See discussions, stats, and author profiles for this publication at: http://www.researchgate.net/publication/251663937

An integrated approach for optimization of solid rocket motor

ARTICLE *in* AEROSPACE SCIENCE AND TECHNOLOGY · MARCH 2012

Impact Factor: 0.94 · DOI: 10.1016/j.ast.2011.03.006

CITATIONS	READS
6	66

2 AUTHORS, INCLUDING:

Ali Kamran

Institute of Space Technology

27 PUBLICATIONS 66 CITATIONS

SEE PROFILE

AUTHOR QUERY FORM

	Journal: AESCTE	Please e-mail or fax your responses and any corrections to:
64.62.5		E-mail: corrections.esme@elsevier.vtex.lt
ELSEVIER	Article Number: 2626	Fax: +1 61 9699 6735

Dear Author,

Please check your proof carefully and mark all corrections at the appropriate place in the proof (e.g., by using on-screen annotation in the PDF file) or compile them in a separate list. To ensure fast publication of your paper please return your corrections within 48 hours.

For correction or revision of any artwork, please consult <u>http://www.elsevier.com/artworkinstructions</u>

Any queries or remarks that have arisen during the processing of your manuscript are listed below and highlighted by flags in the proof. Click on the 'Q' link to go to the location in the proof.

Location	Query / Remark: click on the Q link to go
in article	Please insert your reply or correction at the corresponding line in the proof
<u>Q1</u>	An extra closing parenthesis has been inserted (in eq. (3)). Please check, and correct if necessary. (p. 3/ line 118)
<u>Q2</u> , <u>Q3</u>	Please supply the author's initials in refs. [24,34]. (p. 15/ line 15,79)

ARTICLE IN PRESS

Aerospace Science and Technology ••• (••••) •••-•••

Contents lists available at ScienceDirect

Aerospace Science and Technology

www.elsevier.com/locate/aescte

An integrated approach for optimization of solid rocket motor

Beijing University of Aeronautics and Astronautics (BUAA), 37 XueYuan Road, HaiDian District, Beijing, 100191, China

ARTICLE INFO

Ali Kamran 灯

Article history: Received 17 July 2010 Received in revised form 26 February 2011 Accepted 15 March 2011 Available online xxxx Keywords: Solid rocket motor

Multidisciplinary design and optimization Heuristics CAD

ABSTRACT

An integrated approach using hyper-heuristic based on meta-heuristics is applied in optimization of solid rocket motor. We propose a non-learning random function to control low-level meta-heuristics to increase certainty of global solution. A comprehensive empirical study investigates the performance of the proposed algorithm yielding satisfactory results. Design of solid rocket motor becomes an exigent task when accounting for chamber design, nozzle design, ballistic performance calculations as well as grain geometry and regression. CAD modeling overcomes the limitation posed by analytical expression thus increased model fidelity. CAD model allows different sub-systems to be modeled separately that not only prevents feature creation failures but also allows ease in modification of the model. Motor performance is calculated using a simplified ballistic model. Mass is the impetus driver on performance, and so considered as core of solid rocket motor design process. Therefore, we intend to minimize gross mass through hyper-heuristic approach. The approach produced satisfactory results for test case.

© 2011 Published by Elsevier Masson SAS.

1. Introduction

Solid rocket motor (SRM) design is a highly integrated process requiring synergistic compromise and tradeoffs of many parameters. The synthesis of an effective compromise requires balanced emphasis in sub-systems, unbiased tradeoffs, and evaluation of many alternatives. Multidisciplinary design optimization (MDO) is an emerging field in aerospace engineering that attempts to introduce a structured methodology to locate the best possible design in a multidisciplinary environment. In fact, MDO can be considered to be a discipline in and of itself with an intention of acting as an agent to bind the other disciplines together [34]. MDO methods can be either from the gradient based class of methods, non-gradient based methods, heuristics, parametric methods and so on. Each breed of methods has its strengths and weaknesses, and each is suitable for different types of problems [26]. In MDO the best choice of optimization method or combination of methods depends on the features of the given multidisciplinary problem. These include heterogeneous mixes of analysis codes, discrete design parameter values, non-differentiable functions, large number of design variables and a large number of design constraints. In addition, it is dependent on the organization of data communication and execution paths of various interconnected disciplines.

The subject of solid rocket motor design and optimization is quite vast. Its application varies from small igniters to the current

E-mail address: a tk is twhotmail.com

heavy launch system like the space shuttle booster motor. Many approaches, starting from gradient methods to basic heuristics, specially tailored meta-heuristics and hybrid heuristics have been used for design and optimization process of SRM system parameters and sub-components. Design and optimization of SRM have evolved with computing power; Refs. [2,3,5,6,15,22,24,27,31,33,36, 38,39] portray the different modeling and optimization methods incorporated. A strong need arises to improve SRM modeling and the application of optimization technique. Present research effort proposes a solution strategy in trying to improve the design process considering both modeling and optimization issues.

SRM modeling is tedious if strictly dependent on analytical expressions for mass and volume calculation. Sub-assemblies connections can be particularly sensitive, and the modeling can be restricted to a certain range. CAD can prove to be of enormous potential. Present study uses a parametric approach to construct solid models of sub-systems thus providing a high degree of flexibility in the design process.

Increase in computational power has limited the use of conventional methods as they are dominated by reformatting, transforming, and translating of data between design disciplines and analysis modules. This will lead to inferior solution. Meta-heuristics proved their superiority over conventional methods but cannot adopt universal settings for different design scenarios. The No Free Lunch Theorem [41] ended the supremacy of individual heuristics. Present-day demand of variable scale design necessitates the need of algorithms independent of the solution domain. Hyper-heuristic approach (HHA) seems to be the way forward.

