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Multisymplectic implicit and explicit methods for
Klein Gordon Schrödinger equations∗
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We propose multisymplectic implicit and explicit Fourier pseudospectral methods for the Klein–Gordon–Schrödinger
equations. We prove that the implicit method satisfies the charge conservation law exactly. Both methods provide accurate
solutions in long-time computations and simulate the soliton collision well. The numerical results show the abilities of the
two methods in preserving the charge, energy, and momentum conservation laws.
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1. Introduction
The Klein–Gordon–Schrödinger (KGS) equations are

kψt +
1
2

ψxx +ψφ = 0, φtt −φxx +φ −|ψ|2 = 0, (1)

where ψ(x, t) represents a complex scalar nucleon field, φ(x, t)
a real scalar meson field, and k =

√
−1 describes a system

of conserved scalar nucleons interacting with neutral scalar
mesons through the Yukawa interaction. With the initial and
periodic conditions

ψ(x,0) = ψ0(x), φ(x,0) = φ0(x), φt(x,0) = φ1(x),

ψ(a, t) = ψ(b, t), φ(a, t) = φ(b, t), (2)

the KGS equations possess the following conservation laws.
• The charge conservation law

Q(t) =
∫ b

a
|ψ(x, t)|2 dx =

∫ b

a
|ψ(x,0)|2 dx = Q(0). (3)

• The energy conservation law

E (t) =
∫ b

a
(φ(x, t)2 +φt(x, t)2 +φx(x, t)2 + |ψx(x, t)|2

−2φ(x, t)|ψ(x, t)|2)dx = E (0). (4)

• The momentum conservation law

M (t) =
∫ b

a
ℑ(ψ(x, t)ψx(x, t)−φt(x, t)φx(x, t))dx

= M (0). (5)

A massive number of numerical and theoretical analyses
of the KGS equations have been performed over the years.
More recently, studying with numerical approximations has

become a hot topic, and now some reliable efficient numeri-
cal methods[1–5] have been proposed to solve the KGS equa-
tions. Since the concept of a multisymplectic integrator was
first proposed,[6,7] much attention has been paid to it.[8–23]

Kong et al.[21] first noted that the KGS equations have a natural
multisymplectic structure and then derived the multisymplec-
tic Preissman scheme. In Ref. [22], Kong et al. developed
a linearly implicit symplectic Fourier pseudospectral scheme.
Hong et al.[23] proposed a series of fully explicit multisym-
plectic schemes for the KGS equations by concatenating suit-
able symplectic Runge–Kutta-type methods and symplectic
Runge–Kutta–Nyström-type methods. The aim of this work
is to construct new implicit and explicit methods for the KGS
equations (1). Then we will examine the numerical perfor-
mances of the proposed methods.

The rest of this paper is organized as follows. In Section
2, we construct multisymplectic methods for the KGS equa-
tions. We prove that the implicit method satisfies the charge
conservation law exactly. Numerical simulations of the prop-
agation and collision solutions are presented in Section 3, and
the conclusions are given in Section 4.

2. Multisymplectic methods for KGS equations

By setting ψ(x, t) = p(x, t) + kq(x, t), where p(x, t) and
q(x, t) are real-valued functions, the KGS equations (1) can be
written as

pt +
1
2

qxx +φq = 0,

−qt +
1
2

pxx +φ p = 0,

φtt −φxx +φ − (p2 +q2) = 0. (6)
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By introducing new variables px = f , qx = r, φt = v, and
φx =w, equation (6) can be reformulated in the following first-
order form:

−qt +
1
2

fx =−φ p, − 1
2

px =−
1
2

f ,

pt +
1
2

rx =−φq, − 1
2

qx =−
1
2

r,

−1
2

vt +
1
2

wx =
1
2

φ − 1
2
(p2 +q2),

1
2

φt =
1
2

v, − 1
2

φx =−
1
2

w, (7)

or the general form of the multisymplectic Hamiltonian
system[21]

