

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# Dimethyl 3,5-diethyl-1*H*-pyrrole-2,4dicarboxylate

# Gui-Fen Lu, Wen-Sheng Lin, Wei-Hua Zhu and Zhong-Ping Ou\*

School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China Correspondence e-mail: zpou2011@126.com

Received 29 June 2011; accepted 15 July 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean  $\sigma$ (C–C) = 0.002 Å; R factor = 0.041; wR factor = 0.118; data-to-parameter ratio = 14.7.

The title pyrrole derivative,  $C_{12}H_{17}NO_4$ , consists of a pyrrole ring with two diagonally attached methoxycarbonyl groups and two diagonally attached ethyl groups. The two carbonyl groups are approximately in the same plane as the pyrrole ring, making dihedral angles of 3.50 (19) and 6.70 (19)°. In the crystal, adjacent molecules are assembled into dimers in a head-to-head mode by pairs of intermolecular  $N-H\cdots O$ hydrogen bonds.

#### **Related literature**

For applications of polysubstituted pyrroles, see: Brockmann & Tour (1995); Guilard *et al.* (2001); Trofimov *et al.* (2004). For related structures, see: Takaya *et al.* (2001). For background to complexes of pyrrole derivatives, see: Fan *et al.* (2008); Ou *et al.* (2009); Paixão *et al.* (2003); Yamamoto *et al.* (1986).



#### **Experimental**

Crystal data  $C_{12}H_{17}NO_4$   $M_r = 239.27$ Monoclinic,  $P2_1/c$  a = 4.4697 (7) Å b = 14.616 (2) Å c = 19.784 (3) Å $\beta = 90.467 (2)^{\circ}$  $V = 1292.4 (4) \text{ Å}^{3}$ Z = 4



6296 measured reflections

2285 independent reflections

1977 reflections with  $I > 2\sigma(I)$ 

H-atom parameters constrained

 $0.20 \times 0.15 \times 0.10 \text{ mm}$ 

 $R_{\rm int} = 0.037$ 

1 restraint

 $\Delta \rho_{\rm max} = 0.15 \text{ e} \text{ Å}^{-1}$ 

 $\Delta \rho_{\rm min} = -0.16 \text{ e} \text{ Å}^{-3}$ 

 $\mu = 0.09 \text{ mm}^{-1}$ T = 298 K

#### Data collection

Bruker APEXII CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 2003)  $T_{\rm min} = 0.982, T_{\rm max} = 0.991$ 

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.041$   $wR(F^2) = 0.118$  S = 1.082285 reflections 155 parameters

## Table 1 Undergraph hand graph strug (Å $^\circ$ )

Hydrogen-bond geometry (Å, °).

 $D-H\cdots A$  D-H  $H\cdots A$   $D\cdots A$   $D-H\cdots A$  

 N1-H1N\cdots O4<sup>i</sup>
 0.85
 2.07
 2.8773 (15)
 160

Symmetry code: (i) -x + 1, -y, -z + 1.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT-Plus* (Bruker, 2001); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *XP* in *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

This work was supported by the Natural Science Foundation of China (No. 21001054) and the Natural Science Fund for Colleges and Universities in Jiangsu Province (No. 10KJB150003)

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2335).

#### References

Brockmann, T. W. & Tour, J. M. (1995). J. Am. Chem. Soc. 117, 4437–4447. Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.

- Bruker (2001). SAINT-Fus. Bruker AXS Inc., Madison, Wisconsin, USA.
- Fan, H., Peng, J. N., Hamann, M. T. & Hu, J. F. (2008). *Chem. Rev.* **108**, 264–287.
- Guilard, R., Gross, C. P., Bolze, F., Jerome, F., Ou, Z. P., Shao, J. G., Fischer, J., Weiss, R. & Kadish, K. M. (2001). *Inorg. Chem.* 40, 4845–4855.
- Ou, Z. P., Zhu, W. H., Zhou, F., Zhao, X. F. & Ji, X. L. (2009). Fine Chem. 26, 609-612.

Paixão, J. A., Ramos Silva, M., Matos Beja, A., Sobral, A. J. F. N., Lopes, S. H. & Rocha Gonsalves, A. M. d'A. (2003). Acta Cryst. E59, 094–096.

Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.

- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Takaya, H., Kojima, S. & Murahashi, S. I. (2001). Org. Lett. 3, 421-424.
- Trofimov, B. A., Sobenina, L. N., Demenev, A. P. & Mikhaleva, A. (2004). *Chem. Rev.* 104, 2481–2506.
- Yamamoto, N., Machida, K., Taga, T. & Ogoshi, H. (1986). Acta Cryst. C42, 1573–1576.

# supporting information

Acta Cryst. (2011). E67, o2097 [doi:10.1107/S1600536811028352]

# Dimethyl 3,5-diethyl-1H-pyrrole-2,4-dicarboxylate

## Gui-Fen Lu, Wen-Sheng Lin, Wei-Hua Zhu and Zhong-Ping Ou

### S1. Comment

Polysubstituted pyrroles have been paid much attention because of their wide application in the preparation of porphyrin (Trofimov *et al.*, 2004), corrole (Guilard *et al.*, 2001), and as monomers for polymer chemistry (Brockmann & Tour, 1995). In particular, 2-(alkoxycarbonyl)pyrrole derivatives have attracted intense interest in the design and synthesis of functional materials (Fan *et al.*, 2008). The title compound was synthesized as a precursor to corrole compounds.

As shown in Fig. 1, the compound has a five-membered pyrrole ring as skeleton and four substituents. Two diagonally related methoxycarbonyl groups and two diagonally related ethyl substituents are attached to the pyrrole ring. Pairs of intermolecular N1—H1n···O4<sup>i</sup> (symmetry code i: -x + 1, -y, -z + 1) hydrogen bonds assemble adjacent molecules in a head-to-head manner, as shown in Fig. 2. All bond distances are in the normal range for this type of compound, as reported by Yamamoto *et al.* (1986).

### **S2. Experimental**

The title compound was synthesized from methyl 3-oxopentanoate by a Knorr-type reaction according to the method reported by Ou *et al.* (2009). Single crystals were grown from ethyl alcohol by slow evaporation.

### **S3. Refinement**

All the non-hydrogen atoms were refined anisotropically by full-matrix least-squares calculations on F<sup>2</sup>. All the H atoms expect H1n were placed in calculated positions with C—H distances of 0.93 and 0.96 /%A, and were refined using a riding model with  $U_{iso}(H) = 1.2U_{eq}(C)$ . H1n was found in a difference map, and included using a riding model with a bond length restrained to 0.84 (1) Å and  $U_{iso}(H) = 1.2U_{eq}(N)$ .





Molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.



#### Figure 2

The two-dimensional supramolecular configuration, viewed down the a axis.

#### Dimethyl 3,5-diethyl-1H-pyrrole-2,4-dicarboxylate

#### Crystal data

C<sub>12</sub>H<sub>17</sub>NO<sub>4</sub>  $M_r = 239.27$ Monoclinic,  $P2_1/c$ Hall symbol: -P 2ybc a = 4.4697 (7) Å b = 14.616 (2) Å c = 19.784 (3) Å  $\beta = 90.467$  (2)° V = 1292.4 (4) Å<sup>3</sup> Z = 4

#### Data collection

Bruker APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator  $\varphi$  and  $\omega$  scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 2003)  $T_{\min} = 0.982, T_{\max} = 0.991$ 

#### Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.041$  $wR(F^2) = 0.118$ S = 1.082285 reflections 155 parameters 1 restraint Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map F(000) = 512  $D_x = 1.230 \text{ Mg m}^{-3}$ Mo K\alpha radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3745 reflections  $\theta = 2.8-27.4^{\circ}$   $\mu = 0.09 \text{ mm}^{-1}$  T = 298 KBlock, colorless  $0.20 \times 0.15 \times 0.10 \text{ mm}$ 

6296 measured reflections 2285 independent reflections 1977 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.037$  $\theta_{max} = 25.0^{\circ}, \theta_{min} = 1.7^{\circ}$  $h = -5 \rightarrow 5$  $k = -15 \rightarrow 17$  $l = -23 \rightarrow 21$ 

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained  $w = 1/[\sigma^2(F_o^2) + (0.0619P)^2 + 0.1775P]$ where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{max} < 0.001$  $\Delta\rho_{max} = 0.15$  e Å<sup>-3</sup>  $\Delta\rho_{min} = -0.16$  e Å<sup>-3</sup> Extinction correction: *SHELXL97* (Sheldrick, 2008), Fc\*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.110 (8)

