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Abstract

In this paper we study the Cauchy problem for the semilinear fractional power dissipative equation ut + (−�)αu = F(u) for the
initial data u0 in critical Besov spaces Ḃσ

2,r
with σ � n

2 − 2α−d
b

, where α > 0, F(u) = P(D)ub+1 with P(D) being a homogeneous
pseudo-differential operator of order d ∈ [0,2α) and b > 0 being an integer. Making use of some estimates of the corresponding
linear equation in the frame of mixed time–space spaces, the so-called “mono-norm method” which is different from the Kato’s
“double-norm method,” Fourier localization technique and Littlewood–Paley theory, we get the well-posedness result in the case
σ > −n

2 .
© 2007 Elsevier Inc. All rights reserved.

Keywords: Dissipative equation; Cauchy problem; Well-posedness; Besov spaces; Fourier localization; Littlewood–Paley theory

1. Introduction

In this paper we study the Cauchy problem for the semilinear fractional power dissipative equation{
ut + (−�)αu = F(u), (t, x) ∈ R

+ × R
n,

u(0, x) = u0(x), x ∈ R
n,

(1.1)

for the initial data u0(x) in critical Besov spaces Ḃσ
2,r with σ � n

2 − 2α−d
b

, where α > 0, F(u) = P(D)ub+1 with
P(D) being a homogeneous pseudo-differential operator of order d ∈ [0,2α) and b > 0 being an integer.

The evolution equation in (1.1) models several classical equations, for example:

1. The semilinear fractional power dissipative equation

ut + (−�)αu = μ|u|bu
with μ being a constant.
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2. The generalized convection–diffusion equation

ut + (−�)αu = a · ∇(|u|bu)
, a ∈ R

n \ {0}.
3. The generalized Navier–Stokes equation

ut + (−�)αu + u · ∇u + ∇P = 0, divu = 0.

4. The subcritical dissipative quasi-geostrophic equation{
θt + u · ∇θ + κ(−�)αθ = 0,

u = (u1, u2) = ∇⊥ψ, (−�)
1
2 ψ = θ,

(t, x) ∈ R
+ × R

2,

where 1
2 < α � 1.

The case α = 1 for the Cauchy problem (1.1) corresponds to the semilinear heat equation and has been studied
extensively, see e.g. [6–11,13–15,20–24,26,27]. For the generalized Navier–Stokes equation, see [2,32]. For the Q-G
equation, please refer to [3,5,28–31,33]. About some results for the general case, refer to [8,12,16–18]. Recently, the
well-posedness in Lebesgue space for general case has been studied in [19] by using “double-norm method” and some
time–space estimates.

In this paper, making use of Fourier localization technique and Littlewood–Paley theory, we will firstly prove some
estimates of the corresponding linear equation in the frame of mixed time–space spaces, then make use of “mono-
norm method” which is different from the Kato’s “double-norm method” to investigate the well-posedness of Cauchy
problem (1.1) for general α > 0 in critical Besov spaces Ḃσ

2,r .

That Ḃσ
2,r is the critical space when σ = n

2 − 2α−d
b

is due to the scaling invariance in Ḃσ
2,r . That is, if

u(t, x) is a solution, then uλ(t, x) = λ
2α−d

b u(λ2αt, λx) is also a solution of the equation and ‖uλ(t, ·)‖Ḃσ
2,r

=
λσ− n

2 + 2α−d
b ‖u(λ2αt, ·)‖Ḃσ

2,r
. It must be noticed that when r = ∞, the Besov space Ḃσ

2,∞ contains self-similar ini-

tial data in the sense that u0(x) satisfies λ
2α−d

b u0(λx) = u0(x) for any λ > 0, thus the following Theorem 1.1 implies
the existence of self-similar solutions to the Cauchy problem (1.1).

In this paper, our main results are the following theorems (some notation used there is referred to Section 2).

