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a b s t r a c t

The instability of a receptor model due to nearly collinear sources is often worsened by a large number
of unknown sources, which usually results in unacceptable source contributions obtained by a single-
stage model. To solve this problem, a combined (principal component analysis/multiple linear
regressionechemical mass balance; PCA/MLReCMB) model comprising two stages has been developed.
In this study, synthetic datasets with a serious collinearity problem were generated to evaluate the
performance of the combined model, and acceptable results were obtained in the presence of noise.
Additional, the uncertainties of the estimated contributions were discussed. It was found that nearly
collinear sources usually got higher uncertainties. Ambient data from Chengdu were then studied
using both the PCA/MLReCMB and NCPCRCMB models. For PCA/MLReCMB model: vehicle exhaust
emissions contributed 80.46 mg m�3 (28.71%) to the total PM10; coal combustion got 68.52 mg m�3

(24.45%); resuspended dust, soil dust, secondary sulfate, secondary nitrate, cement dust and smelters
got 53.91 mg m�3 (19.24%), 46.31 mg m�3 (16.53%), 33.35 mg m�3 (11.90%), 17.65 mg m�3 (6.30%),
12.47 mg m�3 (4.45%) and 1.81 mg m�3 (0.65%), respectively. For NCPCRCMB model, the results were:
vehicled86.70 mg m�3 (30.94%), cementd49.47 mg m�3 (17.65%), resuspended dustd41.22 mg m�3

(14.71%), coald30.43 mg m�3 (10.86%), soild27.45 mg m�3 (9.80%), secondary sulfated16.41 mg m�3

(5.86%) and secondary nitrated3.61 mg m�3 (1.29%).
� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Understanding potential sources of the particulate matter in the
urban atmosphere is important for air quality management (Mazzei
et al., 2008). To identify sources, several receptor models have been
developed (Watson et al., 2002). Chemical mass balance (CMB)
model is a useful receptor model that uses the chemical charac-
teristics of particles measured at the sources and receptor to
quantify source contributions (Chow and Watson, 2002; Chow
et al., 2007; Shi et al., 2009a; Stone et al., 2010). Principal compo-
nent analysis/multiple linear regression (PCA/MLR) model, another
important receptor model, does not require a priori knowledge of
the number of sources or their compositions and instead uses
sufficient concentration data from ambient samples (Thurston and
Spengler, 1985; Cao et al., 2005; Hellebust et al., 2010). In addition,
other important receptor models such as that based on positive
yc@nankai.edu.cn (Y.-C. Feng).
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matrix factorization (Paatero, 1997; Reff et al., 2007; Ulbrich et al.,
2009; Chen et al., 2010; Henry and Christensen, 2010) and the
Unmix model (Henry, 2003; Song et al., 2007; Henry and
Christensen, 2010) have been used widely.

Each receptor has its strengths and weaknesses (Watson et al.,
2008). The weakness of the CMB model is that a completely
compatible source and receptor measurement is not commonly
available (Watson et al., 2008). In addition, the collinearity problem
may also disturb the modeled outcomes. Generally, the condition
indexes (CI) and variance-decomposition propositions (VDP) values
can be applied to identify the nearly collinear sources (Hopke,
1985). On another hand, the PCA/MLR model might fail to sepa-
rate factors (sources). Some studies found that one factor (extracted
by the PCA/MLR model) might relate to two or more source cate-
gories (Lioy et al., 1989; Okamoto et al., 1990; Harrison et al., 1996;
Guo et al., 2004; Mamane et al., 2008).

In urban areas in China, some important sources have similar
profiles, such as urban resuspended dust (URD), soil dust and coal
combustion (Zhao et al., 2006). The similarity of these source
profiles usually affects the results of the receptor models. If such
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data are apportioned by the CMB model, negative estimated
contributions of these nearly collinear sources might be obtained.
Or if they were apportioned by the PCA/MLR model, one factor
containing these nearly collinear sources would be extracted.

Wehave presented a two-stage combined source apportionment
technique, taking the advantages of the PCA/MLR and CMB models,
and applied it to the study of contributions of nearly collinear
sources to urban ambient particulate matter in our previous study
(Shi et al., 2009b). In this study, synthetic datasets with a serious
collinearity problemwere developed and introduced into combined
model. We want to test the accuracy of the results and their
uncertainties of the combined receptor model, when serious
collinearity problem exists. Next, the combined model was applied
to study the contributions of nearly collinear sources in Chengdu.