𝑀𝑧t +𝐾𝑧x =∇𝑧S(𝑧), (8)

where 𝑧 = (p,q, f ,r,φ ,v,w)T, 𝑀 and 𝐾 are two skew-
symmetric matrices

𝑀 =



0 −1 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 − 1

2 0
0 0 0 0 1

2 0 0
0 0 0 0 0 0 0


,

𝐾 =



0 0 1
2 0 0 0 0

0 0 0 1
2 0 0 0

− 1
2 0 0 0 0 0 0

0 − 1
2 0 0 0 0 0

0 0 0 0 0 0 1
2

0 0 0 0 0 0 0
0 0 0 0 − 1

2 0 0


,

and the Hamiltonian function S(𝑧) =− 1
2 φ(p2 +q2)+ 1

4 (φ
2 +

v2−w2− f 2−r2). System (8) admits the multisymplectic con-
servation law

∂tω +∂xκ = 0, (9)

where ω = d𝑧 ∧𝑀 d𝑧 = −2d p ∧ dq− dφ ∧ dv and κ =

d𝑧∧𝐾d𝑧 = d p∧ d f + dq∧ dr+ dφ ∧ dw.
In order to establish numerical methods, we set x j = jh,

j = 0,1,2, . . . ,N and tn = nτ , n= 1,2, . . ., where h=(b−a)/N
and τ are spatial and temporal step sizes, respectively. We also
define the difference and average operators as

δ±t zn
i =±(zn±1

i − zn
i )/τ, Atzn

i = (zn
i + zn+1

i )/2.

As we know, the first-order differential operator ∂x yields the
Fourier spectral differentiation matrix 𝐷1. Here, 𝐷1 is an
N×N skew-symmetric matrix with elements

(D1)i, j =

{
1
2 µ(−1)i+ j cot(µ xi−x j

2 ), i 6= j,
0, i = j,

where i, j = 1,2, . . . ,N, and µ = 2π/(b−a). For more details,
one can consult Ref. [10] and the references therein. Inspired

by the technique used in Ref. [10], we discrete Eq. (7) with the
Fourier pseudospectral method in the space domain, and then
we obtain a semi-discrete system

dqi

dt
+

1
2
(𝐷1𝑓)i =−φi pi, (𝐷1𝑝)i = fi,

d pi

dt
+

1
2
(𝐷1𝑟)i =−φiqi, (𝐷1𝑞)i = ri,

− dvi

dt
+(𝐷1𝑤)i = φi− (p2

i +q2
i ),

dφi

dt
= vi, (𝐷1𝛷)i = wi, (10)

where 𝑓 = ( f0, f1, . . . , fN−1)
T, 𝑝 = (p0, p1, . . . , pN−1)

T,
𝑟 = (r0,r1, . . . ,rN−1)

T, 𝑞 = (q0,q1, . . . ,qN−1)
T, 𝑤 =

(w0,w1, . . . ,wN−1)
T, and 𝛷 = (φ0,φ1, . . . ,φN−1)

T. Equa-
tion (10) can be rewritten in the compact form

𝑀
dzi

dt
+𝐾

N−1

∑
j=0

(D1)i, jz j =∇𝑧S(zi). (11)

Theorem 1 The Fourier pseudospectral semi-discrete
(11) has N semi-discretization multisymplectic conservation
laws[10]

d
dt

ωi +
N−1

∑
j=0

(D1)i, jκi, j = 0, i = 0,1,2, . . . ,N−1, (12)

where ωi =
1
2 (dzi∧𝑀 dzi), and κi, j = dzi∧𝐾dz j.

Since matrix 𝐷1 is skew-symmetric and κi, j = κ j,i, sum-
ming Eq. (12) over the spatial index i gives the total symplec-
tic conservation law d

dt ∑
N−1
i=0 ωi = 0. Therefore, we should

choose a symplectic integration in the time direction for
Eq. (11) in order to preserve the global symplecticity.