Theorem 1.1. Let 1 � r � +∞, σ � n
2 − 2α−d

b
. Suppose σ > −n

2 and u0 ∈ Ḃσ
2,r , then there exits T > 0 such that the

Cauchy problem (1.1) has a unique solution u(t) ∈ L
2(b+1)α

2α−d (I ; Ḃσ+ 2α−d
b+1

2,r ) and

u ∈ L∞(
I ; Ḃσ

2,r

) ∩L
2α

2α−d
(
I ; Ḃσ+2α−d

2,r

)
, (1.2)

where I = [0, T ).
If in addition r < +∞, then u ∈ C(I ; Ḃσ

2,r ).
Denoting the maximum lifespan by T 	

u0
, we also have the following results:

1. There exists a constant c > 0 such that, when ‖u0‖Ḃσ
2,r

� c, we have T 	
u0

= +∞.

2. If u and v are two solutions of the Cauchy problem (1.1) with initial data u0 and v0, then there exists a constant
C > 0 such that

‖u − v‖
L

2(b+1)α
2α−d (I ;Ḃσ+ 2α−d

b+1
2,r )

� C‖u0 − v0‖Ḃσ
2,r

. (1.3)

Theorem 1.2 (Blow-up criterion). Under the assumption of Theorem 1.1, if T 	
u0

< +∞, then

‖u‖
L

2(b+1)α
2α−d ([0,T 	

u0
);Ḃσ+ 2α−d

b+1
2,r )

= +∞. (1.4)
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Remark 1.1. Recall the basic facts:

1. When σ � 0 and 1 � r � 2, Ḃσ
2,r ↪→ L

nb
2α−d .

2. When −n
2 < σ < 0 and 1 � r < 2, L

nb
2α−d 
↪→ Ḃσ

2,r and Ḃσ
2,r 
↪→ L

nb
2α−d .

3. When σ > 0 and r > 2, L
nb

2α−d 
↪→ Ḃσ
2,r and Ḃσ

2,r 
↪→ L
nb

2α−d .

4. When −n
2 < σ � 0 and r � 2, L

nb
2α−d ↪→ Ḃσ

2,r .

Therefore the Besov spaces Ḃσ
2,r in this paper are different from the Lebesgue space L

nb
2α−d in [19].

This paper is arranged as following:
In Section 2, we introduce some definitions and properties about homogeneous Besov spaces and Littlewood–

Paley decomposition. In Section 3, making use of Fourier localization technique and Littlewood–Paley theory, we
will prove some estimates of linear fractional power dissipative equation in the frame of mixed time–space spaces.
In Section 4, we make use of the results derived in Section 3, “mono-norm method,” Fourier localization technique
and Littlewood–Paley theory to prove the well-posedness in critical Besov spaces, and we will also prove the blow-up
criterion.

2. Besov spaces and Littlewood–Paley decomposition

The proof of the results presented in this paper is based on a dyadic partition of unity in Fourier variables, the
so-called homogeneous Littlewood–Paley decomposition.

Let (χ,ϕ) be a couple of smooth functions valued in [0,1] such that χ is supported in the ball {ξ ∈ R
n | |ξ | � 4

3 },
ϕ is supported in the shell {ξ ∈ R

n | 3
4 � |ξ | � 8

3 } and

χ(ξ) +
∑
q∈N

ϕ
(
2−qξ

) = 1, ∀ξ ∈ R
n;

∑
q∈Z

ϕ
(
2−qξ

) = 1, ∀ξ ∈ R
n \ {0}.

Denoting ϕq(ξ) = ϕ(2−qξ) and hq = F−1ϕq , we define the dyadic blocks as

�̇qu � ϕ
(
2−qD

)
u =

∫
Rn

hq(y)u(x − y)dy, ∀q ∈ Z.

We shall also use the following low-frequency cut-off:

Ṡqu � χ
(
2−qD

)
u.

Definition 2.1. Let S ′
h be the space of temperate distributions u such that

lim
q→−∞ Ṡqu = 0, in S ′.