2. Methodology of combined source apportionment

CMB model is based on the balance of chemical species masses
among sources and receptors (US EPA, 2004). However, this balance
might be disturbed. Firstly, besides the major sources (such as soil,
coal and vehicles), there are thousands of insignificant sources that
contribute to the ambient receptor measured. The contribution of
each insignificant source to the ambient receptor is very small and
usually ignored by the CMB model. However, the sum of them
cannot be ignored and does disturb the balance. Secondly, uncer-
tainties in the sampling and chemical analysis can disturb the
balance. In this study, the sum of the disturbances to the balance
due to these two factors is referred as noise.

According to our previous study (Shi et al., 2009c), with a low
level of noise presenting at the receptor, CMB model can obtain
acceptable results even for nearly collinear sources (which will be
confirmed in thenext section). Therefore, the PCA/MLReCMBmodel
aims at reducing the level of noise at the receptor and consequently
weakens the collinearity problem. The method employed by the
PCA/MLReCMB model was described in our previous study (Shi
et al., 2009b). The PCA/MLReCMB model comprises three stages.

2.1. Stage 1: reducing noise from the original receptor
by the PCA/MLR model

In stage 1, several factors identified as potential sources
according to source markers (Hopke, 1985; Harrison et al., 1996;
Hedberg et al., 2005) can be extracted from receptor (here is orig-
inal receptor) using the PCA/MLR model. In this study, the actual
source profiles measured in the real world are referred to as
measured-source (M-source) profiles, while source profiles
extracted by PCA/MLR model are referred to as extracted-source
(E-source) profiles. If one factor can be identified as one source
category (such as vehicle exhaust), it is referred to as an extracted
simplex source (ES-source), whereas if it contains two or more
source categories, it is referred to as an extracted complex source
(EC-source). If a factor cannot be identified as any of the source
category, it might be noise. In this process, the contributions of the
EC-source, ES-source and noise can be described as follows.

original receptor ¼ EC� source1 þ EC� source2 þ.þ ES

� source1 þ ES� source2 þ.þnoise (1)

2.2. Stage 2: applying the CMB model to analyze
the secondary receptor

An EC-source obtained in stage 1 can be treated as a new
receptor (here is secondary receptor). Compared with the original
receptor, the number of source categories for a secondary receptor
has been reduced. As discussed above, a secondary receptor nor-
mally contains several M-source categories (M-sources in
a secondary receptor are referred to as Msub-sources). According to
the loading values in secondary receptor, the emission inventory
and the investigation of the studying area, the possible Msub-
source categories can be identified. In this stage, the contributions
of these Msub-sources to the secondary receptor can be estimated
by CMB model.
2.3. Stage 3: combining the results of stages 1 and 2

Overall results of the combined source apportionment can be
obtained from the results of stages 1 and 2 (i.e., the contributions of
ES-sources in stage 1 and the contributions of Msub-sources in
stage 2).

Detailed description of the PCA/MLReCMB combinedmodel can
be found in our prior study (Shi et al., 2009b).
3. Experiments

3.1. Development of the synthetic receptor dataset

In this section, three synthetic receptor datasets were devel-
oped. The estimated source contributions by PCA/MLReCMBmodel
would be compared with the true contribution values.

Actual source profiles were used to generate the synthetic
receptor dataset. For each synthetic receptor dataset, seven actual
PM10 source categories were included: URD (urban resuspended
dust), soil dust, coal combustion fly ash, cement dust, vehicle
exhaust, secondary sulfate and secondary nitrate. These actual
source profiles were obtained in three different cities in China:
Taiyuan, Anyang and Tianjin (reported in our prior study (Bi et al.,
2007)).

