
An Adaptive Development Framework for Web-
based Enterprise Information System

Liu Xudong, Xu Xiaofei, Zhan Dechen, Qiao Limin
Department of Computer Science and Technology

Harbin institute of Technology
Harbin, China

{cameran, xiaofei, Dechen, qlm}@hit.edu.cn

Abstract—The rapid evolutions of software environment and
business requirements place a high demand on the
adaptiveness of enterprise information systems (EIS). Over the
last few years, more and more EIS adopted the distributed
multi-tiered web-based application architecture. Crosscutting
concerns and clone codes make the web-based EIS difficult to
evolve and maintain. The traditional Model-View-Controller
(MVC) model imposes design-level restrictions that give a
clean separation between the presentation, functional and
control concerns. However it does not modularize the structure
crosscutting concerns. In this paper, we propose a novel
development model named Meta Data Object (MDO) that
modularizes the structure concerns and reduces some specific
clone codes. Panther is a new domain-driven web development
framework that implements the MDO model. Panther has been
used to develop many web-based EIS. Development with
Panther benefits from a significant improvement in code reuse,
adaptability, and maintainability.

Keywords-enterprise information system; web-based
application; development framework; crosscuting concerns;
maintainability; reusability

I. INTRODUCTION
The rapid evolutions of software environment and

business requirements place a high demand on the
adaptability of enterprise information system (EIS). Over the
last few years, more and more EIS adopted the distributed
multi-tiered web-based application architecture. So how to
design and develop the adaptive web-based EIS also has
become a hot research topic in recent years.

Currently, there are two main challenges in development
of the adaptive web-based EIS. One is separation of
concerns. The distributed multi-tiered architecture web
application are normally comprised of a presentation tier to
render graphical user interfaces (GUI), a functionality tier to
process business logic, and a data tier to store configurations
and business data. Consequently, web development concern
including presentation, functionality, control, and structure
cross-cut, leading to tangled and scattered code that is hard
to develop, maintain, and reuse [1]. The traditional Model-
View-Controller (MVC) model [2] imposes design-level
restrictions that give a clean separation between the

presentation, functional and control concerns. However, it
does not address a more severe code scattering across the
three tiers because of the structure crosscutting [1].

Another challenge is the clone codes. The clone code is a
code portion in source files that is identical or similar to
another [3]. In web-based EIS, there are amount of clone
codes because of the similar user interfaces and similar
business logics. When system requirements change, it is hard
to modify the clone codes consistently. So the clone codes
make the web-based EIS hard to evolve.

The contribution of this paper is introducing a novel
approach for developing the web-based EIS. The core of the
approach is the Meta Data Object (MDO) model that can
separate the structure concerns and reduce some specific
clone codes. And a new domain-driven web development
framework has been implemented in the MDO model.

The remainder of the paper is organized as follows. In
section 2, we give some background to crosscutting concerns
and clone codes in web-based EIS. Section 3 presents a
solution to these problems, and an overview of the
implementation is also presented. Section 4 introduces the
related works. Section 5 discusses the benefits and
limitations of the approach, and Section 6 concludes the
paper.

II. BACKGROUND

A. Web Application
The web-based applications are characterized by an

unprecedented mix of features that makes them radically
different from previous applications of information
technology:

(1) Browser/server architecture. The web-based
applications are browser/server software, which are normally
comprised of a presentation tier to render graphical user
interfaces, a logic tier to process business logic, and a data
tier to store configuration and business data. In particular, the
HTML standard is a cornerstone of the web, which defines
forms to capture and submit user input.

(2) Hybrid programming. A web application is typically
written in at least two programming languages. The
presentation is described in one or more client-side
languages (e.g., HTML, XML, JavaScript, Cascading style

2008 International Symposium on Computer Science and Computational Technology

978-0-7695-3498-5/08 $25.00 © 2008 IEEE

DOI 10.1109/ISCSCT.2008.127

82

Authorized licensed use limited to: UNIV OF ALABAMA-TUSCALOOSA. Downloaded on May 27,2010 at 19:43:48 UTC from IEEE Xplore. Restrictions apply.

sheets). The functionality is specified using a server-side
language (e.g., Perl, Python, ASP, JSP, Java, C, and
Smalltalk). So building web applications is a complex and
time-consuming process.