The implicit multisymplectic scheme Applying the
symplectic midpoint rule with respect to time derivatives in
the compact form (11) yields

𝑀δ+t zn
i +𝐾

N−1

∑
j=0

(D1)i, jz
n+ 1

2
j =∇𝑧S(z

n+ 1
2

i ). (13)

Theorem 2 The Fourier pseudospectral full-
discretization (13) has N full-discrete multisymplectic con-
servation laws

δ+t ω
n
i +

N−1

∑
j=0

(D1)i, jκ
n+ 1

2
i, j = 0, i = 0,1,2, . . . ,N−1, (14)

where ωn
i = dzn

i ∧𝑀 dzn
i , and κn

i, j = dz
n+ 1

2
i ∧𝐾dz

n+ 1
2

j .
Taking the wedge product of the variational equation as-

sociated with Eq. (11) with dzn+1/2
i and calculating carefully,

we can prove the theorem. Expanding Eq. (13) reads

−δ+t qn
i +

1
2
(𝐷1𝑓

n+ 1
2 )i =−φ

n+ 1
2

i p
n+ 1

2
i ,

(𝐷1𝑝
n+ 1

2 )i = f
n+ 1

2
i ,

δ+t pn
i +

1
2
(𝐷1𝑟

n+ 1
2 )i =−φ

n+ 1
2

i q
n+ 1

2
i , (𝐷1𝑞

n+ 1
2 )i = r

n+ 1
2

i ,
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−δ+t vn
i +(𝐷1𝑤

n+ 1
2 )i = φ

n+ 1
2

i − [(p
n+ 1

2
i )2 +(q

n+ 1
2

i )2],

δ+t φ
n
i = v

n+ 1
2

i , (𝐷1𝛷
n+ 1

2 )i = w
n+ 1

2
i . (15)

Eliminating the auxiliary variables gives an implicit multisym-
plectic scheme

δ+t qn
i −

1
2

At(𝐷
2
1𝑝

n)i− (Atφ
n
i )(At pn

i ) = 0, (16a)

δ+t pn
i +

1
2

At(𝐷
2
1𝑞

n)i +(Atφ
n
i )(Atqn

i ) = 0, (16b)

δ+t δ
+
t φ

n
i −A2

t (𝐷
2
1𝛷

n)i +A2
t φ

n
i

−At [(At pn
i )

2 +(Atqn
i )

2] = 0. (16c)

Now, we turn to investigate the discrete analogue of the dis-
crete charge conservation law. We define the inner product
and the 2-norm of vectors as

(𝑢,𝑣) = h
N−1

∑
i=0

uivi, ‖ 𝑢 ‖=
√
(𝑢,𝑢) =

√
h

N−1

∑
i=0
|ui|2.

Theorem 3 The multisymplectic scheme (16) satisfies
the charge conservation law exactly, namely,

Qn+1 =‖Ψ
n+1 ‖2= Qn = · · ·= Q0. (17)

Proof Multiplying Eqs. (16a) and (16b) by 2Atqn
i and

2At pn
i , respectively, and then summing the results, we have

1
τ
(| ψn+1

i |2 − | ψn
i |2)− (𝐷2

1𝑝
n+ 1

2 )iq
n+ 1

2
i

+(𝐷2
1𝑞

n+ 1
2 )i p

n+ 1
2

i = 0. (18)

Taking the discrete inner product of Eq. (18) yields

1
τ
(‖Ψ

n+1 ‖2 − ‖Ψ
n ‖2)− (𝐷2

1𝑝
n+ 1

2 ,𝑞n+ 1
2 )

+(𝐷2
1𝑞

n+ 1
2 ,𝑝n+ 1

2 ) = 0. (19)

Further, we have −(𝐷2
1𝑝

n+ 1
2 ,𝑞n+ 1

2 ) + (𝐷2
1𝑞

n+ 1
2 ,𝑝n+ 1

2 ) = 0
since matrix 𝐷2

1 is symmetrical. Thus, equation (17) is
proved.

