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Abstract

This paper studies the iterated commutators on mixed norm spaces L%(¢) characterizing the conjugate
holomorphic symbols for which the corresponding iterated commutators are bounded by using the Bergman
geometry, properties of holomorphic functions and related analysis.
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1. Introduction

Let dV be the Lebesgue measure on the unit ball B of C"* normalized so that V(B) =1, and
do be the normalized rotation invariant measure on the boundary dB of B so that 0 (dB) = 1.
The class of all holomorphic functions on B is denoted by H (B) and H°(B) denotes the class
as all bounded holomorphic functions on B. Let ¢ be a positive continuous function on [0, 1).
¢ is called a normal function if there are two constants a and b: 0 < a < b such that

(1) o)

———— decreases forfp <t < 1and lim =
(1 —1¢2)a i—1- (1 —t2)a

s
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Q)
(1—12)b

t
increases for 7o <t < 1 and lim L = 00.
t—1- (1 —12)P
Throughout this paper, we always suppose that {¢, ¥} is a normal pair, that is ¥ (t) = (1;(ttz))a for

some o > b. We will also need the following measure

#*(Iz])
1—|z)?

Let L?(¢) denote the space of all locally L? integrable functions f on B such that

dVy(z) = dV(z), ze€B.

12
||f||¢={/|f(z)}2dV¢(Z)} < 00.
B

Let A%2(¢p) = L%(¢) N H(B). Suppose w € B, « is the constant mentioned in the above, and
1
o,m _
kw (Z)—W, Vz € B.

Then the linear operator P is defined as follows:

(Pf)(W) = .o / FOKE" (1 =12 ave),  feL*¢)nL* ),
B

_ _TIm+a)
where ¢, ¢ = T@I(m+D)"

We note that [1] the operator P is bounded from both L?(¢) onto A%(¢p) and L?(y) onto
A%2(yr) = L*(y) N H(B). Moreover (Pf)(w) = f(w) for f € A*(¢p) N A%(y). Given a mea-
surable function b on B, the multiplication operator M}, is defined by My (f) = bf. X.J. Zhang,
J.B. Xiao, and Z.J. Hu in [2] characterized the multiplication operator M, between the mixed
spaces. The commutator (first order) with symbol b is the operator defined by Cp, = [M}, P] =
My P — P M), the Hankel operator H, with symbol b is given by

Hy(f) = — P)(bf), [feA@),

we have C, = H, on A(¢). And therefore, the study of the first order commutators is parallel
to that of the Hankel operators. We refer the reader to [3-5] for results along this line. Let b;
be a measurable function, j =1,2,...,n, if b= (b1, by, ..., b,), define the nth order iterated
commutator with symbol b by

Cp= [Mbn, R [sz, [Mp,, P]] .. ]

Unlike the commutators, the iterated commutators are no longer depending linearly on their
symbols. Therefore most of the techniques used successfully in studying the first order commu-
tators fail to work effectively for the nth order iterated commutators.

A straightforward computation shows that the explicit formula for Cy, is

n
RPN -1
Co () (w) =Cm,ot/1_[(bj(w) —bj@)ky" @ (1= 121*)* f@dV(2), (D
B /=1
Vf € L. Because L™ is dense in L2(¢>), we take (1) as the definition of the iterated commuta-
tor Cy, on L2(¢), if bje H(D), j=1,2,...,n, we have the following identity
n
Cy (k&™) w) = [ (B ) — b @)k&™ (w), )

j=1
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if by =by =--- =b, =h, we write C, = C}!, then
Ch(Hw) = cma /(h(w) —h(@)"kE" @ (1 - 127 FdV (), 3)
B
Cl (k™) (w) = (A(w) — h(@)"KE" (), @

The main result of this paper is Theorem 9 stated below as Theorem.

Theorem. Suppose h € H(B). Then, Cg is bounded on L*(¢) if and only if h € B.

Corollary. Suppose h € H(B). Then Cg is bounded on L*>(dV) if and only if h € B, where
dVi(z) = Cr(1 — |21)*dV (2), » > —1.

Proof. In Theorem, take ¢ (¢) = Ci/z(l —12)+D/2 we have

#*(Iz])
1—]zJ?

It is easy to see that the corollary holds. O

dVy(2) = AV () = Ci(1—[z?)* dV(2) = dVi(2).

Thus the Theorem is a generalization of Theorem 3.3 in [6]. In particular, the Theorem par-
tially answers a question posed at the end of [6], L*(¢) is more general than L2(d V). We still
do not know how to characterize the antiholomorphic symbols b = (b1, by, ..., b,) such that the
iterated commutator Cy, is bounded.