(3) Dynamic web pages. The web user interfaces are
often generated on the fly, which makes application code
harder to understand and makes troubleshooting more
difficult because of the extra level of abstraction that one
must consider.

These features make the web-based EIS more difficult to
maintain.

B. Structure Crosscutting
Separation of concerns is one important object of

software engineering. There are four typical application
concerns in the web-based applications: functionality,
presentation, control and structure.

The functionality concern is the business logic that
specifies the set of server-side operations to be performed
upon receipt of a client request.

The presentation concern is the “look and feel” of the
page. It is the user-interface that a web application provides
to its clients.

The control concern specifies high-level control flow
decisions. Based on the request and server state, the control
logic defines what action to take next. It manages both
functionality and presentation.

The structure concern refers to the entity of the business
objects. It is the data used by the presentation and the
functionality. The presentation maps the data to the user
interfaces, and the functionality performs the operation on
the data. And the concern includes the data transfer among
the three tiers.

The MVC model imposes design-level restrictions that
give a clean separation between the presentation, functional
and control concerns by organizing the web application code
in three modules, namely model, view, and controller.
However, it does not modularize the structure crosscutting
concerns perfectly. There are still many structure dependent
code fragments in the MVC model. Especially, the view
components generate user interface based on the data in the
model, so when the data structure of the business model
changes, the view and model components will be modified
together.

C. Clone codes
In web-based EIS, there are amount of clone codes

because of the similar user interfaces and similar business
logics.

In EIS, the business operations of the business objects
can be classified to two categories: generic operations and
specific operations. For example, create, retrieve, update and
delete (CRUD) operations are generic operations. Almost all
the business objects have CRUD operations. The specific
operations only belong to one specific business object.
Obviously, there are amount of clone codes because of the
generic operations in EIS.

The similar user interfaces root from the user interface
design patterns [4]. For example, the Master/Detail Pattern is

a typical pattern for business applications. It is also known as
Master/Slave Pattern or Director/Details Pattern. The user
interfaces with this pattern have two areas at least, one area
is to display the main information unit (the master), the
others are to display the detail information units (the slave),
and the master determines the slave. In EIS, there are many
user interface design patterns. Due to space limitations, they
cannot be discussed in this paper.

III. AN ADAPTIVE DEVELOPMENT FRAMEWORK

A. The Meta Date Object Model
Separating the structure concerns and reducing the clone

codes are crucial for building web-based EIS more
efficiently. In this section, we present a novel development
model, namely MDO, to resolve these problems.

Traditionally, the data transfer object (DTO) model [5] is
used to modularize the structure concerns, and it has been
adopted in many popular MVC frameworks, such as Struts
[6], Spring [7], etc. DTO is a pure data object only has some
getter and setter operations. DTO can separate the structure
concern from the model component in MVC model by
automating the object-relational (O-R) mapping, but it dose
not separate the structure concern from view component.

The MDO model can easily separate the structure
concern from view component by providing the user
interface and relational (UI-R) mapping which is transparent
for the developer. As illustrated in Figure 1, MDO model is
easier to implement the O-R mapping than DTO model
because the meta-data can be used directly.

String a;
Int b;
…

setA(String v);
String getA();
setB(inv v);
Int getB();
…

DTOx
String table;
String fields;
String values;
String types;
String keys;

setFields(String v);
String getFields();
setValues(String v);
String getValues();
setTypes(String v);
…

MDO

Figure 1. DTO and MDO

In the DTO model, every table has a class to implement
the O-R mapping; the MDO model is based on instances
rather than classes, there is only one class to implement both
the O-R mapping and the UI-R mapping, so the extra
advantage of MDO model is the low volume of the source
code.

B. The Panther Framework
The Panther framework is a concrete implementation of

the MDO model, and it is a domain-specific framework
which supports the patterned user interfaces and
distinguishes the generic and specific business operations.

