisted of a 3 m
long cylinder with radius 0.1 m, and a tip extending 0.173m pointing
toward +x direction. The object is discretized into 31947 RWG basis
functions. The incident wave is a modulated Gaussian plane wave
parameterized as Ei(r, t) = p̂ exp[− 1

2σ2 (τ0 − 8σ)2] cos(2πf0τ0). Here
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Figure 10. Comparison of the bistatic RCS at 800 MHz.

Theta (degrees)

R
C

S
 (

d
B

sm
) 

at
 9

00
 M

H
z

0 60 120 180 240 300 360

20

10

-30

-40

-10

-20

0

Figure 11. Comparison of the bistatic RCS at 900 MHz.

f0 = 800MHz is the center frequency, fbw = 300 MHz is the bandwidth
of the signal, σ = 6/(2πfbw), and τ0 = t − r · k̂/c. The size of each
group is 0.09 m, the time step size is 50 ps, and Nt = 8000. The RCS
was computed for φ = 0◦, and θ between 0◦ and 360◦. The bistatic
RCS patterns at 700 MHz, 800 MHz, and 900MHz obtained by the
TD-FDM agree well with the FDM as shown in Figs. 9–11.

5. CONCLUSIONS

In this paper, the TD-FDM is proposed to accelerate the matrix-vector
products in TDMFIE. The computational complexity of TD-FDM
scales as O(N3/2

s Nt) as opposed to O(N2
s Nt) for the MOT method.
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The method is applied to compute the electromagnetic scattering from
the PEC targets and numerical results demonstrate the validity and
efficiency of our method. In our future work, the TD-FDM will be
extended to the multilevel and the computational complexity will be
further reduced.

ACKNOWLEDGMENT

This work is supported by the National Natural Science Foundation
of China under Grant No. 61071019, the National Natural Science
Foundation of China for Young Scholars under Grant No. 61102033, the
Fundamental Research Funds for the Central Universities under Grant
NS2012096 and the Foundation of State Key Laboratory of Millimeter
Waves, Southeast University, P. R. China under Grant No. K201302.

REFERENCES

1. Rao, S. M. and D. R. Wilton, “Transient scattering by conducting
surfaces of arbitrary shape,” IEEE Trans. Antennas Propagat.,
Vol. 39, No. 1, 56–61, Jan. 1991.

2. Shanker, B., A. A. Ergin, K. Aygun, and E. Michielssen, “Analysis
of transient electromagnetic scattering from closed surfaces using
a combined field integral equation,” IEEE Trans. Antennas
Propagat., Vol. 48, No. 7, 1064–1074, Jul. 2000.

3. Jung, B. H., Z. Mei, and T. K. Sarkar, “Transient wave
propagation in a general dispersive media using the Laguerre
function in a marching-on-in-degree (MOD) methodology,”
Progress In Electromagnetics Research, Vol. 118, 135–149, 2011.

4. Zhu, H., Z.-H. Wu, X. Y. Zhang, and B.-J. Hu, “Time-domain
integral equation solver for radiation from dipole antenna loaded
with general bi-isotropic objects,” Progress In Electromagnetics
Research B, Vol. 35, 349–367, 2011.

5. Luo, W., W. Y. Yin, M. D. Zhu, and J. Y. Zhao, “Hybrid TDIE-
TDPO method for studying on transient responses of some wire
and surface structures illuminated by an electromagnetic pulse,”
Progress In Electromagnetics Research, Vol. 116, 203–219, 2011.

6. Zhu, M. D., X. L. Zhou, W. Luo, and W. Y. Yin, “Hybrid
TDIE-TDPO method using weighted laguerre polynomials
for solving transient electromagnetic problems,” Progress In
Electromagnetics Research, Vol. 126, 375–398, 2012.

7. Sirenko, K., V. Pazynin, Y. K. Sirenko, and H. Baǧci, “An FFT-
accelerated FDTD scheme with exact absorbing conditions for



558 Ding et al.

characterizing axially symmetric resonant structures,” Progress In
Electromagnetics Research, Vol. 111, 331–364, 2011.