We will use the symbol C denote a positive constant which does not depend on variables z, w
and may depend on some parameters, not necessarily the same at each occurrence.

2. Preliminaries

We begin with the following quantity which was introduced by R.M. Timoney [7] in order to
give a definition of the Bloch semi-norm that is invariant under biholomorphic mappings.

DI Wk%(z)l'

Bow. o) weC”, u);éO}.

Qf(Z)=SuP{

Here

B(z) = ;< _82 log K (z, Z))
m+ 1\ 0z;0z; mxm
is the Bergman matrix at z and
1
(1 = (z, w))ym+!
is the Bergman kernel of B. The Bloch space B (introduced by R.M. Timoney, [7]) is the set of
holomorphic functions f on B for which

K(z,w) =

I fllg=sup{Q(2): z€ B} <.
R.M. Timoney has proved that the norms || f||; = sup{(1 — |z|*)|V f(z)|: z € B} and | f| 5 are

equivalent, where V f(z) = (%(z), %(z), e, %(z)) is the complex gradient of f.
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Lemma 1. [7] If h € B, then there exists a constant C such that
|h(z) = h(w)| < CllhlB(z w), Vz,w e B,

where B(z, w) is Bergman metric on B, which is Mobius invariant.
We recall the Forelli-Rudin estimate.

Lemma 2. [8] Suppose z € B, cis real, t > —1 and

(1—|w?)!

lee@= | T i

dv(w).

Then as |z| — 1~ we have

1
let @™ ey

forc >0, and

1
1 ~log ——
c,t(Z) 0og 1— |Z|2
forc=0, and
Iei(z2) ~ 1
forc <Q.

Lemma 3. [9] Suppose . € B, p € (0, 00), andr € (0, 1). Then there exist constants C; (i =1,2)
depending only on a, b, p, r and m such that

Cr(1 =A%) "$P (1) < V(DG 1)) < Co(1 = A7) 9P (1),

where D(A,r) = {z € B: |py(2)| < r} is the pseudohyperbolic ball with center ) and radius r,
0a. denotes the involutive automorphism of B satisfying p; (0) = A, p; (A) =0.
Ift € D(A,r), then [2]

I=lel~1=[r,  T=P~1=P 1=t~ 1=
thus, by the definition of normal function, we have ¢ (|t|) ~ ¢ (|A]), and

(1 — [a[Pym+! C o (I

= V() <
[1— zA|2m+2 © V(,f’(D()»,r))l—Ifl2

dV (7). (5)

The following results give a new characterization of Bloch space 1.

Lemmad4. Let h € H(B), 1 < p <o00. Then h € B if and only if

P (Iz])
1=z

1/p
dV(z)} < 0.
LEB

sup{/!(hom)(z)—hml”
B
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Proof. Assume that 7 € B. By Lemma 1, there exists a constant C such that
|h(@) —h(w)| < Cllhlgp(z. w).  Vz,w e B.
Since the following explicit formula for the Bergman distance:
m+1\"? 14z
0,)=(——) log—,
B0, z) ( 2 > S
the Mobius invariance property of the Bloch space implies

Ihls = [ (7 o p2)(2) —h(W) | g,

SO
1
|(hopu)(z) — h(W)| < C|lh|glog =
this gives
/!(hom)<z>—h(x>|”¢ “f'ﬁz V(@)

1\’ ¢P
<cunf [ (oeg=r) I ave)
B

1
1 P B
<C||h||g/<log1 ) (1 _rZ)“I’ Lom-1 g,
—r
0

<k

.- p )
On the other hand, writing V(;(D()», r)) = fD(A’r) 7w gy (w), and

1—|wl|?

1 oP(Jwl)
V(D7) / h(w)l — |w|?
D(

Ar)

hpo.r = dV(w),

we obtain

w) - fzm "

¢? (|w|>
e D h —h(x dv
v¢(m » f [hw) = h ()| = op V@

~ p¢> (Jw)) )””
<<7V£(D(A’r» / ) = | T av )
D

(A1)

By the triangle inequality for the L? integral,

1 . p¢ (1z) e
(v(;(n(x,r)) | 1@ =i V(z))
D

1—1zP
()

1 ¢> (Iz) l/p
<2f—— — P .
< (Vg(D(k,V))D/ |h(z) — h(D)| P dV(Z)) (6)

(A1)
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Note the identity
P A A = [wl?)
* 11— wi|?
and
(1 _ |}"|2)m+1
av w))=——"——"—=dV(w).
(po2.(w)) 1w (w)

By the monotonicity of ¢ and Lemma 3, we get that

¢ (Iz])

—lz?