The architecture of Panther framework is shown in
Figure 2. The framework is comprised of six components,
namely, front controller (FC), generic business logic
component (GBLC), specific business logic component

83

Authorized licensed use limited to: UNIV OF ALABAMA-TUSCALOOSA. Downloaded on May 27,2010 at 19:43:48 UTC from IEEE Xplore. Restrictions apply.

(SBLC), user Interface component (UIC), data block
component (DBC) and database wrapper (DBW).

requset

xor

Data flowControl flow

Browser

Front
Controller

UI
Components

Data block
Components

GBL
Component

SBL
Componentsresponse

DB
Wrapper

DB

Figure 2. Architecture of Panther Framework

FC orchestrates the application. It receives requests from
the browser, interacts with GBLC or SBLC according to the
operation type, and then invokes UIC to display an
appropriate view to the user. Another important function of
FC is to marshalling the requests data into MDO which used
by GBLC and SBLC.

GBLC processes the generic operations of the business
objects, e.g. CRUD operations. The framework defines 8
kinds of generic operations. Duo to the page limitation, we
do not introduce them here. SBLC processes the specific
operations of the business object.

DBC is responsible for implementing the UI-R Mapping
of the MDO model. It is a large granularity reusable
component for assembling the patterned UIC. The DBCs are
implemented as custom tags [8]. An extendable DBC library
is default provided by Panther, and we can customize more
DBCs to improve the power of the framework.

DBW is responsible for implementing the O-R Mapping
based on MDO. GBLC, SBLC and DBC use DBW to
operate the database.

C. Development with Panther
To demonstrate how to modularize the structure

crosscutting concerns and to reduce the clone codes. We
introduce the simple guestbook web application that comes
from [1]. And due to the page limitation, we concentrate on
the implementation of posting messages.

1) Presentation: The new version of insertForm.jsp in
Panther framework is shown in Figure 3.

<mytag:page>
<mytag:crudForm
 formName= "editForm"
 table=" guestbook "
 keys="id "
 fields=" name,email,message "
 titles=" Your Name|E-mail|Message "
 fieldsInput=" TEXT,TEXT,TEXTAREA"
 operations="INSERT"
 returnPage ="/nat/insert.do" />
</mytag:page>

Figure 3. InsertForm.jsp

The JSP file consists of two Tags, one is crudForm which
can display the input user interface with freeform style, and
the other is page tag which can display the alert information
from the functionality tier.

We can see the structure concern (bold and italic lines in
Figure 3) is described as meta-data in the crudForm tag. To
unweave the structure crosscutting concerns, the HTML
generated by the insertForm.jsp also includes the meta-data
(bold and italic lines in Figure 4) which will be received by
the front controller and marshaled into MDO.

<script>
function crudInsert() {
document.editForm.opFlag.value="insert";
document.editForm.submit();
}
</script>
<table><form name="editForm" action="/nat/insert.do">
<input type="hidden" name=" opFlag" >
<input type="hidden" name="fields" value="name,email,message">
<input type="hidden" name="table" value="guestbook">
<input type="hidden" name=" keys" value="id">
<tr><td>Your Name</td><td><input type=text name="name"></td>
</tr>
<tr><td>E-mail</td><td><input type=text name="email"></td>
</tr>
<tr><td>Message</td><td><textarea name="message"></textarea></td>
</tr>
</form></table>
Post

Figure 4. HTML generated by insertForm.jsp

<web-apps>
…
<app id="/nat/signIn.do" name="Login verify"
 view=""
 model="nat.panther.sam.handler.SignInHandler">
 <pageFlow forward="Fail" page="/nat/relogin.do"/>
 <pageFlow forward="Success" page="/nat/mainPage.do"/>
</app>
…
<app id="/nat/insert.do" name="Insert Message "
 view="/nat/panther/message/insertForm.jsp" >
 model=""
</app>
…
</web-apps>

Figure 5. nat-config.xml

2) Control: As illustrated in Figure 5, the control
concern is specified by the nat-config.xml file. This file
customizes FC by specifying three mapping relations:

Mapping a physical URI to a SBLC. Every physical URI
is specified within the app tag. If there is not SBLC, the
model attribute will be set null character.