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

|      | x          | у             | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|------|------------|---------------|--------------|-----------------------------|--|
| C1   | 1.0716 (4) | -0.06793 (13) | 0.67868 (10) | 0.0771 (5)                  |  |
| H1A  | 1.1839     | -0.0662       | 0.7202       | 0.116*                      |  |
| H1B  | 1.2038     | -0.0808       | 0.6419       | 0.116*                      |  |
| H1C  | 0.9220     | -0.1149       | 0.6812       | 0.116*                      |  |
| C2   | 0.7645 (3) | 0.02789 (10)  | 0.61180 (6)  | 0.0485 (4)                  |  |
| C3   | 0.6201 (3) | 0.11655 (9)   | 0.60495 (6)  | 0.0429 (3)                  |  |
| C4   | 0.6275 (3) | 0.19623 (9)   | 0.64214 (6)  | 0.0428 (3)                  |  |
| C5   | 0.4354 (3) | 0.25896 (9)   | 0.60761 (6)  | 0.0440 (3)                  |  |
| C6   | 0.3161 (3) | 0.21461 (9)   | 0.55064 (6)  | 0.0422 (3)                  |  |
| C7   | 0.1103 (3) | 0.24441 (10)  | 0.49502 (7)  | 0.0504 (4)                  |  |
| H7A  | -0.0305    | 0.2888        | 0.5126       | 0.060*                      |  |
| H7B  | -0.0030    | 0.1920        | 0.4789       | 0.060*                      |  |
| C8   | 0.2772 (4) | 0.28646 (14)  | 0.43641 (8)  | 0.0753 (5)                  |  |
| H8A  | 0.1370     | 0.3043        | 0.4018       | 0.113*                      |  |
| H8B  | 0.4146     | 0.2425        | 0.4184       | 0.113*                      |  |
| H8C  | 0.3857     | 0.3393        | 0.4519       | 0.113*                      |  |
| C9   | 0.3744 (3) | 0.35270(11)   | 0.62967 (7)  | 0.0548 (4)                  |  |
| C10  | 0.1230 (6) | 0.49089 (14)  | 0.60468 (13) | 0.1063 (8)                  |  |
| H10A | 0.0056     | 0.5182        | 0.5692       | 0.159*                      |  |
| H10B | 0.2992     | 0.5270        | 0.6126       | 0.159*                      |  |
| H10C | 0.0071     | 0.4882        | 0.6453       | 0.159*                      |  |
| C11  | 0.8015 (3) | 0.21297 (11)  | 0.70625 (7)  | 0.0530 (4)                  |  |
| H11A | 0.8638     | 0.2765        | 0.7077       | 0.064*                      |  |
| H11B | 0.9803     | 0.1754        | 0.7062       | 0.064*                      |  |
| C12  | 0.6215 (4) | 0.19160 (16)  | 0.76897 (8)  | 0.0802 (6)                  |  |
| H12A | 0.7415     | 0.2033        | 0.8085       | 0.120*                      |  |
| H12B | 0.5628     | 0.1284        | 0.7683       | 0.120*                      |  |
| H12C | 0.4463     | 0.2296        | 0.7698       | 0.120*                      |  |
| N1   | 0.4307 (2) | 0.12986 (7)   | 0.55029 (5)  | 0.0439 (3)                  |  |
| H1N  | 0.3918     | 0.0897        | 0.5207       | 0.053*                      |  |
| 01   | 0.2088 (3) | 0.39946 (8)   | 0.58509 (7)  | 0.0858 (4)                  |  |
| O2   | 0.4557 (3) | 0.38626 (9)   | 0.68180 (7)  | 0.0867 (4)                  |  |
| 03   | 0.9285 (3) | 0.01959 (7)   | 0.66768 (5)  | 0.0619 (3)                  |  |
| O4   | 0.7364 (3) | -0.03336 (7)  | 0.57103 (5)  | 0.0725 (4)                  |  |
|      |            |               |              |                             |  |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