The approach presented in this study uses a non-learning stochastic function applied to low-level meta-heuristics. Genetic

^{*} Address for correspondence: School of Astronautics, Beijing University of Aeronautics and Astronautics (BUAA), 37 XueYuan Road, HaiDian District, Beijing, 100191, P.R. China. Tel.: +86 13693569259. *E-mail address*: a1k1s1@hotmail.com.

 ^{65 1270-9638/\$ -} see front matter © 2011 Published by Elsevier Masson SAS.
 66 doi:10.1016/j.ast.2011.03.006

Mean radius of curvature

A. Kamran / Aerospace Science and Technology ••• (••••) •••-•••

r_n

Nomenclature

2

2

3

Δ

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

59

60

61

A A _{bk}	Area at any location along nozzle length mm ² Burning area at <i>k</i> th step mm ²
A_t	Throat area mm ²
а	Burn rate coefficient mm/s/Pa ⁿ
a'	Thermal diffusivity m ² /s
<i>a</i> ₁	Thermal diffusivity of virgin material m ² /s
a2	Thermal diffusivity of charred material m ² /s
C_F	Thrust coefficient
C_p	Specific heat at constant pressure J/kgK
с*́	Characteristic velocity m/s
D	Chamber diameter mm
d_e	Exit diameter mm
d_t	Throat diameter mm
EPDM	Ethylene propylene diene monomer
F	Thrust kN
fos	Factor of safety
HTPB	Hydroxy terminated polybutadine
H _{eff}	Effective heat of ablation J/kg
Ι	Total Impulse kN s
I _{sp}	Specific impulse s
k	Burning step
L	Length of motor mm
M_a	Mach number at each location along nozzle length
M_C	Mass of casing kg
M_N	Mass of nozzle kg
M_i	Mass of insulation and liner kg
m_p	Mass of propellant
п	Pressure exponent
p_{amb}	Ambient pressure bar
p_c	Chamber pressure bar
p_e	Nozzle exit pressure bar
P _{max}	Maximum pressure bar
P_r	Prandtl number
p_1	Density of charred layer kg/m ³

Temperature of charred layer K T_L T_o, T_g Gas temperature..... K Ablation temperature..... K Ta T_i Initial temperature K Nozzle wall temperature K T_{w} T^* Permissible casing wall temperature...... K t,t_b Burning time s Ablation thickness mm ta Carbonization thickness mm t_c Total thickness..... mm t_{tot} V_a Ablation rate mm/s Vcase Propellant volume m³ V_k Grain volume at *k*th step..... m³ V_p Propellant volume m³ w_k Web at *k*th step Χ Insulation thickness mm XT Thickness of charred layer..... mm х Axial location along nozzle length mm v Radius at any axial location along nozzle length. mm Convergent half angle..... deg α Convective heat transfer coefficient W/m²K α_t Divergent half angle deg β Specific heat constant ν Propellant density kg/m³ ρ_p Density..... kg/m³ ρ Volumetric efficiency η_{vol} Weld coefficient ٤ Thickness of casing mm δ_{cv} Material strength..... MPa σ Thermal conductivity of virgin material W/mK λ1 Kinematic viscosity kg/ms μ Nozzle area ratio ۶ ۱IJ Length to diameter ratio of grain ters. The synthesis of an effective compromise requires balanced

40 algorithm (GA), particle swarm optimization (PSO) and simulated 41 annealing (SA) are the selected low-level meta-heuristics. The pri-42 mary purpose is to avoid local minima and not selection of appro-43 priate meta-heuristics. The intention is not to reduce the compu-44 tational time, selection of heuristic but to improve solution quality. 45 The proposed methodology attains the defined objective by providing diversity to population and altering search direction by inject-46 47 ing feasible solutions. This, however, may lead to additional computational time but at the same will serve as a tool to avoid local 48 49 minima. The goal is not necessarily to 'beat' previously employed methods but to obtain satisfactory results by employing a gener-50 51 alized method that can 'solve' different problem scenarios with no 52 or limited tuning of the algorithm.

This manuscript is organized in three parts. First section explains design problem of SRM. Sub-systems of chamber, nozzle, grain (geometry and regression) and ballistic analysis are given in this section. Second section covers hyper-heuristic approach. Last section covers SRM design problem formulation, results, and conclusions.

2. Solid rocket motor design

Solid rocket motor comprises of a combustion chamber, noz zle, and grain. Design variables of these sub-systems are connected
 to system level variables. A strong interaction exists between the
 different disciplines therefore SRM design is an integrated process
 requiring synergistic compromise and tradeoffs of many parame-

ters. The synthesis of an effective compromise requires balanced emphasis in sub-systems, unbiased tradeoffs, and the evaluation of many alternatives. Fig. 1 outlines the SRM design analysis approach. Solid line shows the optimization of system level parameters once the convergence criteria is met, grain design optimization is shown with dotted line. The intricacy of affects of sub-systems on each other makes the design mechanism of SRM significantly hard. The interaction of sub-systems is explained in design structure matrix (Fig. 2). SRM sizing, mass and volume require adequate definitions of attachment collars. The basic sizing parameters will drive the CAD model, perhaps with an empirical relation between collar faces and thickness for igniter/nozzle/payload/tail skirt. The relations shown in detail modeling of SRM simplify and improve design process from practical engineering point of view (Figs. 3–12). Detail design analysis devoted to combustion chamber, nozzle and grain is given below.

2.1. Combustion chamber

Vehicle requirement such as performance characteristics, enve-125 lope constraints, and mission profile govern the combustion cham-126 ber design. Motor case design leads to the selection of structural 127 128 material and configuration achieving optimum performance while 129 satisfying constraints. A thermal barrier is provided on the inner surface to prevent high temperature gases to have direct contact 130 131 with metal. In the present work combustion chamber considered is 132 a steel casing, lined with EPDM insulation. The casing comprises of

113

114

115

116

117

118

119

120

121

122

123

124

Fig. 2. Coupling of design variables.