The formal equality

u =
∑
q∈Z

�̇qu (2.1)

holds in S ′
h and is called the homogeneous Littlewood–Paley decomposition. It has nice properties of quasi-

orthogonality

�̇q�̇q ′u ≡ 0 if |q − q ′| � 2. (2.2)

Let us now define the homogeneous Besov spaces
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Definition 2.2. For s ∈ R, (p, r) ∈ [1,+∞]2 and u ∈ S ′
h, we set

‖u‖Ḃs
p,r

�
(∑

q∈Z

2qsr‖�̇qu‖r
Lp

) 1
r

if r < +∞,

and

‖u‖Ḃs
p,∞ � sup

q∈Z

2qs‖�̇qu‖Lp .

We then define the homogeneous Besov spaces as

Ḃs
p,r �

{
u ∈ S ′

h

∣∣ ‖u‖Ḃs
p,r

< +∞}
.

The above definition does not depend on the choice of the couple (χ,ϕ). We can further remark that if s < n
p

or

s = n
p

and r = 1, then Ḃs
p,r is a Banach space.

About complete study of Besov spaces, please refer to [1,4,25]. Let us just recall some basic properties.

Proposition 2.1. The following properties hold (refer to [25]):

1. Ḃs
2,2 = Ḣ s .

2. Generalized derivatives: Let f be a smooth function on R
n \ {0} which is homogeneous of degree m. Assume that

s − m < n
p

or s − m = n
p

and r = 1, then f (D) is continuous from Ḃs
p,r to Ḃs−m

p,r .

3. If r is finite, then C∞
c ∩ Ḃs

p,r is densely embedded in Ḃs
p,r .

4. Sobolev embedding: If p1 � p2 and r1 � r2, then Ḃs
p1,r1

↪→ Ḃ
s−n( 1

p1
− 1

p2
)

p2,r2 .

5. Real interpolation: ‖u‖
Ḃ

θs1+(1−θ)s2
p,r

� ‖u‖θ

Ḃ
s1
p,r

‖u‖1−θ

Ḃ
s2
p,r

, for θ ∈ [0,1].

We have the following continuity properties for the product of two functions (refer to [25]).

Proposition 2.2. If 1 � p, r � ∞, s1, s2 < n
p

and s1 + s2 > 0, there exists a positive constant C = C(s1,s2,p, r, n)

such that

‖uv‖
Ḃ

s1+s2− n
p

p,r

� C‖u‖
Ḃ

s1
p,r

‖v‖
Ḃ

s2
p,r

. (2.3)

For the time–space used in Theorem 1.1, we have the following definition.

Definition 2.3. Let s ∈ R, 1 � p, r,ρ � +∞ and I = [0, T ), T ∈ (0,+∞]. We set

‖u‖Lρ(I ;Ḃs
p,r )

�
(∑

q∈Z

2qsr‖�̇qu‖r
Lρ(I ;Lp)

) 1
r

(2.4)

and denote by Lρ(I ; Ḃs
p,r ) the set of distributions of S ′(I × R

n) with finite ‖ · ‖Lρ(I ;Ḃs
p,r )

norm.

Let us remark that by virtue of Minkowski inequality, we have

‖u‖Lρ(I ;Ḃs
p,r )

� ‖u‖Lρ(I ;Ḃs
p,r )

if ρ � r,

and

‖u‖Lρ(I ;Ḃs
p,r )

� ‖u‖Lρ(I ;Ḃs
p,r )

if ρ � r.
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3. Some estimates of linear equation

In this section we will investigate some time–space estimates of solution to the Cauchy problem of the following
linear fractional power dissipative equation:{

ut + (−�)αu = f (t, x), (t, x) ∈ R
+ × R

n,

u(0, x) = u0(x), x ∈ R
n,

(3.1)

where u0 ∈ Ḃs
p,r and f ∈ Lρ(I ; Ḃs+ 2α

ρ
−2α

p,r ).
At first, let us prove estimates for the semi-group of the fractional power dissipative equation restricted to functions

with compact supports away from the origin in Fourier variables.