The explicit multisymplectic scheme Although the
scheme (16) satisfies the discrete charge conservation law, the
weakness of the scheme is that it is implicit. This results in a
huge expense in numerically solving the systems of the non-
linear equations at each time step. Therefore, efficient and sta-
ble explicit schemes are of value in many cases. Applying the
symplectic Euler rule to the compact form (11) with respect to
time yields

𝑀+δ
+
t zn

i +𝑀−δ
−
t zn

i +𝐾
N−1

∑
j=0

(D1)i, jzn
j =∇𝑧S(zn

i ), (20)

where 𝑀+ and 𝑀− are splitting matrices of the symplectic
structure matrix 𝑀 , i.e., 𝑀 =𝑀++𝑀−, 𝑀T

+ =−𝑀−.

Theorem 4 The Fourier pseudospectral discretiza-
tion (20) has N full-discrete multisymplectic conservation
laws

δ+t ω
n
i +

N−1

∑
j=0

(D1)i, jκ
n
i, j = 0, i = 0,1,2, . . . ,N−1, (21)

where ωn
i = dzn−1

i ∧𝑀+dzn
i , and κn

i, j = dzn
i ∧𝐾dzn

j .
Proof The variational equation associated with Eq. (20)

is

𝑀+δ
+
t dzn

i +𝑀−δ
−
t dzn

i +𝐾
N−1

∑
j=0

(D1)i, j dzn
j

= Szz(zn
i )dzn

i . (22)

Taking the wedge product of Eq. (22) with dzn
i , and then not-

ing dzn
i ∧Szz(zn

i )dzn
i = 0 and

dzn
i ∧𝑀+δ

+
t dzn

i + dzn
i ∧𝑀−δ

−
t dzn

i

= dzn
i ∧𝑀+δ

+
t dzn

i +δ−t dzn
i ∧𝑀+dzn

i

= δ+t (dzn−1
i ∧𝑀+dzn

i ),

we obtain N full-discrete multisymplectic conservation
laws (14).

Obviously, the splitting matrices are not unique. Differ-
ent splitting matrices may lead to different schemes. Here, we
take 𝑀+ as the upper triangle matrix and 𝑀− as the lower
triangle matrix. With this choice, expanding Eq. (20) yields

δ+t qn
i +

1
2
(D1𝑓

n)i =−φ
n
i pn

i , (𝐷1𝑝
n)i = f n

i ,

δ−t pn
i +

1
2
(𝐷1𝑟

n)i =−φ
n
i qn

i , (𝐷1𝑞
n)i = rn

i ,

−δ+t vn
i +(𝐷1𝑤

n)i = φ
n
i − [(pn

i )
2 +(qn

i )
2],

δ−t φ
n
i = vn

i , (𝐷1𝛷
n)i = wn

i . (23)

Eliminating the auxiliary variables gives an explicit scheme

−δ+t qn
i +

1
2
(𝐷2

1𝑝
n)i +φ

n
i pn

i = 0,

δ−t pn
i +

1
2
(𝐷2

1𝑞
n)i +φ

n
i qn

i = 0,

δ+t δ
−
t φ

n
i − (𝐷2

1𝛷
n)i +φ

n
i − [(pn

i )
2 +(pn

i )
2] = 0. (24)

3. Numerical simulations
In this section, we will conduct some numerical experi-

ments to test the performances of the multisymplectic implicit
scheme (16) and the multisymplectic explicit scheme (24).
The performances of the two schemes are exhibited in the fol-
lowing aspects: the accuracies of the single soliton solution
and the numerical performances in preserving the conserva-
tive quantities, including charge Q, energy E , and momentum
M . The accuracy of the migration of a soliton at tn = nτ is
measured by

‖ L(ψ) ‖∞= max
0≤i≤N−1

| ψ(xi,nτ)−ψ
n
i |,

‖ L(ψ) ‖2=

(
h

N−1

∑
i=0
| ψ(xi,nτ)−ψ

n
i |2

)1/2

.
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Similarly, we can define ‖ L(φ) ‖∞ and ‖ L(φ) ‖2. The dis-
crete charge, energy, and momentum quantities at tn = nτ are
calculated by

Qn = h
N−1

∑
i=0
|ψn

i |2,

E n = h
N−1

∑
i=0

[(φ n
i )

2 +(δ−t φ
n
i )

2 +(𝐷1𝛷
n)2

i + |(𝐷1Ψ
n)i|2

−2φ
n
i |ψn

i |2],

M n = h
N−1

∑
i=0

ℑ(δ−t ψn
i (𝐷1Ψ

n)i−δ−t φ
n
i (𝐷1Ψ

n)i).