1
- h(z)—h P dv
vy (D(A,r)) f @ = hG)| @

,r

/ he) —h | - (|| :idwz)

V”(D(A 2
o P T s
= h —h = dv
V;(D(A, ) N )|( o px)(w) ()»)| I @ |1 = wipnt? (w)
C(1 = PP (1)) [ ) I
= ho h ——dV
VI (D0 ) N )|( pa)(w) — ()»)| w1 i (w)
<c [ ftopw —nop - ('|w'|)2dV<w>
D(O.r)
<C/|(hom)(w) hool 0 v ). ™

From (6) and (7), we further have

f |h(@) = koo r>|qu (||2||)2dV(z)

v¢,(D<x .
SC/|(hOPA)(w)—h(A)|p¢ ('I '|)2dV<w). ®)
B
Since Va € B,

C
}f(a)|p < W /|f(Z)|pdV(Z).
B

Let f,-(z) = f(rz) forr € (0, 1), then V¢ € 9B,

lferolf<c / |f@|dv(2).
D(0,r)
By the Taylor expansion of f € H(B), we have

- D% )0
[ reoz o = L ay
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where @y = [, 1¢4[>do (¢) = % Taking @ = (0, ..., 1, ...,0), the kth coordinate is 1,
and the rest are 0,

0
—f (0)

ngg\f(r;)!”sc / lf@]"dV) (=1,...,m).
et
D(0,r)

By the elementary inequality, when a > 0, b > 0,

Py bP, 0 1,
(a+b)f’<{“ o N
2P=HaP +bP), p=>1,
we have
IVFSO)|"<C f lf@|"av ().

D(0,r)

Let F=ho p, — ;'D(/\,r)’ then (1 — [A|%)|VA(L)| < |[VF(0)|. Replace f by F in the above
inequality, and change the variable w by t = p; (w), we obtain

(1=12)[vR@)|)" < [VF )"
<C / |ho py(w) — le(A,r)‘pdV(w)

D(0,r)

/ Vl(f) — ]’AlD(A,r)

D(x, r)

‘1) (1 _ |)\|2)m+1

1— .E):|2m+2 dv ()

}pd’ (zh

e dv(r)

<m / Vl(f) hD(Ar)

C/’(hopk)(w) h(,\)|”¢ (I ||)2dV(w).

B

The above inequalities come from (8). This implies sup; p{(1 — A2 VA(L)|} < oo, that is
heB. O

Lemma 5. [9] Let w € B and k3™ be the weighted Bergman reproducing kernel. Then there
exist Cj >0 (j=1,2,3,4) such that

1< (1= wP) Fy () rg" |, < c
Cy < (1= 1wP)* gl [k5™ |, < Ca.
Lemma 6. Suppose 2b — 20 <28 <4a —2b —a —m + 1. Then
= / B w) [k @)|(1 = 12P)* d vy (2)
B

28—«

<C(1— 1w *y?(jwl), weB.
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Proof. Since 2b —2a <28 <4a —2b —a — m + 1, we can choose 1 < 0 such that r =2(8 +
a—b)—14+n>—-1,c=28+a—4a+2b—n+m—1<0. By explicit formula for the
Bergman metric 8 we can find a constant C > 0 satisfying

BO,u)" <C(1—ul?)", ueB.
Since ¢ (1) /(1 — t2)¢ decreases and ¢ (¢) /(1 — £2)? increases, we have

(1= u»?*¢?(wl) (1 —[ul®)?¢*(wl)
|1 _uw|4a <¢2(}pW(u)’)<C2 |1_uw|4h

Cy

In the following integral, let z = p,, (1), using the identity

(1 —uw)(1 = py@iv) =1 = wl?,

we find
n|a,m (1 - |Z|2)2(ﬁ+a)_l
I = ,
B/ﬂ(z,w) k™ ()| D dv(z)
_ o T=uw [T (1= [wP)(A = [u?) P!
_//3(0, u) 1— |w|2 ( |1 —Mw|2 )
B

(1 —|w[?)mt!
¢2(|pw(u)|)|1 — uw|2m+2

—=(1- |w|2)“”"“/ﬁ<0,u)" T
B

dV(u)

(1 _ |u|2)2(ﬂ+a)71
— uw|4(/3+a)727a7m+2m+2¢2(|pw @)

dv(u)

w28 1 a- |u|2)2(ﬂ+a)—2b—n—l

¢2(|w|) 1 —u@|45+3°‘+m*4“
B

<C(1—w?) dv (u)

2—a

<C(1=1wP)" 3 (lwl), weB.

The last inequality is true because of Lemma 2 fort =2(8+a —b) —1+n, c =28+ o —
4da+2b—n+m—-1,2+t+c=4+3a+m—4a. O

Lemma 7. Suppose —o <28 <1 —m, then

J=/ﬂ(z,w)”]k%’m(z)\(l — [w)* P av w)
B

<c(1-1zP)*.