Mapping a physical URI to a UIC. The mapping
information is specified by the view attribute. For example,
the /nat/insert.do URI is mapped to
/nat/panther/message/insertForm.jsp.

84

Authorized licensed use limited to: UNIV OF ALABAMA-TUSCALOOSA. Downloaded on May 27,2010 at 19:43:48 UTC from IEEE Xplore. Restrictions apply.

Mapping a logical URI to a physical URI. This mapping
can implement the page flow control like the forward
attribute in stuts-config.xml[6], we do not discuss this
mapping details here.

3) Functionality: In this example, posting message is a
generic operation (create operation in CRUD), so we need
not write one line code for it. In order to explain the
separation of structure concerns from the functionality tier,
the value of the operations attribute of the crudForm tag in
the insertForm.jsp will be set to "extInsert" which will be
considered as a specific operation by the framework, so we
can rewrite the default insert operation in the insertAction
class.

package nat.panther.message;
public class InsertAction extends ActionHandlerSupport {
public processRequest(Action act) throws Exception {
 DBWrapper mydb = new DBWrapper ();
 String opFlag = act.getOpFalg();
 try {
 if(opFlag.equals("extInsert")){
 mydb.add(act.getMDO());
 act.messageBox("Message was successfully added!");
 }
 }catch (Exception e) {
 e.printStackTrace();
 act.messageBox(e.getMessage());
 }
mydb.close();
}

Figure 6. InsertAction.java

As illustrated in Figure 6, InsertAction inherits the
interface ActionHandlerSupport provided by the framework,
and overrides the method processRequest. To separate the
structure concern from the InsertAction, the MainServlet
passes an Action object to InsertAction, the Action object
can marshal the HTTP requests with structure meta-data (see
Figure 4) into MDO. Then InsertAction can use DBWrapper
to save the message. The Action also can transfer the alert
information to JSP files by invoking the messageBox method.
The classes diagram is shown in Figure 7.

Figure 7. Class Diagram

IV. RELATED WORK
Many approaches have been proposed to improve the

adaptiveness and maintainability of the software systems,
such as Adaptive Object Model (AOM), Reflection, Aspect
Oriented Programming (AOP), UML Virtual Machine
(UVM), etc.

AOM also has been called “User Defined Product
architecture” and “Dynamic Object Models”. AOM is a
system that represents classes, attributes, and relationships as
metadata. The system is a model based on instances rather
than classes [10]. Users change the metadata to reflect
changes in the domain. These changes modify the system’s
behavior. In other word, it stores its Object-Model in a
database and interprets it. Consequently, the object model is
active, when you change it, the system changes immediately.
However, AOM requires more effort to build and to learn.
And because of its design complexity, it is hard to maintain.

Reflection is a software system’s capability to reason
about and act upon itself, adjusting to changing conditions
[11]. Reflection can provide objects with the ability to
dynamically change their behavior by using design
information. However, the reflective systems have two main
drawbacks: They offer a too limited set of primitives to
develop highly adaptable systems, and they use a fixed
programming language.

AOP has been proposed as a mechanism that enables the
modular implementation of crosscutting concerns [12]. It
provides some mechanisms (join points, pointcut and aspect
weaving) that allow of modifying the behavior and the
structure of an application, also of a non-stopping application
by dynamic weaving. However it has three problems: the
first is that the pointcut language is too primitive and not
expressive enough, the second is that pointcuts are very
tightly coupled to an application’s structure and, the last is
that developers are forced to deal with pointcuts at too low
level.

UVM is a totally different approach to software
development, based on the Model Driven Architecture
(MDA). UVM is a runtime environment which will read the
UML specification and interpret it on the fly. While the
application is running, the UML specification can be
changed. New classes, attributes and associations can be
added, Algorithmic detail can be added as hand-programmed
policy classes that fit into a well-defined extension
architecture [13]. The problem is that a UML tool will have
to be used to design the new classes, which not every layman
will understand. On the other hand, it is imaginable that an
application can be created that interfaces with the UML
Virtual Machine and exposes a user-friendly GUI to the user
to define new classes, associations and behaviors.