Lemma 3.1. Let φ be a smooth function supported in the shell {ξ ∈ R
n | R1 � |ξ | � R2, 0 < R1 < R2}. There exist

two positive constants κ and C1 depending only on φ such that for all 1 � p � ∞, τ � 0 and λ > 0, we have∥∥φ
(
λ−1D

)
e−τ(−�)αu

∥∥
Lp � C1e

−κτλ2α∥∥φ
(
λ−1D

)
u
∥∥

Lp . (3.2)

Proof. Let φ̃ be a smooth function supported in the shell {ξ ∈ R
n | R′

1 � |ξ | � R′
2} for some 0 < R′

1 < R1 and
R′

2 > R2 such that φ̃ ≡ 1 in a neighborhood of suppφ. We have

F
(
φ
(
λ−1D

)
e−τ(−�)αu

)
(ξ) = φ

(
λ−1ξ

)
e−τ |ξ |2αF(u)(ξ)

= φ̃
(
λ−1ξ

)
e−τ |ξ |2α

φ
(
λ−1ξ

)
F(u)(ξ)

= (
φ̃
(
λ−1ξ

)
e−τ |ξ |2α )

F
(
φ
(
λ−1D

)
u
)
(ξ).

Thus we have

φ
(
λ−1D

)
e−τ(−�)αu = gλ(τ, ·) ∗ φ

(
λ−1D

)
u,

where

gλ(τ, x) � (2π)−n

∫
Rn

φ̃
(
λ−1ξ

)
e−τ |ξ |2α

eix·ξ dξ.

According to Young equality, we have∥∥φ
(
λ−1D

)
e−τ(−�)αu

∥∥
Lp �

∥∥gλ(τ, ·)
∥∥

L1

∥∥φ
(
λ−1D

)
u
∥∥

Lp .

Let g(τ, x) � (2π)−n
∫

Rn φ̃(ξ)e−τ |ξ |2α
eix·ξ dξ , by simple computation we have

gλ(τ, x) = λn(2π)−n

∫
Rn

φ̃
(
λ−1ξ

)
e−τλ2α |λ−1ξ |2α

eiλx·λ−1ξ d
(
λ−1ξ

)
= λng

(
τλ2α,λx

)
,

thus ‖gλ(τ, ·)‖L1 = ‖λng(τλ2α,λx)‖L1 = ‖g(τλ2α, ·)‖L1 . Therefore it is sufficient to prove that there exist two posi-
tive constants κ and C1 such that∥∥g(τ, ·)∥∥

L1 � C1e
−κτ . (3.3)

In fact, we have

g(τ, x) = (2π)−n
(
1 + |x|2)−n

∫
Rn

(
1 + |x|2)n

φ̃(ξ)e−τ |ξ |2α

eix·ξ dξ

= (2π)−n
(
1 + |x|2)−n

∫
Rn

φ̃(ξ)e−τ |ξ |2α

(Id − �ξ)
neix·ξ dξ

= (2π)−n
(
1 + |x|2)−n

∫
n

eix·ξ (Id − �ξ)
n
(
φ̃(ξ)e−τ |ξ |2α )

dξ.
R
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From the last equality and the fact that the integration may be restricted to supp φ̃, we conclude that there exist two
positive constants κ and C2 such that∣∣g(τ, x)

∣∣ � C2
(
1 + |x|2)−n

e−κτ .

Thus we can get (3.3). �
Let us now state our result for the linear fractional power dissipative equation (3.1).

Theorem 3.2. Let 0 < T � +∞, I = [0, T ), s ∈ R and 1 � ρ,p, r � +∞. Assume that u0 ∈ Ḃs
p,r and f ∈

Lρ(I ; Ḃs+ 2α
ρ

−2α

p,r ). Then the Cauchy problem (3.1) has a unique solution u ∈ L∞(I ; Ḃs
p,r ) ∩Lρ(I ; Ḃs+ 2α

ρ
p,r ) and there

exists a constant C3 > 0 depending only on n such that ∀ρ1 ∈ [ρ,+∞], we have

‖u‖
Lρ1 (I ;Ḃs+ 2α

ρ1
p,r )

� C3
(‖u0‖Ḃs

p,r
+ ‖f ‖

Lρ(I ;Ḃs+ 2α
ρ −2α

p,r )

)
. (3.4)

If in addition r < +∞, then u ∈ C(I ; Ḃs
p,r ).