The errors in charge, energy, and momentum are scaled by
|Qn−Q0|, |E n−E 0|, and |M n−M 0|, respectively.

Example 1 (single soliton) The KGS equations (1) admit
analytic solitary wave solutions

ψ(x, t,ν ,x0) =
3
√

2
4
√

1−ν2
sech2

(
1

2
√

1−ν2
(x−νt− x0)

)
× exp

[
i
(

νx+
1−ν2 + v4

2(1−ν2)
t
)]

,

φ(x, t,ν ,x0) =
3

4(1−ν2)

× sech2
(

1
2
√

1−ν2
(x−νt− x0)

)
, (25)

where ν is the propagating velocity of the wave, and x0 is
the initial phase. In this test, we solve the initial problem
ψ0(x) = ψ(x, t,0.1,0), φ0(x) = φ(x, t,0.1,0), and φ1(x) =

φt(x, t,0.1,0)|t=0 over region−10≤ x≤ 10 up to T = 80. The
implicit and explicit schemes are implemented with N = 200,
τ = 0.01 and N = 200, τ = 0.001, respectively. The error
norms in |ψ| and φ of the two schemes are shown in Figs. 1
and 2. From Fig. 2, we find that the errors in solutions |ψ| and
φ oscillate near zero in the scale of 10−4 and do not exhibit
any growth throughout the computations. Therefore, the im-
plicit method (16) can provide accurate solutions in long-time
computations. From Fig. 3, we can see that the errors obtained
by the explicit method (24) also oscillate near zero, but they
increase as time evolves. However, the errors are still small at
T = 80. Figure 3 displays the errors in charge, energy, and mo-
mentum of the two methods. From Fig. 3(a), we find that the
implicit scheme satisfies the charge conservation law exactly
since the errors in charge are within the roundoff error of the
machine. The energy and momentum are conserved very well
because the errors are in the scale of 10−8. From Fig. 3(b), it is
clear that the explicit scheme preserves the three conservative
quantities well.

Next, we compare the performance of our implicit
method with that of the methods in the literature. We consider
the problem with ν = 0.3, x0 =−20,−40≤ x≤ 40 and imple-
ment all methods with various temporal and spatial step sizes.
Table 1 lists the numerical errors for all methods at T = 1.
The charge errors are also listed in the table. From the ta-
ble, we find that the proposed implicit method provides the
second-best numerical solutions, ψ and φ , while it preserves
the charge quantity better than the others.
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Fig. 1. (color online) The errors in the solutions of (a) |ψ| and (b) φ

obtained by the implicit scheme (16).
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Fig. 2. (color online) The errors in the solutions of (a) |ψ| and (b) φ

obtained by the explicit scheme (24).
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Fig. 3. (color online) The errors in the invariants for (a) the implicit scheme and (b) the explicit scheme.

Table 1. Comparison among several methods in numerical error and conserved quantities.

τ/h Method ‖ L(φ) ‖∞ ‖ L(ψ) ‖∞ |Qn−Q0|
0.1/0.2 scheme (16) 3.0277×10−4 2.8025×10−4 4.4409×10−16

Ref. [1] 1.2586×10−3 2.0780×10−3 5.7731×10−15

Ref. [21] 3.4042×10−3 5.0322×10−3 4.4409×10−15

Ref. [22] 1.0009×10−4 1.6686×10−4 1.4210×10−14

0.05/0.1 scheme (16) 7.9757×10−5 7.4593×10−5 4.4409×10−16

Ref. [1] 3.3251×10−4 5.3927×10−4 1.1102×10−14

Ref. [21] 9.5158×10−5 1.3354×10−3 7.5495×10−15

Ref. [22] 2.9594×10−5 4.1465×10−5 2.6201×10−14

Example 2 (soliton collision) In the following simula-
tions, we study the head-on collisions of two solitary waves.
The initial conditions are chosen as