(1)

a cylindrical steel shell with domes on both ends. Forward and rear skirts are for attachment purposes. Front and rear collars are for igniter and nozzle attachments respectively. Fig. 3 shows detailed model of the metal casing. Chamber minimum wall thickness is calculated as:

To account for dome stresses a factor of safety of 1.4, weld

coefficient of 0.98 and P_{max} of 1.2 p_c are considered. The insula-

tion layer ensures that the case will not be overheated. Generally,

the cables for electronic modules run along casing length there-

fore during the working time of motor the case wall temperature

should not exceed the permissible wall temperature of \sim 30 °C. The

insulation thickness can be determined using formula [40]:

$$\frac{T^* - T_i}{T_L - T_i} = \frac{\operatorname{erfc}(\frac{XT^*}{2\sqrt{a_2t}})}{\operatorname{erfc}(\frac{C_o}{\sqrt{a_2}})}$$
(2)
where $X_L = C_o \sqrt{t}$

$$C_{o} = \left\{ \frac{2\lambda_{1}(T_{o} - T_{L})}{p_{1}X} \right\}^{1/2}$$
(3) ^{Q1}

Grain burning regression dictates the insulation profile (Fig. 4). Liner mass is calculated with insulation mass with the thickness of 1 mm as they have almost same density.

The present study considers conical nozzle because of its simplicity. Designed nozzle is modeling via CAD to calculate the mass of the nozzle; compromise is made between thrust coefficient and mass of the nozzle to reach at optimum nozzle. Figs. 5 and 6 present nozzle geometry and contour respectively.

 $\frac{T^* - T_i}{T_L - T_i} = \frac{\operatorname{erfc}(\frac{XT^*}{2\sqrt{a_2t}})}{\operatorname{erfc}(\frac{X_L}{2\sqrt{a_2t}})}$

 $\delta_{cy} = \frac{P_{\max}D}{2\epsilon\sigma} fos$

The thermal design of the nozzle is to maintain nozzle aerodynamic design insofar as is practical and to limit the temperature

Please cite this article in press as: A. Kamran, An integrated approach for optimization of solid rocket motor, Aerospace Science and Technology (2011), doi:10.1016/j.ast.2011.03.006

 (\mathbf{n})

з

[m5Gv1.5; v 1.51; Prn:30/03/2011; 11:55] P.4(1-15)

A. Kamran / Aerospace Science and Technology ••• (••••) •••-•••

Front collar width, C4=4tRear end skirt length, RS=50+12tFront collar thickness, C3=3tFront skirt width, C1=2t

(Front and rear end skirt length are same, FS=RS)

Fig. 3. Cross section of chamber case.

of the structure to acceptable levels. A thermal liner forms the nozzle aerodynamic contour. An insulator is a material placed behind a liner to serve as a thermal barrier to protect the structural member from excessive temperature; a single material thickness often serves as both liner and insulator. 1D flow analysis along with heat transfer model calculates various insulation thicknesses. The convective heat transfer coefficient (α_t) is calculated by the well-known Bartz equation as under:

$$\alpha_{t} = \frac{b}{d_{t}^{0.2}} \left(\frac{\mu^{0.2} C_{P}}{P_{r}^{0.6}}\right)_{Tg^{*}} \left(\frac{p_{c}}{c^{*}}\right)^{0.8} \left(\frac{d_{t}}{r_{n}}\right)^{0.1} \left(\frac{A_{t}}{A}\right)^{0.9} \omega \tag{4}$$

$$\omega = \frac{1}{\left[\frac{1}{2} \times \frac{T_w}{T_g^*} (1 + \frac{\gamma - 1}{2}M_a^2) + \frac{1}{2}\right]^{0.68} \left[1 + \frac{\gamma + 1}{2}M_a^2\right]^{0.12}}$$

where

f

t

0.023 in divergent section

Mach number along nozzle length is calculated as

$$\frac{A_y}{A_x} = \varepsilon = \frac{M_x}{M_y} \sqrt{\left\{ \frac{1 + \left[\frac{\gamma - 1}{2}\right]M_y}{1 + \left[\frac{\gamma - 1}{2}\right]M_x} \right\}^{\frac{\gamma + 1}{\gamma - 1}}}$$
(6)

Ablation rate with respect to time can be given as:

$$t_{ab} = \frac{a^t}{V^2} \tag{7}$$

$$V_a = \frac{\sigma_t (T_0 - T_a)}{\rho H_{ref}} \tag{8}$$

$$a = V_a \left(\frac{t_b - a^t}{V_a^2}\right) \tag{9}$$

Also the carbonization thickness is given by the formula

$$c = \frac{2a^t}{V_a} \tag{10}$$

Thus the total thickness with a factor of safety is given by following equation:

$$t_{tot} = 1.2 \approx 1.5(t_a - t_c) \tag{11}$$

Figs. 5–12 present detailed description of models. Metallic portion of nozzle comprises of convergent part and a divergent support ring (Figs. 11, 12).

solid rocket motor. The essence is to evolve the burning surface 62 and establish a relation between web burnt and the burning sur-63 face. The grain design and burning surface evolution of a complex 64 3D solid rocket propellant grain are modeled by CAD software us-65 ing parametric modeling: subsequent propellant surface regression is simulated using offset feature. Present study considers Finocyl

66

time trace depending on mission requirements. Grain is modeled in parts to provide ease and ensure lesser chances of surface creation failure.

