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Abstract: High efficiency operation on continuous-wave (cw)

912 nm laser at room temperature in Nd:GdVO4 crystal pumped

by 808 nm diode-laser is reported in this letter. The maximum

output power of 8.0 W was obtained at the incident un-polarized

pump power of 47.0 W, giving the corresponding optical-to-

optical conversion efficiency of 17.0% and the average slope ef-

ficiency of 22.9%. Further tests show that the lasing threshold

is reduced and the efficiency is increased evidently when us-

ing the π-polarized 808 nm pump source. 4.8 W 912 nm laser

was achieved at the polarized pump power of 21.8 W, optical-to-

optical conversion efficiency is increased to 22.0% and average

slope efficiency is up to 33.6%.
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1. Introduction

The diode-pumped quasi-three-level Nd3+-doped laser,

which operates on the 4F3/2 → 4I9/2 transition, has at-

tracted much attention in the past few years [1–3]. This

is because the laser around 900 nm has some unique appli-

cations such as water vapor lidars and differential absorp-

tion lidars (DIALs) for ozone measurements, and it also

can be used as the pump source for the Yb-doped crystals

and Yb-doped fibers. Moreover, high power blue laser will

be achieved efficiently by means of frequency doubling to

the laser around 900 nm, which has a large number of ap-

plications ranging from high-density optical data storage,

biological and medical diagnostics, color displays to un-

derwater imaging and communication.

Many works have been done in diode-pumped

Nd:GdVO4 lasers [4–13], especially, 912 nm laser has

been demonstrated by J. Gao and X. Yu et al. [14,15] that

8.6 W and 3.65 W 912 nm laser were achieved pumped

by 808 nm and 879 nm diode-laser, respectively. By fre-

quency converter technology, 456 nm deep blue laser also

has been reported that output power of 5.3 W in cw op-

eration by F. Jia et al. in 2006 [16] and peak power of

315 W at 10 kHz with pulse duration of 140 ns by J. Gao

et al. in 2008 [17]. It can be concluded that Nd:GdVO4

crystal has been expected to be a highly performed laser

medium, this is partially due to its large absorption cross-

section near 808 nm and stimulated emission cross-section

at 912 nm. In addition, Nd:GdVO4 is especially more suit-

able for the operation of quasi-three-level laser according

to its high thermal conductivity, which is very important

because, first of all, it leads to a smaller temperature gradi-

ent and therefore to a smaller thermal lens, secondly it de-

crease the absolute temperature in the laser crystal, so the
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Figure 1 (online color at www.lphys.org) Schematic of the ex-

perimental setup

reabsorption losses due to the thermal population of the

lower laser level (409 cm−1) are reduced. Furthermore, an

uni-axial crystal structure of Nd:GdVO4 is convenient for

the laser oscillation with single polarization, which is good

for the frequency conversion in quasi-phase matching de-

vices. However, there were few reports on high efficiency

cw 912 nm laser source with good beam quality.

In this paper, a high efficiency, high beam quality, com-

pact, continuous-wave 912 nm laser is developed based on

fiber coupled 808 nm diode-laser pumping. With an in-

cident pump power of 47.0 W, 8.0 W output power for

912 nm laser is achieved. The optical-to-optical conver-

sion efficiency and the average slope efficiency are 17.0%

and 22.9%, respectively. A beam quality factor M2 is 2.98

at the output power of 8.0 W measured by the travel-

ing 90/10 knife-edge method [18]. At the polarized inci-

dent pump power of 21.8 W, 4.8 W 912 nm laser was

achieved, optical-to-optical conversion efficiency is in-

creased to 22.0% and average slope efficiency is up to

33.6%.

2. Experimental setup

Fig. 1 is a sketch of the experimental setup. A linear res-

onator is employed to make the system very simple and

compact. The total length of the resonator is 25 mm. The

pump source used in our experiment is a high bright-

ness fiber-coupled LD from Advanced Photonic Systems,

which delivers a maximum output power of 50 W at

808 nm from the end of a fiber with 400 μm core in di-

ameter and a N.A. of 0.22. The pump beam is coupled

into the gain medium by the coupling optics, which con-

sists of two plano-convex lenses with the coupling effi-

ciency of 94%. The gain medium is a plane-parallel pol-

ished a-cut Nd:GdVO4 grown by the Czochralski method,

with the Nd3+ doping level of 0.2 at.% and the dimen-

sions of 3×3×5 mm3. Low doped and long laser crys-

tal is favorable to reduce thermal lens and the reabsorp-

tion loss of quasi-three-level system, while guarantee-

ing adequate absorption efficiency for the pump light.