Atomic displacement parameters  $(Å^2)$ 

|                      | $U^{11}$                                             | $U^{22}$                                             | $U^{33}$                                             | $U^{12}$                                                | $U^{13}$                                              | $U^{23}$                                                |
|----------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------|
| C1                   | 0.0872 (12)                                          | 0.0737 (11)                                          | 0.0700 (11)                                          | 0.0164 (9)                                              | -0.0229 (9)                                           | 0.0148 (9)                                              |
| C2                   | 0.0557 (8)                                           | 0.0537 (8)                                           | 0.0361 (7)                                           | -0.0007 (6)                                             | -0.0071 (6)                                           | 0.0027 (6)                                              |
| C3                   | 0.0452 (7)                                           | 0.0510 (8)                                           | 0.0324 (6)                                           | -0.0027 (6)                                             | -0.0039 (5)                                           | 0.0028 (5)                                              |
| C4                   | 0.0428 (7)                                           | 0.0518 (7)                                           | 0.0337 (6)                                           | -0.0065 (5)                                             | 0.0008 (5)                                            | -0.0004 (5)                                             |
| C5                   | 0.0448 (7)                                           | 0.0501 (7)                                           | 0.0370 (7)                                           | -0.0040 (6)                                             | 0.0018 (5)                                            | -0.0018 (5)                                             |
| C6                   | 0.0426 (7)                                           | 0.0485 (7)                                           | 0.0356 (7)                                           | -0.0011 (5)                                             | 0.0022 (5)                                            | 0.0011 (5)                                              |
| C7                   | 0.0499 (7)                                           | 0.0581 (8)                                           | 0.0430 (7)                                           | 0.0065 (6)                                              | -0.0060 (6)                                           | -0.0012 (6)                                             |
| C4<br>C5<br>C6<br>C7 | 0.0428 (7)<br>0.0448 (7)<br>0.0426 (7)<br>0.0499 (7) | 0.0518 (7)<br>0.0501 (7)<br>0.0485 (7)<br>0.0581 (8) | 0.0337 (6)<br>0.0370 (7)<br>0.0356 (7)<br>0.0430 (7) | -0.0065 (5)<br>-0.0040 (6)<br>-0.0011 (5)<br>0.0065 (6) | 0.0008 (5)<br>0.0018 (5)<br>0.0022 (5)<br>-0.0060 (6) | -0.0004 (5)<br>-0.0018 (5)<br>0.0011 (5)<br>-0.0012 (6) |

# supporting information

| C8  | 0.0784 (11) | 0.0967 (13) | 0.0507 (9)  | 0.0129 (10)  | -0.0038 (8)  | 0.0251 (9)   |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| C9  | 0.0604 (9)  | 0.0543 (8)  | 0.0497 (8)  | -0.0030 (7)  | 0.0003 (7)   | -0.0054 (7)  |
| C10 | 0.144 (2)   | 0.0585 (11) | 0.1155 (18) | 0.0297 (12)  | -0.0188 (16) | -0.0147 (12) |
| C11 | 0.0521 (8)  | 0.0635 (9)  | 0.0432 (8)  | -0.0057 (7)  | -0.0091 (6)  | -0.0072 (6)  |
| C12 | 0.0775 (12) | 0.1278 (17) | 0.0351 (8)  | -0.0093 (11) | -0.0089 (7)  | -0.0013 (9)  |
| N1  | 0.0515 (7)  | 0.0469 (6)  | 0.0332 (6)  | -0.0012 (5)  | -0.0062 (5)  | -0.0037 (4)  |
| 01  | 0.1210 (11) | 0.0572 (7)  | 0.0788 (8)  | 0.0254 (7)   | -0.0276 (8)  | -0.0122 (6)  |
| O2  | 0.1163 (11) | 0.0700 (8)  | 0.0733 (8)  | 0.0097 (7)   | -0.0253 (7)  | -0.0288 (6)  |
| 03  | 0.0770 (7)  | 0.0614 (7)  | 0.0468 (6)  | 0.0075 (5)   | -0.0213 (5)  | 0.0043 (5)   |
| O4  | 0.1030 (9)  | 0.0579 (7)  | 0.0560 (7)  | 0.0185 (6)   | -0.0278 (6)  | -0.0112 (5)  |
|     |             |             |             |              |              |              |