128

129

130

131

132

Figs. 13–16 provide a detailed description of the grain modeling. Following steps explain the construction of grain configuration:

A. Kamran / Aerospace Science and Technology ••• (••••) •••-•••

 \mathbb{R}^1

1.6

Fin length, L6

Fin radius R1

Fin height, H1

Fin width, H2 Fin fillet, R2

R 01

D

Fin angle, α

- with no burning surface (Fig. 13).
- Grain bore is constructed by revolve surface and all surfaces burning (Fig. 14).
- Sharp corners are filleted to account for new surfaces that are created during burning (Fig. 16). Lines AB and BC are connected using CAD function "CONNECT", so that they remain connected during offsetting operation. Lines BC and CD are connected through a small fillet of radius 0.1 mm in the initial geometry. During offsetting the fillet radius is incremented by a value equal to web increment.
- Boolean function is used to subtract the solid within grain bore.
- Similar operation is performed for fins cross-section and axial shape with all surfaces burning (Fig. 15).
- Surface offset function available in CAD software is used to simulate burning, by offsetting the surface by a web increment equal and orthogonal in all direction.
- Boolean function is used at each web increment to subtract the solid within grain bore and fins to calculate new volume.
- Offsetting and Boolean operations are repeated till web is completely burnt.

The grain regression is achieved by a web increment equal in all direction; at each step new grain geometry is created automatically thereafter geometrical properties are estimated. Burning surface area is calculated as

$$A_{bk} = \frac{V_{k+1} - V_k}{w_{k+1} - w_k}$$
(12)

2.4. Ballistic analysis

The chamber pressure is assumed to be uniform throughout the motor chamber; therefore, the burning rate is uniform as well. Steady state pressure is calculated by equating mass generated in the chamber to mass ejected through nozzle throat [4,10,35]. Following relation calculates the chamber pressure:

$$p_{c} = \left(\rho_{p}ac^{*}K\right)^{1/(1-n)}$$
(13)

where $K = A_b/A_t$, and thrust is calculated as

$$F = C_F p_c A_t \tag{14}$$

Thrust coefficient and total impulse is given as:

$$C_{F} = \sqrt{\frac{2\gamma^{2}}{\gamma - 1} \left(\frac{2}{\gamma + 1}\right)^{(\gamma + 1)/(\gamma - 1)} \left[1 - \left(\frac{p_{e}}{p_{c}}\right)^{(\gamma - 1)/\gamma}\right]} + \frac{p_{e} - p_{amb}}{p_{c}}\varepsilon$$

$$I = Ft$$
(15)
(16)

Fig. 16. Sharp edge treatment (grain).

3. Hyper-heuristics optimization approach

3.1. Need of hyper-heuristic approach

The No Free Lunch Theorem proved that there is no one algorithm that could beat all other algorithms in all classes of problems. If an algorithm outperforms other algorithms on a specific class of problems, there must exist another class of problems on which this algorithm is worse than the others. Hence, a good way to raise the generality of heuristics is to apply different heuristics at different times of the search [7]. In this context, a generalized approach (termed hyper-heuristics) is proposed [12] which, broadly describes the process of using heuristics to choose heuristics to solve the problem [9,30].

Although there has been a momentous research done in the field of solid rocket motor design and optimization, but it is still unclear what kind of search method should be employed that is good enough to be applied on the vast range of problems. There have been instances of applying individual heuristics, hybrid heuristics, probabilistic methods and even gradient methods in rocket based vehicles design and optimization. Therefore, in current research effort we aim to move a step further and apply hyper-heuristic approach. Hyper-heuristic approach, presented in this research effort, selects optimizers of genetic algorithm, swarm intelligence and simulated annealing to perform simultaneous search.

The conceptual design of SRM involves optimization with de-sign variables involving multiple disciplines. This results in in-crease of volume of the design space exponentially and makes solution space critically sensitive of various mission scenarios. The feasible design space of large problems is often non-convex and may contain multiple local optima. This can trap optimizers and prevent them from locating the best design. Heuristic optimization methods require significant parameter tuning of algorithms for the new problem or the new problem instance. Variation in design sce-narios can lead to exhaustive search for the new problem instance. This discussion leads to adopt hyper-heuristic approach. The aim is to devise an algorithm for solving a problem that is indepen-dent of problem scenario, reasonably comprehensible, trustable in terms of quality and repeatability and with good behavior and

3

4

5

A. Kamran / Aerospace Science and Technology ••• (••••) •••-•••

perform exceptional search for global optima and avoid local minima.

3.2. Working of proposed hyper-heuristic approach (HHA)

6 The choice of control function can be critical in setting an 7 HHA. The bias of the control function can affect the performance 8 both in solution quality and computational cost. Statistically, ran-9 dom sampling has advantages, as it produces unbiased estimates 10 of the mean and the variance of the output variables. The choice 11 of random function is attractive, from the perspective of increas-12 ing generality and avoiding bias of control function. The approach 13 presented in this study uses a non-learning stochastic function ap-14 plied to low-level meta-heuristics. The primary purpose is to avoid 15 local minima and not selection of appropriate meta-heuristics. The 16 purpose is not to reduce the computational time and selection 17 of heuristic but to improve solution quality. The approach is sim-18 ple, straightforward and easy to implement. The complexity of the 19 inter-disciplinary problem demands quality of the solution to re-20 duce the cost and time in life-cycle of product design phase. The 21 proposed methodology attains the defined objective by providing 22 diversity to population and altering search direction variations by 23 injecting feasible solutions. This, however, may lead to additional 24 computational time but at the same will serve as a tool to avoid 25 local minima saving time in the longer run. Brief description of 26 the low level meta-heuristics applied in this study is listed be-27 low.

28 Genetic algorithm uses a population of candidates to explore 29 several areas of a solution space, simultaneously and adaptively. 30 Ref. [16] developed genetic algorithms, which are capable of find-31 ing the global-optimal solution (or acutely near solutions) in com-32 plex, multidimensional search spaces. Details on GA can be found 33 in Ref. [18]. GA applications have gained enormous popularity 34 among aerospace professionals in the last decade [19,28]. This is 35 due to the ease with which GA can be implemented and its excep-36 tional ability to solve difficult complex problems more efficiently. 37 The limitation of the GA is that it usually demands a large number 38 of function evaluations [28].