Proof. Since u0 and f are temperate distributions, Eq. (3.1) has a unique solution u in S ′(I × R
n), which satisfies

û(t, ξ) = e−t |ξ |2α

û0(ξ) +
t∫

0

e−(t−τ)|ξ |2α

f̂ (τ, ξ)dτ. (3.5)

Because u0 ∈ S ′
h(R

n) and f ∈ S ′
h(I × R

n), we easily get u ∈ S ′
h(I × R

n). Now, applying �̇q to (3.1) yields

�̇qu(t) = e−t (−�)2α

�̇qu0 +
t∫

0

e−(t−τ)(−�)2α

�̇qf (τ )dτ. (3.6)

Thus we get

∥∥�̇qu(t)
∥∥

Lp �
∥∥e−t (−�)2α

�̇qu0
∥∥

Lp +
t∫

0

∥∥e−(t−τ)(−�)2α

�̇qf (τ )
∥∥

Lp dτ. (3.7)

By virtue of Lemma 3.1, we have for some κ > 0,

∥∥�̇qu(t)
∥∥

Lp � e−κ22αq t‖�̇qu0‖Lp +
t∫

0

e−κ22αq(t−τ)
∥∥�̇qf (τ )

∥∥
Lp dτ. (3.8)

By Young equality, we get

∥∥�̇qu(t)
∥∥

Lρ1 (I ;Lp)
�

(
1 − e−κ22αqρ1T

κ22αqρ1

) 1
ρ1 ‖�̇qu0‖Lp +

(
1 − e−κ22αqρ2T

κ22αqρ2

) 1
ρ2 ∥∥�̇qf (τ )

∥∥
Lρ(I ;Lp)

, (3.9)

where 1 + 1
ρ1

= 1
ρ2

+ 1
ρ

.
Finally, taking the lr (Z) norm, we conclude that

‖u‖
Lρ1 (I ;Ḃs+ 2α

ρ1
p,r )

�
[∑

q∈Z

(
1 − e−κ22αqρ1T

κρ1

) r
ρ1 (

2qs‖�̇qu0‖Lp

)r
] 1

r

+
[∑

q∈Z

(
1 − e−κ22αqρ2T

κρ2

) r
ρ2 (

2q(s+ 2α
ρ

−2α)
∥∥�̇qf (τ )

∥∥
Lρ(I ;Lp)

)r
] 1

r

.

Thus, we get that u ∈ L∞(I ; Ḃs
p,r ) ∩Lρ(I ; Ḃs+ 2α

ρ
p,r ) and satisfies the inequality (3.4).
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That u ∈ C(I ; Ḃs
p,r ) in the case where r is finite may be easily deduced from the density of S ∩ Ḃs

p,r in Ḃs
p,r (see

Proposition 2.1). �
4. Well-posedness in critical Besov spaces

In this section we make use of the results derived in Section 3, “mono-norm method,” Fourier localization technique
and Littlewood–Paley theory to prove the well-posedness in critical Besov spaces Ḃσ

2,r with σ � n
2 − 2α−d

b
, and we

will also prove the blow-up criterion.

Lemma 4.1. Let Q(u1, u2, . . . , ub+1) = P(D)
∏b+1

j=1 uj . Then for the (b + 1)-linear map Q(u1, u2, . . . , ub+1), when
σ > −n

2 , there exists a constant C4 such that

∥∥Q(u1, u2, . . . , ub+1)
∥∥

Ḃσ−d
2,r

� C4

b+1∏
j=1

‖uj‖
Ḃ

σ+ 2α−d
b+1

2,r

(4.1)

and

∥∥Q(u1, u2, . . . , ub+1)
∥∥
L

2α
2α−d (I ;Ḃσ−d

2,r )
� C4

b+1∏
j=1

‖uj‖
L

2(b+1)α
2α−d (I ;Ḃσ+ 2α−d

b+1
2,r )

. (4.2)

Proof. According to Proposition 2.2, under the assumption that σ > −n
2 , we may easily get the proof of (4.1). The

proof of (4.2) is referred to [25]. �
Now we give a lemma which proof can be found in [20].