ψ0 = ψ(x,0,v1,x1)+ψ(x,0,v2,x2),

φ0 = φ(x,0,v1,x1)+φ(x,0,v2,x2),

φ1 = φ(x, t,v1,x1)t |t=0 +φ(x, t,v2,x2)|t=0. (26)

We solve the problem with N = 150 and τ = 0.001 in region
−30 ≤ x ≤ 30 up to T = 80, and investigate the collision of
the symmetric solitons. We take ν1 = 0.2, x1 = −10 and
ν2 = −0.2, x2 = 10. The solitons are symmetric if they are
symmetrically distributed around the origin. Figure 4 displays
the evolutions of the shapes of |ψ| and φ . Figure 5 shows the
errors in charge, energy, and momentum of the two methods.
From Fig. 5(a), we find that the implicit scheme preserves the
charge exactly and conserves the energy well. From the two
graphs in Fig. 5, we can see that the errors in the momentum
of the two schemes are all about 10−13. As we know, the two
schemes do not preserve the momentum exactly. The reason
for the errors to be 10−13 is that the momentum is zero for the
symmetric soliton collision case.

Next, we discuss the non-symmetric soliton collision. We
choose ν1 = 0.4, x1 =−20 and ν2 =−0.2, x2 = 15. The sim-
ulations of the soliton collision are illustrated in Fig. 6. It is

clear that the soliton with a large amplitude becomes larger
and the one with a small amplitude becomes smaller after the
collision. The errors in charge, energy, and momentum of the
two schemes are represented in Fig. 7.

Example 3 (plane wave solution) We study the evolution
of a plane wave as time evolves. The KGS equations admit the
analytic plane wave solution{

ψ(x, t) = exp[i(7x+48t)],
φ(x, t) = 1,

0≤ x≤ 4π. (27)

Obviously, the modular of the wave is always equal to 1.
Thus, we call it a plane wave because the modular of the
wave forms a plane parallel to the x–t plane. Here, we take
ψ0(x) = exp(7ix), φ0(x) = 1 and φ1(x) = 48i exp[i(7x+48t)]
as the initial conditions. We conduct the simulations with
N = 40 and τ = 0.001 up to T = 100. Figure 8 shows the vari-
ations in the maximum errors in |ψ| and φ against time. We
can see that the errors in φ obtained by the two schemes are al-
most the same, while the errors in |ψ| obtained by the implicit
scheme are much smaller than those of the explicit scheme.
Figure 9 exhibits the residuals of the conservative quantities,
charge, energy, and momentum, of the two schemes. It is clear
that the implicit scheme preserves the three invariants much
better than the explicit one.
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Fig. 4. (color online) The collision of symmetric solitons: (a) |ψ|, (b) φ .
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Fig. 5. (color online) The errors in the invariants of the symmetric soliton collision in (a) the implicit scheme, and (b) the explicit scheme.
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Fig. 6. (color online) The collision of non-symmetric solitons: (a) |ψ|, (b) φ .
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Fig. 7. (color online) The errors in the invariants of the collision of non-symmetric solitons in (a) the implicit scheme, and (b) the explicit scheme.
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Fig. 9. (color online) The errors in charge, energy, and momentum for (a) the implicit scheme, and (b) the explicit scheme.

4. Conclusion
Applying the Fourier pseudospectral method to space

derivatives and the symplectic rule to time derivatives in the
multisymplectic form (8) of the KGS equations, we construct
implicit and explicit multisymplectic schemes. The implicit
scheme satisfies the charge conservation law exactly. In long-
time computations, the two methods both provide satisfactory
solutions for a single soliton and simulate the collision of soli-
tons well. In all the numerical experiments, both methods pre-
serve the invariants well. Although the implicit scheme con-
serves the invariants better than the explicit one, while the lat-
ter is easier to be implemented than the former.
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