39 Swarm intelligence is a new realm of research in that the PSO technique takes inspiration from social behavior of insects and an-40 41 imals. PSO technique models such social behavior as optimization 42 algorithm, which guides a population of particles (the swarm) in 43 different positions moving towards the most promising sector of 44 the search space with different velocities. Each particle remembers 45 its own best position found so far in the exploration and moves to 46 the direction defined by its own best position and global best po-47 sition, which is the best found so far by all particles. The position 48 of each particle is updated in every iteration by adding the veloc-49 ity vector to the position vector. Refs. [20,21] describe a complete 50 chronicle of the development of PSO algorithm from just a motion 51 simulator to an heuristic optimization technique.

52 Simulated annealing (SA) is a stochastic heuristic algorithm 53 used to solve combinatorial optimization problems. SA was origi-54 nally proposed by Metropolis [25] in the early 1950s as a model of 55 the crystallization process. It was only in 1980s, that independent 56 research, done by Refs. [8,23] noted similarities between physical 57 process of annealing and some combinatorial optimization prob-58 lems. They noted that there is a correlation between the different 59 physical states of the matter and the solution space of an optimiza-60 tion problem. It was also observed that the objective function of 61 an optimization problem corresponds with the free energy of the 62 material. SA is well capable of working individually and in com-63 bination with other optimization methods in search of optimum 64 results in multidisciplinary environment [29]. Fig. 17 presents the 65 flow chart of hyper-heuristic approach. Pseudo-code of the pro-66 posed approach is given below.

Optimization routine	
Initialize	
Set population size Set outer loss iteration	
Set outer loop iteration Set inner loop iteration	
Set convergence criteria	
While (convergence NOT achieved)	
Create public-board to store information	
Generate sub-population (random) Generate sub-iterations (random)	
• Generate sub-iterations (random)	
For $i = 1$ to outer loop iteration OUTER LOOP	
For <i>l</i> = 1 to sub-iteration	
For $i = 1$ to sub-population size	
Call HEURISTICS(GA, PSO, SA)	
Evaluate Constraints	
Evaluate Fitness	
Store local best	
End	
Liiu	
CALL OFF-SPRINGS FUNCTIONS	
Create now off envinge	
Send information to Public-board	
End INNER LOOP	
CALL POPULATION HANDLING	
Snume <i>m</i> % of new population given to <i>n</i> optimizer Generate new sub-population (random)	
Generate new sub-iteration (random)	
CALL POPULATION DIVERSIFICATION	
IF (outer loop iteration $\leq \varepsilon$) Insert local best to sub-population (random)	
End	
IF (outer loop iteration $> \lambda$)	
Insert global best to sub-population (random)	
End	
End	
End MAIN LOOP	
4. Experimental setup	

4.1. Benchmark test functions

A comprehensive empirical analysis investigates the performance of hyper-heuristic algorithm. Table 1 summarizes 7 test functions used to evaluate the proposed algorithm. No. of variables, upper and lower bounds and objective function is also tabulated in Table 1. Below is the brief description of selected test functions.

- (1) De Jong function [11] is continuous, convex, uni-modal and one of the simplest benchmark tests.
- (2) The 2D six-hump camel back function [14] is a global optimization test function. There are six local minima and two global minima of this function.
- (3) The Ackley Problem [1] has several local minima but only one global minimum. It is a widely used multi-modal test function.
- (4) Schwefel's function [32] is deceptive in that the global minimum is geometrically distant, over the parameter space, from the next best local minima. The surface of this function comprises of a great number of peaks and valleys. Therefore, the

113

114

115

116

117

118

119

120

121

122

123

124

125 126 127

128

search algorithms are potentially vulnerable to convergence in the wrong direction. This problem has many local minima and requires a large number of function evaluations to reach at the global minimum.

60

61

62

63

64

65

66

(5) Rosenbrock function [13] is a classic optimization problem, also known as banana function or the second function of De Jong. The global minimum is inside a long, narrow, parabolicshaped flat valley. To locate the valley is trivial, however, convergence to the global optimum is difficult and hence it has been frequently used to assess the performance of optimization algorithms.

126

127

129

128 (6) Rastrigin's function [37] is often used to evaluate global optimizers. This function is a remarkably difficult problem due to its large search space and the large number of local minima. 130 The function is highly multi-modal, and the locations of the 131 minima are regularly distributed. 132

78

79

80

81

82

83

84

85

86

87

88

89

90

Q1

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

A. Kamran / Aerospace Science and Technology ••• (••••) •••-•••

Table	2

Results	of test	functions.	

S. No	Test function	Success rate	Mean value	Standard deviation	Average function evaluations
1	De Jong (sphere)	100%	1.99E-05	5.49015E-05	2953
2	Six-hump camel back	99%	-1.0316	2.1664E-007	7454
3	Ackley	98%	7.89E-06	0.000466	42 208
4	Schwefel	99%	-4.189E+02	3.39E-10	7551
5	Rosenbrock	100%	1.18E-06	4.88E-06	11912
6	Rastrigin	98%	7.89E-06	1.4E-05	28728
7	Griewank	98%	2.21E-05	5.34E-05	32 028

(7) The Griewank function, first introduced in [17], has been widely employed as a test function for global optimization algorithms. Its number of minima grows exponentially as its number of dimensions increases. The fast increasing number of local minima suggests that the global minimum becomes extremely difficult to detect.

4.2. Results of test functions

In experiments, population size is set at 100, and the all the test functions are executed for 100 times with the same algorithm parameter settings. In order to investigate the quality of the algorithm, a fair measure must be selected. The simulation is considered successful if the solution is less than |4e-4| of the true global minimum. Table 2 reveals the results obtained.