8. Wang, J.-B., B.-H. Zhou, L.-H. Shi, C. Gao, and B. Chen, “A
novel 3-D weakly conditionally stable FDTD algorithm,” Progress
In Electromagnetics Research, Vol. 130, 525–540, 2012.

9. Ergin, A. A., B. Shanker, and E. Michielssen, “The plane wave
time-domain algorithm for the fast analysis of transient wave
phenomena,” IEEE Antennas Propagat. Mag., Vol. 41, No. 4, 39–
52, Sept. 1999.

10. Shanker, B., A. A. Ergin, K. Aygun, and E. Michielssen, “Analysis
of transient electromagnetic scattering phenomena using a two-
level plane wave time domain algorithm,” IEEE Trans. Antennas
Propagat., Vol. 48, No. 4, 510–523, Apr. 2000.

11. Shanker, B., A. A. Ergin, M. Y. Lu, and E. Michielssen, “Fast
analysis of transient electromagnetic scattering phenomena using
the multilevel plane wave time domain algorithm,” IEEE Trans.
Antennas Propagat., Vol. 51, No. 3, 628–641, Mar. 2003.

12. Yilmaz, A. E., J. M. Jin, and E. Michielssen, “Time domain
adaptive integral method for surface integral equations,” IEEE
Trans. Antennas Propagat., Vol. 52, No. 10, 2692–2708, Oct. 2004.

13. Yilmaz, A. E., J. M. Jin, and E. Michielssen, “Analysis of low-
frequency electromagnetic transients by an extended time-domain
adaptive integral method,” IEEE Trans. Advanced Packaging,
Vol. 30, No. 2, 301–312, May 2007.

14. Garcia, E., C. Delgado, L. Lozano, I. Gonzalez-Diego, and
M. F. Catedra, “An efficient hybrid-scheme combining the
characteristic basis function method and the multilevel fast
multipole algorithm for solving bistatic RCS and radiation
problems,” Progress In Electromagnetics Research B, Vol. 34, 327–
343, 2011.

15. Wang, W. and N. Nishimura, “Calculation of shape derivatives
with periodic fast multipole method with application to shape
optimization of metamaterials,” Progress In Electromagnetics
Research, Vol. 127, 49–64, 2012.

16. Ding, J., C. Gu, Z. Niu, and Z. Li, “Application of the equivalent
dipole moment method for transient electromagnetic scattering,”
International Conference on Microwave and Millimeter Wave
Technology, ICMMT Proceedings, Vol. 3, 898–900, 2012.

17. Chen, X., C. Gu, Z. Niu, and Z. Li, “Fast dipole method
for electromagnetic scattering from perfect electric conducting
targets,” IEEE Trans. Antennas Propagat., Vol. 60, No. 2, 1186–
1191, Feb. 2012.



Progress In Electromagnetics Research, Vol. 136, 2013 559

18. Chen, X., C. Gu, Z. Niu, and Z. Li, “Reply to “Comments on
‘Fast dipole method for electromagnetic scattering from perfect
electric conducting targets’”,” IEEE Trans. Antennas Propagat.,
Vol. 60, No. 12, 6063–6064, Dec. 2012.

19. Chen, X., Z. Li, Z. Niu, and C. Gu, “Analysis of electromagnetic
scattering from PEC targets using improved fast dipole method,”
Journal of Electromagnetic Waves and Applications, Vol. 25,
No. 6, 2254–2263, 2012.

20. Ergul, O. and L. Gurel, “The use of curl-conforming basis
functions for the magnetic-field integral equation,” IEEE Trans.
Antennas Propagat., Vol. 54, No. 7, 1917–1926, Jul. 2006.

21. Yuan, J., C. Gu, and G. Han, “Efficient generation of method
of moments matrices using equivalent dipole-moment method,”
IEEE Antennas Wireless Propagat. Lett., Vol. 8, 716–719, 2009.

22. Aygun, K., M. Lu, B. Shanker, and E. Michielssen, “Analysis of
PCB level EMI phenomena using an adaptive low-frequency plane
wave time domain algorithm,” IEEE International Symposium on
Electromagnetic Compatibility, Vol. 1, 295–300, 2000.