Lemma 4.2. Let X be a Banach space and let B : X×X×· · ·×X → X be an m-linear continuous operator satisfying

∥∥B(u1, u2, . . . , um)
∥∥

X
� K

m∏
j=1

‖uj‖X for all u1, u2, . . . , um ∈ X, (4.3)

for some constant K > 0. Let R > 0 be such that m(2R)m−1K < 1. Then for every y ∈ X with ‖y‖X � R the equation

u = y + B(u,u, . . . , u) (4.4)

has a unique solution u ∈ X satisfying that ‖u‖X � 2R and ‖u‖X � m
m−1‖y‖X . Moreover, the solution u depends

continuously on y in the sense that, if ‖z‖X � R and v = z + B(v, v, . . . , v), ‖v‖X � 2R, then

‖u − v‖X � 1

1 − m(2R)m−1K
‖y − z‖X. (4.5)

From now on, we begin to prove Theorem 1.1.

Proof of Theorem 1.1. Step 1. The case for small u0.
From (1.1), we have

u = e−t (−�)αu0 +
t∫

0

e−(t−t ′)(−�)αQ(u,u, . . . , u)dt ′

� e−t (−�)αu0 + B(u,u, . . . , u). (4.6)

Let X (I ) � L
2(b+1)α

2α−d (I ; Ḃσ+ 2α−d
b+1

2,r ), now we consider the (b + 1)-linear map B(u1, u2, . . . , ub+1). According to The-
orem 3.2 and Lemma 4.1, we get
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∥∥B(u1, u2, . . . , ub+1)
∥∥

X (I )
�

∥∥Q(u1, u2, . . . , ub+1)
∥∥
L

2α
2α−d (I ;Ḃσ−d

2,r )

� C4

b+1∏
j=1

‖uj‖X (I ). (4.7)

By Lemma 4.2, we know that, if we can prove ‖e−t (−�)αu0‖X (I ) � R with R satisfying (b + 1)(2R)bC4 < 1,
then (4.6) has a unique solution in B2R(0), where B2R(0) is a closed Ball with center 0 and radius 2R in X (I ).

In fact, according to Theorem 3.2, there exists a constant c > 0 such that when ‖u0‖Ḃσ
2,r

� c, we have

‖e−t (−�)αu0‖X (I ) � R. Therefore, (4.6) has a unique global solution (T = ∞) such that

‖u‖X (I ) � b + 1

b

∥∥e−t (−�)αu0
∥∥

X (I )
� b + 1

b
R � 2R. (4.8)

Step 2. The case for large u0.
According to absolute continuity of norm, there exists N ∈ N such that

û0(ξ) = û0(ξ)χ|ξ |�2N (ξ) + û0(ξ)χ|ξ |�2N (ξ)

� û0h + û0l (4.9)

and

‖u0h‖Ḃσ
2,r

� 1

2
c. (4.10)

Thus we have∥∥e−t (−�)αu0
∥∥

X (I )
� 1

2
R + ∥∥e−t (−�)αu0l

∥∥
X (I )

. (4.11)

But ∥∥e−t (−�)αu0l

∥∥
X (I )

� 2N 2α−d
b+1

∥∥e−t (−�)αu0l

∥∥
L

2(b+1)α
2α−d (I ;Ḃσ

2,r )

� 2N 2α−d
b+1 T

2α−d
2(b+1)α C3‖u0‖Ḃσ

2,r
, (4.12)

thus if we choose T to satisfy

2N 2α−d
b+1 T

2α−d
2(b+1)α C3‖u0‖Ḃσ

2,r
� 1

2
R, (4.13)

that is

T �
(

R

21+N 2α−d
b+1 C3‖u0‖Ḃσ

2,r

) 2(b+1)α
2α−d

, (4.14)

then by Lemma 4.2 we can conclude that (4.6) has a unique solution in the closed ball B2R(0) in X (I ).
Step 3. Now let us prove the regularity.
u ∈ X (I ) is the solution of (1.1), then by Lemma 4.1 we can get

Q(u,u, . . . , u) ∈ L
2α

2α−d
(
I ; Ḃσ−d

2,r

)
, (4.15)

therefore by Theorem 3.2 we have

u ∈ L∞(
I ; Ḃσ

2,r

) ∩L
2α

2α−d
(
I ; Ḃσ+2α−d

2,r

)
, (4.16)

and if r < +∞, then u ∈ C(I ; Ḃσ
2,r ).