Results reveal that hyper-heuristic approach performed magnificently for solving these classical test functions. On the robustness of algorithms, hyper-heuristic approach is significantly capable of finding the global optimum with superb success rate on all the test functions. HHA proves to be a highly stable algorithm, capable of obtaining consistent results in terms of accuracy and robustness.

5. Solid rocket motor test case

SRM sub-systems are mass or volume (or both) constrained depending upon the specific application. Specific impulse and initial to burn-out mass ratio affects the burn-out vehicle velocity as a natural log function. This drives the SRM design towards lighter weight components, and high energy propellants. The fundamental drivers of SRM design are maximization of specific impulse and minimization of inert mass. Design practice dictates meeting these objectives while satisfying mission constraints. Selection of design variables can be critical, present study includes eight variables that are geometrical and ballistic in nature. SRM for this study uses a steel casing with conical nozzle, requiring a minimum total impulse of 39500 under specified constraints.

5.1. Design objective

There can be different objective functions for SRM optimization problems. Traditionally minimum gross mass have been sought as it is a strong driver on performance. For the present research effort, design objective is to minimize the gross mass of motor that indeed would cater for a minimum inert mass along with maximum specific impulse. Mathematical description of design objective is as under:

$$\min M_{\text{gross}}(X) \tag{17}$$

Gross mass is given by

 $M_{gross} = m_p + M_C + M_i + M_N$ (18)

whereas design variables X are given in Eq. (20);

$$X = f(\psi, D, p_c, \varepsilon, t, \alpha, \beta, L)$$

Details of the objective function calculations are summarized as follows:

- 1. Chamber pressure, nozzle area ratio and propellant characteristics come from the decision variables.
- 2. Determine thrust coefficient using Eq. (15).
- 3. Determine specific impulse from

$$I_{sp} = C_F c^* \eta_{isp} \tag{20}$$

4. Determine propellant mass by using following equation:

$$m_p = \frac{I}{I_{sp}g} \tag{21}$$

5. Determine propellant and casing volume from

$$V_p = \frac{m_p}{\rho_p} \tag{22}$$

$$V_{case} = \frac{m_p}{\rho_p \eta_{vol}} \tag{23}$$

6. Determine nozzle throat area, throat diameter and exit diameter from following equations:

$$A_t = \frac{m_p g I_{sp}}{C_F p_c t} \tag{24}$$

$$d_t = \sqrt{\frac{4A_t}{-}} \tag{25}$$

$$d_e = \sqrt{\varepsilon} d_t \tag{26}$$

- 7. Determine casing thickness through Eq. (1).
- 8. Determine average thrust by through Eq. (14).
- 9. Determine insulation thickness in chamber and nozzle using Eqs. (2)–(11).
- 10. Determine casing mass and available volume using model shown in Fig. 3.
- 11. Determine insulation mass using model shown in Fig. 4.
- 12. Determine nozzle profile using model shown in Fig. 6.
- 13. Determine mass of nozzle components using models shown in Figs. 7-12.
- 14. Construct Finocyl grain geometry using models shown in Figs. 13-16. Perform grain geometric regression. Eq. (12) determines burning area \sim web relation.
- 15. Perform internal ballistics and determine pressure and thrust time histories.

Fig. 18 presents a flow chart for the objective function calculation.

5.2. Design variables

Table 3 lists the system design variables for entire SRM each stage with respective discipline. There are total of 8 design variables that govern the integrated design and optimization problem of SRM.

Please cite this article in press as: A. Kamran, An integrated approach for optimization of solid rocket motor, Aerospace Science and Technology (2011), doi:10.1016/j.ast.2011.03.006

(19)

A. Kamran / Aerospace Science and Technology ••• (••••) •••-•••

Fig. 18. Flowchart of optimization process.

5.3. Design constraints

SRM working envelope, manufacturing and propellant type impose several stringent constraints on design. Targeted design of SRM is for use as 1st stage or booster stages therefore L/D ratio, diameter, chamber pressure, area ratio, burn time, convergent and divergent angles, length, exit diameter, maximum thrust and total impulse are constrained for targeted use. Constraints are formulated as under:

 $C_i \ge 0, \quad i = 1, 2, \dots, 11$

where *C* is given as:

 C_1 : $4.5 \leq \lambda \leq 7$

*C*₂: $1200 \le D \le 1400$

 C_3 : $50 \leq p_c \leq 80$

 C_4 : $10 \leq \varepsilon \leq 20$

 $60 \leq t \leq 80$ C_5 :

 $50 \leq \alpha \leq 60$ C_6 : C_7 : $16 \leq \beta \leq 20$ *L* ≤ 9500 C_8 :

$$C_9: \quad d_e \leqslant 900$$
$$C_{10}: \quad F \ge 570$$

 C_{11} : $I \ge 39500$

6. Results and discussion

Design and optimization using hyper-heuristic approach is successfully implemented for complex design problem of solid rocket motor under stringent mission objectives and performance constraints. Proposed hyper-heuristic proved to be remarkably effective in terms of exploring the design space and fulfilling design objectives.