Geometric parameters (Å, °)

| C1—O3      | 1.446 (2)   | С7—Н7В        | 0.9700      |
|------------|-------------|---------------|-------------|
| C1—H1A     | 0.9600      | C8—H8A        | 0.9600      |
| C1—H1B     | 0.9600      | C8—H8B        | 0.9600      |
| C1—H1C     | 0.9600      | C8—H8C        | 0.9600      |
| C2—O4      | 1.2109 (17) | C9—O2         | 1.1959 (18) |
| C2—O3      | 1.3270 (16) | C9—O1         | 1.335 (2)   |
| С2—С3      | 1.453 (2)   | C10O1         | 1.444 (2)   |
| C3—C4      | 1.3779 (19) | C10—H10A      | 0.9600      |
| C3—N1      | 1.3816 (16) | C10—H10B      | 0.9600      |
| C4—C5      | 1.4266 (19) | C10—H10C      | 0.9600      |
| C4—C11     | 1.5024 (18) | C11—C12       | 1.517 (2)   |
| C5—C6      | 1.4017 (17) | C11—H11A      | 0.9700      |
| С5—С9      | 1.464 (2)   | C11—H11B      | 0.9700      |
| C6—N1      | 1.3404 (17) | C12—H12A      | 0.9600      |
| С6—С7      | 1.4935 (18) | C12—H12B      | 0.9600      |
| С7—С8      | 1.514 (2)   | C12—H12C      | 0.9600      |
| С7—Н7А     | 0.9700      | N1—H1N        | 0.8457      |
|            |             |               |             |
| O3—C1—H1A  | 109.5       | C7—C8—H8C     | 109.5       |
| O3—C1—H1B  | 109.5       | H8A—C8—H8C    | 109.5       |
| H1A—C1—H1B | 109.5       | H8B-C8-H8C    | 109.5       |
| O3—C1—H1C  | 109.5       | O2—C9—O1      | 121.51 (15) |
| H1A—C1—H1C | 109.5       | O2—C9—C5      | 125.79 (15) |
| H1B—C1—H1C | 109.5       | O1—C9—C5      | 112.69 (13) |
| O4—C2—O3   | 122.75 (13) | O1-C10-H10A   | 109.5       |
| O4—C2—C3   | 123.61 (12) | O1-C10-H10B   | 109.5       |
| O3—C2—C3   | 113.64 (12) | H10A-C10-H10B | 109.5       |
| C4—C3—N1   | 108.11 (12) | O1—C10—H10C   | 109.5       |
| C4—C3—C2   | 134.03 (12) | H10A—C10—H10C | 109.5       |
| N1—C3—C2   | 117.86 (11) | H10B—C10—H10C | 109.5       |
| C3—C4—C5   | 106.00 (11) | C4—C11—C12    | 112.50 (12) |
| C3—C4—C11  | 126.77 (13) | C4—C11—H11A   | 109.1       |
| C5—C4—C11  | 127.23 (12) | C12-C11-H11A  | 109.1       |
| C6—C5—C4   | 108.15 (12) | C4—C11—H11B   | 109.1       |
| C6—C5—C9   | 127.00 (13) | C12—C11—H11B  | 109.1       |

| C4—C5—C9   | 124.85 (12) | H11A—C11—H11B | 107.8       |
|------------|-------------|---------------|-------------|
| N1—C6—C5   | 106.78 (11) | C11—C12—H12A  | 109.5       |
| N1—C6—C7   | 119.92 (12) | C11—C12—H12B  | 109.5       |
| C5—C6—C7   | 133.28 (13) | H12A—C12—H12B | 109.5       |
| C6—C7—C8   | 112.23 (12) | C11—C12—H12C  | 109.5       |
| С6—С7—Н7А  | 109.2       | H12A—C12—H12C | 109.5       |
| С8—С7—Н7А  | 109.2       | H12B-C12-H12C | 109.5       |
| С6—С7—Н7В  | 109.2       | C6—N1—C3      | 110.97 (11) |
| С8—С7—Н7В  | 109.2       | C6—N1—H1N     | 124.6       |
| H7A—C7—H7B | 107.9       | C3—N1—H1N     | 124.4       |
| С7—С8—Н8А  | 109.5       | C9—O1—C10     | 116.33 (15) |
| С7—С8—Н8В  | 109.5       | C2—O3—C1      | 116.55 (12) |
| H8A—C8—H8B | 109.5       |               |             |
|            |             |               |             |

Hydrogen-bond geometry (Å, °)

| D—H···A                           | <i>D</i> —Н | H··· <i>A</i> | $D \cdots A$ | <i>D</i> —H… <i>A</i> |
|-----------------------------------|-------------|---------------|--------------|-----------------------|
| N1—H1 <i>N</i> ···O4 <sup>i</sup> | 0.85        | 2.07          | 2.8773 (15)  | 160                   |

Symmetry code: (i) -x+1, -y, -z+1.