Step 4. Let u, v be two solutions of (1.1) in X (I ) for initial data u0 and v0, then w = u − v satisfies{
wt + (−�)αw = F(u) − F(v), (t, x) ∈ R

+ × R
n,

n
(4.17)
w(0, x) = w0(x) = u0(x) − v0(x), x ∈ R .
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According to Theorem 3.2 and Lemma 4.1, we have

‖w‖X (I ) � C3
(‖w0‖Ḃσ

2,r
+ ∥∥F(u) − F(v)

∥∥
L

2α
2α−d (I ;Ḃσ−d

2,r )

)
� C3

(
‖w0‖Ḃσ

2,r
+ C4

b∑
j=0

‖u‖j

X (I )
‖v‖b−j

X (I )
‖w‖X (I )

)
. (4.18)

Denoting Z(T ) � C3C4
∑b

j=0 ‖u‖j

X (I )
‖v‖b−j

X (I )
, we have

‖w‖X (I ) � C3‖w0‖Ḃσ
2,r

+ Z(T )‖w‖X (I ). (4.19)

Lebesgue dominated convergence theorem insures that Z is a continuous nondecreasing function which vanishes at
zero. Hence for small enough T1 we have Z(T1) � 1

2 and

‖w‖
L

2(b+1)α
2α−d ([0,T1);Ḃ

σ+ 2α−d
b+1

2,r )

� 2C3‖w0‖Ḃσ
2,r

. (4.20)

Now a standard connectivity argument like as [0, T1), [T1,2T1), . . . enable us to conclude that there exists a constant
C > 0 such that

‖w‖
L

2(b+1)α
2α−d ([0,T );Ḃσ+ 2α−d

b+1
2,r )

� C‖w0‖Ḃσ
2,r

. (4.21)

Thus (1.3) is proved. �
Remark 4.1. According to Proposition 2.1, Ḃσ

2,2 = Ḣ σ , thus when r = 2, Theorem 1.1 implied the well-posedness in
Sobolev space.

Finally let us prove the blow-up criterion.

Proof of Theorem 1.2. We will prove that if the solution u(t) satisfies

‖u‖
L

2(b+1)α
2α−d ([0,T );Ḃσ+ 2α−d

b+1
2,r )

< +∞, (4.22)

then T 	
u0

> T . (⇒ If T 	
u0

< +∞, then ‖u‖
L

2(b+1)α
2α−d ([0,T 	

u0
);Ḃσ+ 2α−d

b+1
2,r )

= +∞.)

According to Theorem 3.2 and Lemma 4.1, we can get

‖u‖L∞([0,T );Ḃσ
2,r )

� C3
(‖u0‖Ḃσ

2,r
+ ∥∥Q(u,u, . . . , u)

∥∥
L

2α
2α−d ([0,T );Ḃσ−d

2,r )

)
� C3

(‖u0‖Ḃσ
2,r

+ C4‖u‖b+1

L
2(b+1)α

2α−d ([0,T );Ḃσ+ 2α−d
b+1

2,r )

)
< +∞. (4.23)

Therefore there exists N ∈ N such that ∀t ∈ [0, T ),

û(ξ) = û(ξ)χ|ξ |�2N (ξ) + û(ξ)χ|ξ |�2N (ξ)

� ûh + ûl (4.24)

and

‖uh‖Ḃσ
2,r

� 1

2
c. (4.25)

Now, taking ∀t ∈ [0, T ) as initial time, we can choose T̃ to satisfy

T̃ − t �
(

R

21+N 2α−d
b+1 C3‖u(t)‖Ḃσ

) 2(b+1)α
2α−d

, (4.26)
2,r
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thus we have

T̃ � t +
(

R

21+N 2α−d
b+1 C3 sup

0�t�T

‖u(t)‖Ḃσ
2,r

) 2(b+1)α
2α−d

. (4.27)

Let t → T , then T̃ is larger than T . Thus the conclusion is proved. �
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