Table 4 contains optimal values for all the design variables. Optimized design variables of design space of SRM lie between

Table 3		
System	decign	variable

Design variable	Discipline	Symbol	Units
Length to diameter ratio of grain	Envelope	ψ	Ratio
Chamber diameter	Chamber	D	mm
Chamber pressure	Grain-ballistic	p_c	bar
Nozzle area ratio	Nozzle-ballistic	ε	-
Motor operating time	Grain-ballistic	t	S
Convergent angle	Nozzle	α	deg
Divergent angle	Nozzle	β	deg
Length of motor	Envelope	L	mm
	- ,		value
	2	Ratio	6.11
Length to diameter ratio of grain	λ.		
Length to diameter ratio of grain Chamber diameter	л D	mm	1326.3
Length to diameter ratio of grain Chamber diameter Chamber pressure	λ D p _c	mm bar	1326.3 75.3
Length to diameter ratio of grain Chamber diameter Chamber pressure Nozzle area ratio	λ D p _c ε	mm bar -	1326.3 75.3 14.16
Length to diameter ratio of grain Chamber diameter Chamber pressure Nozzle area ratio Motor operating time	λ D Pc ε t	mm bar - s	1326.3 75.3 14.16 69.48
Length to diameter ratio of grain Chamber diameter Chamber pressure Nozzle area ratio Motor operating time Convergent angle		mm bar - s deg	1326.3 75.3 14.16 69.48 57.4
Length to diameter ratio of grain Chamber diameter Chamber pressure Nozzle area ratio Motor operating time Convergent angle Divergent angle	λ D pc ε t α β	mm bar - s deg deg	1326.3 75.3 14.16 69.48 57.4 18.4
Length to diameter ratio of grain Chamber diameter Chamber pressure Nozzle area ratio Motor operating time Convergent angle Divergent angle Length of motor	λ D C E t α β L	mm bar - s deg deg mm	1326.3 75.3 14.16 69.48 57.4 18.4 9454.5

SRM sub-system mass breakdown.

Design variable	Symbol	Units	Optimum value
Propellant mass	Мр	kg	14 666
Casing mass	Мс	kg	1650.7
Insulation + liner mass	Mi	kg	344.7
Nozzle mass	Mn	kg	251.2
Total inert	Im	kg	2246.6
Gross mass	GM	kg	16912.6

their upper and lower bounds. Results reveal that SRM is capable of completing the specified mission through hyper-heuristic based design and optimization approach. Table 5 lists the mass breakdown of SRM components of optimized configuration. Finocyl grain configuration is adopted for present case; it can provide a large

Please cite this article in press as: A. Kamran, An integrated approach for optimization of solid rocket motor, Aerospace Science and Technology (2011), doi:10.1016/j.ast.2011.03.006

(27)

Δ

ARTICLE IN PRESS

A. Kamran / Aerospace Science and Technology ••• (••••) •••-•••

Fig. 19. Ballistic performance of optimal SRM configuration.

thrust at start due to high initial burning area that can be provided by fins. The constraint on initial thrust makes Finocyl grain configuration to be a better choice. Finocyl grain configuration design proved the viability of the optimized SRM. Thrust time trace agrees fairly well with desired impulse and ballistic parameter constraints (Fig. 19). Fig. 20 presents optimal SRM assembly. Table 6

summarizes SRM sub-systems details of the optimal configuration. For the test case, minimum gross mass of 16912.6 kg is achieved with all the stringent constraints being satisfied. It can be concluded that the proposed integrated modeling and optimization module provides a proficient platform in facilitating design analysis and optimization of solid rocket motor.

[m5Gv1.5; v 1.51; Prn:30/03/2011; 11:55] P.12(1-15)

7. Conclusion

The present research effort implements an automated approach for the design and optimization of SRM. CAD software is integrated with optimization module. CAD modeling overcomes the limitation posed by analytical expression thus increased model fidelity. CAD model allows different sub-systems to be modeled separately that not only prevents feature creation failures but also allows ease in modification of the model. Grain design is vital component of SRM design. This research effort also included grain regression simulation.

Hyper-heuristic approach eliminates the necessity of suitable initial guess and parameter tuning. The approach significantly increases the ability to search optimal solutions without adequate tuning of the algorithm for different problem scenarios. This methodology can handle optimization problem in the area of solid rocket motor system design, where the optimization of several

JID:AESCTE AID:2626 /FLA

P CLE

A. Kamran / Aerospace Science and Technology ••• (••••) •••-•••

Table 6 (Continued) Insulation dimension Length, L1 = L2 = 2652.6Nominal thickness = 2.24Front start thickness = 18.6 Front end thickness = 14.5Rear start thickness = 18.6Grain dimension Front web = 115Front end opening = 133Front cone = 110Grain bore = 260Rear cone = 167.3Rear cylinder length = 210Rear cylinder diameter = 350No of fins = 6Fin length = 1400Fin radius = 84 Fin angle = 32 deg Fin height = 600Fin width = 43.4Nozzle convergent metallic section Convergent front collar thickness = 8.9Convergent front collar width = 29.9Convergent thickness = 7.48Convergent rear collar thickness = 14.9Convergent rear collar width = 22.5Nozzle convergent section Convergent insulation start thickness = 15.9 Convergent insulation end thickness = 60.4Convergent angle = 57.4° (continued on next page)

A. Kamran / Aerospace Science and Technology ••• (••••) •••-•••

interdisciplinary design variables and considering conflicting constraints are present.

References

- D.H. Ackley, A Connectionist Machine for Genetic Hill-Climbing, Kluwer, Boston, 1987.
- [2] M. Anderson, J. Burkhalter, Multi-disciplinary intelligent systems approach to solid rocket motor design, Part I: single and dual goal optimization, AIAA 2001-3599.
- [3] M. Anderson, J. Burkhalter, Multi-disciplinary intelligent systems approach to solid rocket motor design, Part II: single and dual goal optimization, AIAA 2001-3600.
- [4] Marcel Barrere, et al., Rocket Propulsion, Elsevier Publishing Company, Amsterdam, 1960.
- [5] J.S. Billheimer, Optimization and design simulation in solid rocket design, AIAA 68-488.
- [6] James Brill Clegern, Computer aided solid rocket motor conceptual design and optimization, AIAA 94-0012.
- optimization, AIAA 94-0012.
 [7] E. Burke, E. Hart, G. Kendall, J. Newall, P. Ross, S. Schulenburg, Hyper-heuristics: an emerging direction in modern search technology, in: F. Glover, G. Kochenberger (Eds.), Handbook of Meta-Heuristics, Kluwer, 2003, pp. 457–474.