The crystal is wrapped with 0.05 mm thick indium foil,

mounted in a copper micro-channel heat sink and main-

tained at 13±0.1◦C by water cooling. Both sides of the

laser crystal are coated for high transmission (HT) at
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Figure 2 (online color at www.lphys.org) Output powers of the

912 nm laser with three different couplers

912 nm (T > 99.8%) and the 808 nm (T > 99%). Antire-

flection coating (AR) at 1063 nm (R < 2%) and 1340 nm

(R < 10%) is considered to prevent these more efficient

four-level transitions. The simple plano-plano or plano-

concave cavities are used in the experiment. The plane in-

put mirror M1 has AR coating at the 808 nm (R < 10%)

and high-reflection (HR) coating at 912 nm (R > 99.8%),

the M2 are highly transmitting at 1063 nm and 1340 nm,

and is partially transmitted at 912 nm as an output mir-

ror. The laser spectrum is measured by a fiber spectrome-

ter (American. Ocean Optics Inc. HR4000) and the output

power is recorded by a laser power meter PM30 (Ameri-

can. Coherent Inc).

3. Results and discussion

In principle, the lasing threshold of 912 nm laser in

Nd:GdVO4 that is end-pumped by a fiber-coupled diode

and edge cooled is given by Eq. (1) [1]:

Pth =
πhνp(ω2

l + ω̄2
p)

[
T + (L + 2σef1N

0l)
]

4σeτ(f1 + f2)ηa
, (1)

where hνp is the energy of a pump photon, ω̄p and ωl are

the radius of the pump beam and the laser mode, respec-

tively, σe is the stimulated emission cross section, N0 is

the concentration of doping ions, f1 and f2 are the frac-

tional populations of the lower and the upper laser lev-

els, respectively, τ is the fluorescence decay time, T is the

transmission for 912 nm laser of the output coupled mirror,

(L + 2σef1N
0l) represents the total loss consisting of the

passive cavity loss L and the reabsorption loss 2σef1N
0l.

ηa is the pump quantum efficiency and l is the length of

Nd:GdVO4 crystal. To reduce the lasing threshold and in-

crease the optical efficiency, therefore, high absorption ef-

ficiency for the pump radiation is necessary at a certain
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Figure 3 (online color at www.lphys.org) Output powers of the

912 nm laser with different output mirrors
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Figure 4 (online color at www.lphys.org) Output powers and

optical-to-optical efficiency of the 912 nm laser versus the in-

cident pump power of the π-polarized 808 nm laser and the un-

polarized

length and Nd3+-doped concentration for the Nd:GdVO4

crystal.

To overcome the shortcoming of the low stimulated-

emission cross-section in the 4I9/2 → 4F3/2 transition and

to improve the output power of 912 nm laser, the pump

beam should be focused to a small spot in the gain

medium. Strong beam focusing, however, will result in se-

vere thermal-lensing effect, which maybe leads to the in-

stability of the cavity, thus pump spot size should be opti-

mized in high pump power field. Fig. 2 shows the output

powers of the 912 nm laser in a plano-plano cavity (Length

of the cavity is 25 mm, transmission ratio of output mirror

at 912 nm is T = 6%) with three different coupling optics,

which result in spot sizes of 400, 308, and 200 μm, re-
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Figure 5 (online color at www.lphys.org) Output powers of the

912 nm laser with different output mirrors

spectively. When the pump spot size is 308 μm, the high-

est output power of 8.0 W is achieved under the incident

pump power of 47.0 W. The optical-to-optical conversion

efficiency is 17.0%, and the average slope efficiency is up

to 22.9%.