Proof. Since —a <28 <1—m, wecanchoose n <Osuchthata+28—1+n>—1,28—n+
m — 1 <0, and so we can find a constant C satisfying

BO,uw)" <C(1—ul?)", ueB,

let w = p;(u), we have
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B o L=zt [ (= [z = )\ A=z
_/,3(0,u) R < TR ) T zap V(u)
a+26-1

=(1—-1z 2’9//3(0 )"%dwm

Zﬂ/ " |u|2)a+2ﬂ+n_ldwu>

|a+4ﬂ+m

In Lemma 2, take t =a +28+n—1,c=286—n+m—1,2+t+c=a+ 48 + m, hence
J<ca—z»H*. o

Lemma 8.
Jepeem s = el [1oe paw - h@ (1= P)™ avao,
where n=2(¢+b+1)—1>0.
Proof. By Lemma 5 and the change-of-variable formula, we obtain
cqrem,

- /|C2-’k§"’"(w)|2dv¢(w)

/|h<z> () P K (o >|2"5 (lw |2dV(w>

N 2 : 1 — |z]2ym+1
=/|(h0pz)(u)—h(z)|2 _45 (lpz ) — |z|7) _ AV

11— zp (@227 (1 — |p, (u)[H)[1 — zit| " +2

an (1 —zu)z‘*”mu —zit| (1 = 2™ 12 (| o, (w)])
— |z|?)2et2m (1 — |z|2)(1 — [u]?)|1 — zit|2m+2

/|<hopz><u> 1) v @)

®*(|p-(w)])

(1= |u)|1 - zit| =2

=/|(hopz>(u) RGP (1= ) 4V ()

on (1 )11 — Ju|?)?P
Zlf_t|_2a|1 —Zl/_t|4a

>C(1-122) "%zl f|(hopz>(u> h(2)| dV (u)
>l [ o poya) — B (1= 12 av )

=C||k?’m||i/|<hopz><u> —h@" (1= wP)" avw). o
B
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3. Boundedness for iterated commutators
Before we prove our result, recall the following definition, for some « > b, let ¢ (1) = %
then {¢, ¥} is called a normal pair. We can now prove the main result of this paper.

Theorem 9. Suppose h € H(B). Then Ci’: is bounded on L*(¢) if and only if h € B.

Proof. Given m € N, we can choose positive real numbers a and b, a < b such that
m<4a—2b+1,

then take «: o > max{2bh,m — 1}. We first show that 4 € B assuming that C " is bounded
on L2(q§) If C ” is bounded on L2(¢) then by Lemma 8, we obtain

IC2kz" 1l B 1/2
||c',g||¢>W>C{f|(hopz>(u>—h(z)|2”(1—|u|2)” lqu)} :
Z

B

where n = 2(« + b + 1) — 1. Using Lemma 4, we have h € B.
We now finish the proof by assuming that % is in the Bloch space and proving that C
bounded on L2(¢). Let i € B, take

B: —a<2B<4a—-2b—a—m+1,
then the conditions of Lemmas 6 and 7 hold. By Holder’s inequality, Lemmas 1 and 6, we have
2
| f (w)]
2
—1
Bz w)" k™ (@)|(1 - 1z17)* | f () dV(z))

2
¢(zDy (2D f @) dV(z))

=C( Pl w)' k" @ =T
B
/ B w) k" @] £ @I (1= 121%) " dVy()
B
) f B w)' kg™ @] (1= 122" dvy 2
B
C/ﬂ(z’ w)" k& @) £ @ (1= 122) 2 (1= 1w )~y (jwl) dVy 2).
B

Hence from Fubini’s theorem and Lemma 7, it follows that

leprl = [lep sl avoaw)
B

C/ (f Bz w)" k& (2)| (1 - |w|2)2ﬂ‘“w2(|wl)dv<»<w)>
B

B

< |F@)(1=12P) " avy)



Y. Liu, Z. Hu/ J. Math. Anal. Appl. 332 (2007) 787-797 797

=C ( / Bz, w)" k%" (2)|(1 — lw? 2’”‘”dvm)

B

< |F@)(1=12P) " avy)

<C [ (1=-1z2P*) @)1 - 1P ave@ =l fi3,
B
SO

Icil, <c

and the proof is complete. O

Remark. When § > 0, Fan—Wu’s sufficient condition (Lemma 3.1 in [6]) for a general measur-
able symbol b = (b1, b,..., by) is again valid with du, replaced by dVy. In fact, the proof of
the ‘if” part of Theorem 9 of the paper under review again applies to this general case.
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