[8] O. Cerny, Thermodynamical approach to the travelling salesman problem: an efficient simulation algorithm, Journal of Optimal Theory and Applications 45 (1) (1985) 41–51.

- [9] P. Cowling, E. Soubeiga, Neighborhood structures for personnel scheduling: a summit meeting scheduling problem, in: 3rd International Conference on the Practice and Theory of Automated Timetabling, Aug. 2000, Germany.
- [10] A. Davenas, Solid Rocket Propulsion Technology, Elsevier Science & Technology, 1993.
- [11] K. De Jong, An analysis of the behavior of a class of genetic adaptive systems, PhD thesis, University of Michigan, 1975.
- [12] J. Denzinger, M. Fuchs, M. Fuchs, High performance ATP systems by combining several AI methods, in: 15th International Joint Conference on Artificial Intelligence (IJCAI '97), 1997, pp. 102–107.
- [13] L.C.W. Dixon, D.J. Mills, Effect of rounding errors on the variable metric method, Journal of Optimization Theory and Applications 80 (1) (1994) 175– 179.
- [14] L.C.W. Dixon, G.P. Szego, The optimization problem: an introduction, in: L.C.W. Dixon, G.P. Szego (Eds.), Towards Global Optimization II, North Holland, New York, 1978.
- [15] Z. Fang, G. Guo, Optimization design of the solid rocket motor, Journal of Aerospace Power 5 (Apr. 1990) 176–178.
- [16] D. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, 1st ed., Addison–Wesley Longman, Reading, MA, 1989.

A. Kamran / Aerospace Science and Technology ••• (••••) •••-•••

- [17] A.O. Griewank, Generalized descent for global optimization, Journal of Optimization Theory and Applications 34 (1) (1981) 11-39.
- [18] J.H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence, MIT Press, Cambridge, MA, 1992.
- [19] A. Kamran, L. Guozhu, Design and optimization of 3D radial slot grain configuration, Chinese Journal of Aeronautics 23 (4) (2010) 409-414.
- [20] J. Kennedy, R.C. Eberhart, Swarm Intelligence, Morgan Kaufmann, San Mateo, CA 2001
- J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of the [21] IEEE International Conference on Neural Networks, Perth, Australia, 1995, pp. 1942-1945.
- [22] N. Khurram, L. Guozhu, Z. Qasim, A hybrid optimization approach for SMR Finocyl grain design, Chinese Journal of Aeronautics 21 (6) (Dec. 2008) 481-
- [23] S. Kirkpatrick, C.D. Gelatt, M. Vecchi, Optimization by simulated annealing, Journal of Science 220 (4598) (1983) 498-516.
- 15 Q2 [24] Mc Cain, J. Wayne, A variable selection heuristic for solid rocket motor, PhD dissertation, University of Alabama in Huntsville, Number 9324488, 1993.
- [25] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, Equa-tions of state calculations by fast computing machines, Journal of Chemical Physics 21 (6) (1953) 1087-1092.
- [26] J.R. Olds, The suitability of selected multidisciplinary design techniques to con-ceptual aerospace vehicle design, AIAA 92-4791.
- [27] J. Peterson, J. Garfield, The automated design of multi-stage solid rocket vehi-cles. AIAA 76-744.
- [28] A.F. Rafique, H. LinShu, A. Kamran, Q. Zeeshan, Multidisciplinary design of air launched satellite launch vehicle: performance comparison of heuris-tic optimization methods, Acta Astronautica 67 (7-8) (2010) 826-844, doi:10.1016/j.actaastro.2010.05.016.

- [29] A.F. Rafique, H. LinShu, Q. Zeeshan, A. Kamran, K. Nisar, Multidisciplinary design and optimization of an air launched satellite launch vehicle using a hybrid heuristic search algorithm, Journal of Engineering Optimization 43 (3) (2011) 305-328, doi:10.1080/0305215X.2010.489608.
- [30] P. Ross, Hyper-heuristics, in: E.K. Burke, G. Kendall (Eds.), Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques, Springer, 2005, pp. 529-556 (Chapter 17).
- [31] Daniel M. Schumacher, A system level model for preliminary design of a space propulsion solid rocket motor, PhD dissertation, University of Alabama in Huntsville, Number 3181448. 2005.
- [32] H.P. Schwefel, Numerical Optimization of Computer Models, Wiley & Sons, Chichester, 1981.
- [33] R.H. Sforzini, An automated approach to design of solid rockets utilizing a special internal ballistic model, AIAA 80-1135.
- Sobieszczanski-Sobieski, R.T. Haftka, Multidisciplinary aerospace design op-[34] Q379 timization: survey of recent developments, Journal of Structural Optimization 14 (1) (1997) 1-23.
- [35] P. Sutton, B. Oscar, Rocket Propulsion Elements, 7th ed., Wiley-Interscience,
- [36] V. Swaminathan, N.S. Madhavan, A direct random search technique for the optimization of propellant systems, The Journal of the Aeronautical Society of India 32 (1980).
- A. Törn, A. Zilinskas, Global Optimization, Lecture Notes in Computer Science, [37] vol. 350, Springer-Verlag, Berlin, 1989.
- [38] A. Truchot, Overall optimization of solid rocket motors, AIAA 89-16916.
- [39] T. Walsh, R. Wartburg, Ballistic missile sizing and optimizing, AIAA 78-1019.
- [40] Guanglin Wang, E. Cai, The Design of Solid Rocket Motor, Northwestern Polytechnical University Press, 1994.
- [41] D.H. Wolpert, W.G. Macready, No free lunch theorems for optimization, IEEE Transactions on Evolutionary Computation 1 (1) (1997) 67-82.