V. DISCUSSIONS

A. Benefits
Two advantages can be achieved by using Panther. One

is the high adaptability. The structure concern that was
encoded in the program is now modularized in the meta-data
(attributes of the custom tag) so that changes to the program

85

Authorized licensed use limited to: UNIV OF ALABAMA-TUSCALOOSA. Downloaded on May 27,2010 at 19:43:48 UTC from IEEE Xplore. Restrictions apply.

lead to changes in the content of the meta-data. For example,
changing the existing structure of the guestbook to add a date
field, we only need to modify the insertForm.jsp. So the
framework can significantly reduce the application
maintenance cost.

The other is high reusability. The large granularity,
reusable and configurable Custom Tag library makes the
web application easy to development. Compare to
WebJinn/DDD Framework [1], the lines of code of
insertForm.jsp and InsertAction.java in the Panther
framework are fewer, and the structure.xml is not needed.

B. Limitations
Panther is a domain-specific framework, because the

components in the Custom Tag library are only fit for
assembly the patterned user interfaces in the web-based EIS.
Panther supports to build web application without DBCs, but
the high adaptability and reusability can not be achieved.

VI. CONCLUSION
Crosscutting concerns and the clone codes make the web-

based EIS difficult to evolve and maintain. The contribution
of this paper is in presenting a new web application
development model, namely MDO, to resolve these
problems. And a new framework named Panther based on
MDO model is developed. The framework can significantly
increase development productivity and improve the
adaptability of the web application.

An interesting direction for future work is to research the
model-driven development (MDD) [9] based on the MDO
model. The code structure is very regular, so it very fit for
code generation in MDD.

ACKNOWLEDGMENT
Research works in this paper are partial supported by the

National Nature Science Foundation of China (Grant

No.60773064) and the National Nature Science Foundation
of China (Grant No.60673025).

REFERENCES

[1] S. Kojarski, D. H. Lorenz. Domain driven web development with
WebJinn. In Companion of the 18th Annual Conference on Object-
Oriented Programming Systems, Languages, and Applications, 2003,
pp. 53-65.

[2] Goldberg, D. Robson. Smalltalk-80: The Language and its
Implementation. Addison-Wesley, 1983.

[3] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A Multilinguistic
Token-Based Code Clone Detection System for Large Scale Source
Code. IEEE Trans. Software Eng., vol. 28, no.7, July 2002, pp. 654-
670.

[4] P. J. Molina1, S. Melia1, and O. Pastor. User Interface Conceptual
Patterns. Interactive Systems. Design, Specification, and Verification,
9th International Workshop, 2002, pp.159-172.

[5] M. Fowler. Patterns of Enterprise Application Architecture, Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, 2002.

[6] Struts. http://struts.apache.org/.
[7] Spring. http://www.springframework.org/.
[8] B. A. Burd. JSP: JavaServer Pages. Wiley, 2001.
[9] P. Fraternali, P. Paolini. Model-driven development web applications:

the AutoWeb system. ACM Transactions on Information Systems,
18(4), 2000, pp.323-382.

[10] J. W. Yoder, R. Johnson, The adaptive object-model architectural
style, 3rd IEEE/IFIP Conference on Software Architecture
(WICSA3), Kluwer, August 2002, pp. 3–27.

[11] S. Rank, Architectural Reflection for Software Evolution, ECOOP’05
Workshop on Reflection, AOP, and Meta-Data for Software
Evolution, 2005, pp51-58.

[12] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.,
Loingtier, J. and Irwin, J., Aspect-oriented programming, European
Conference on Object-Oriented Programming, 1997, pp.220-242.

[13] D. Riehle, S. Fraleigh, D. Bucka-Lassen, N. Omorogbe. The
Architecture of a UML Virtual Machine, Proceedings of the 16th
ACM SIGPLAN conference on Object oriented programming,
systems, languages, and applications, October 2001, p.327-341.

86

Authorized licensed use limited to: UNIV OF ALABAMA-TUSCALOOSA. Downloaded on May 27,2010 at 19:43:48 UTC from IEEE Xplore. Restrictions apply.