Under the pump spot size of 308 μm, the output power

for 912 nm laser was measured with five different out-

put mirrors, including three kinds of plane output coupled

mirrors with transmissions of T = 6%, T = 4%, T = 2%,

and two concave mirrors with the radius of curvature of

200 mm and transmissions of T = 3.6%, T = 1.5%. Using

the output coupled mirrors of T = 6%, T = 4%, T = 3.6%,

a linear increase of the output power for 912 nm laser at

the lower pump power is shown in Fig. 3, the laser thresh-

old was measured to be 10 W, which is relatively too high

is mainly because the lower laser level population, leads

to a serious reabsorption loss at the beginning stage. An-

other reason is that the central wavelength of the LD isn’t

matching the absorption peak value of Nd:GdVO4 very

well in the lower pump power field. At the higher pump

power, the laser operates like a four-level system, and the

output power increases linearly and efficiently. Fig. 3 also

presents that it is inclined to saturate for T = 4%, T = 3.6%

from the pump power of 45 W and T = 2%, T = 1.5% from

the power of 25 W. However, it isn’t saturated for T = 6%

at the highest pump power of 47.0 W, then maximum out-

put power of 8.0 was achieved. The beam quality fac-

tor value of 8.0 W laser is measured to be M2 = 2.98 by

the traveling 90/10 knife-edge method, to our knowledge,

which is the best at the similar power level for 912 nm

laser.

Nd:GdVO4 crystal has a stronger absorption efficiency

to π-polarized 808 nm laser than the un-polarized and

the σ-polarized [19]. According to Eq. (1), π-polarized

808 nm laser can be used as the pump source to increase

the efficiency further. In experiments, we inserted a po-
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larized disk in the coupling optics system to generated π-

polarized 808 nm diode laser, as it was described in [20].

Tests show that up to 82% of the polarized pump radi-

ation is absorbed by the crystal. Fig. 4 gives a compar-

ison for 912 nm laser in Nd:GdVO4 pumped by the π-

polarized 808 nm laser source and the un-polarized un-

der the same conditions. The output coupler is a con-

cave mirror of T = 3.6%. As results, the lasing threshold

of Nd:GdVO4 pumped by the two sources is 5.0 W and

8.8 W, respectively, and obviously the output power and

optical-to-optical efficiency of the 912 nm laser using the

π-polarized pump source will be much higher than that of

using the un-polarized at the same incident pump power.

The output power for 912 nm laser was also mea-

sured at the pump spot size of 308 μm. Using the T = 6%,

T = 4%, T = 3.6% output coupled mirrors, Fig. 5 shows

that a nonlinear increase of the output power for 912 nm

laser at the lower pump power, this is because in the op-

eration on quasi-three-level laser, the low circulating in-

tensity exists in the cavity and the reabsorption loss af-

fects the slope efficiency seriously. As the pump power in-

creases, the intensity becomes higher so that it saturates

the reabsorption loss, so the laser operates like a four-level

system, and the output power increases linearly and effi-

ciently at the high pump power. Maximum output power of

4.8 W was achieved using the concave output coupled mir-

ror T = 3.6% at the incident pump power of 21.8 W, corre-

sponding to the optical-to-optical conversion efficiency is

22.0% and the average slope efficiency is 33.6%, more-

over, the output power for 912 nm laser isn’t saturated

then.

4. Conclusion

In summary, we have demonstrated a highly efficient

912 nm Nd:GdVO4 laser by using a 808 nm diode-end-

pumped structure at room temperature. At the incident

pump power of 47.0 W, up to 8.0 W continuous-wave

912 nm laser was obtained, with corresponding optical-

to-optical efficiency is 17.0%, and the average slope ef-

ficiency is up to 22.9%. Also, the beam quality factor

at the power of 8.0 W was measured to be M2 = 2.98.

Using the π-polarized 808 nm pump source can reduce

the lasing threshold and increase the efficiency evidently.

4.8 W 912 nm laser was achieved at the polarized pump

power of 21.8 W, optical-to-optical conversion efficiency

is increased to 22.0% and average slope efficiency is up

to 33.6%. Thus, in the future research, high power π-

polarized 808 nm diode-laser will be employed to improve

efficiency and the output power for 912 nm laser.
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