The method for developing the synthetic dataset was similar to
that used in our previous study (Shi et al., 2009b). First, an m by n
matrix (m is the number of samples and n is the number of
chemical species) of concentrations (mg m�3) C was generated:

cij ¼
X7
k¼1

sikfkj (2)

where fkj is the fraction (mg mg�1) of the jth species in kth source, sik
is the synthetic total particulate matter mass contribution (mg m�3)
of the kth source to the ith sample, and 7 is the number of the actual
source categories. The number of samples was 80, simulating the
results of an 80-day sample campaign for the PCA/MLR analysis.
The skj values were subjectively varied to reflect differences in the
source emission pattern and the influence of metrological condi-
tions. In this way, an 80 � 24 dataset can be obtained (80 samples
and 24 chemical species). The synthetic source contributions to the
synthetic receptor dataset (which are true values of source
contributions) and their standard deviations are as follows:
URDd65.51 � 24.86 mg m�3; soild25.24 � 10.66 mg m�3; coal
combustiond31.96� 13.00 mg m�3; cementd10.83� 4.47 mg m�3;
secondary sulfated14.79 � 5.72 mg m�3; secondary
nitrated5.03 � 2.43 mg m�3; vehicled35.98 � 14.28 mg m�3.

For this synthetic receptor dataset, the seven sources and the
receptor were highly compatible, for there was no noise. If such
a synthetic receptor dataset and source profiles were fitted by the
CMB model, good estimated source contributions can be obtained.

To disturb the balance, contributions of noise was added to
the synthetic dataset. For each species in the source profiles, 80
random values were generated within a given range. Eighty noises
were added into 80 synthetic receptor samples. The average
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contributions and standard deviations of noises are 30.51 � 11.53.
These ranges for the noise were referred to our prior study (Shi
et al., 2009b). Therefore, the synthetic receptor dataset was con-
structed from seven actual sources and noise as follows.

synthetic original receptor ¼ URDþ soilþ coalþ cement

þ vehicleþ sulfateþnitrate

þnoise (3)

Using the equation above, the original synthetic receptor data-
set was generated.

Firstly, a synthetic receptor was developed by the source profiles
from Taiyuan (called TY-receptor). The average concentrations of
the species inTY-synthetic receptor (true values) are listed inTable 1.
3.2. Combined source apportionment for the TY-synthetic dataset

3.2.1. Stage 1: using the PCA/MLR model
PCA is a statistical technique that can be applied to a set of

variables to reduce their dimensionality. The methods employed in
the PCA/MLR model have been described in the literature (Hopke,
2003; Guo et al., 2004).

The normalized original TY-synthetic dataset was analyzed by
PCA. After varimax rotation, seven factors (with eigenvalues of at
least 1) were extracted and accounted for 80% of the variance.

These seven factors are identified as follows:
Factor 1 (31% of the variance): High loadings for Al, Si, K, Ca, Ti

and Fe. This factor might be a complex source relating to two or
more source categories. Factor 2 (11% of the variance): High load-
ings for total carbon (TC), moderate loading forMn and etc. TC is the
source marker of vehicle exhaust, which indicates that the factor
might relate to vehicle exhaust. Factor 3 (10% of the variance): High
loadings for NHþ

4 , NO
�
3 and SO2�

4 . This factor relates to secondary
sulfate and nitrate sources. Factors 4e7 have high loadings for Pb,
Co, Cl�, Ba and other species. These factors mainly relate to noise.
Table 1
Average concentrations (mg m�3) and standard deviations of species for the
TY-synthetic receptor dataset (true values).

Species Original receptor dataset Secondary receptor dataset

Average sd Average sd

Na 2.45 1.21 0.76 0.28
Mg 2.51 1.01 1.85 0.68
Al 12.79 4.08 10.25 3.81
Si 30.47 10.01 26.58 9.89
P 0.60 0.19 0.13 0.05
K 1.85 0.60 1.44 0.53
Ca 16.79 5.65 15.71 5.77
Ti 0.59 0.21 0.56 0.21
V 0.04 0.03 0.01 0.00
Cr 0.04 0.01 0.02 0.01
Mn 1.66 0.60 0.07 0.02
Fe 4.55 1.64 3.95 1.48
Co 0.07 0.05 0.00 0.00
Ni 0.04 0.02 0.01 0.00
Cu 0.71 0.56 0.01 0.00
Zn 0.31 0.26 0.05 0.02
Br 0.06 0.05 0.00 0.00
Ba 0.17 0.12 0.06 0.02
Pb 0.14 0.11 0.02 0.01
TC* 46.01 12.68 19.17 7.17
NHþ

4 6.72 1.95 0.04 0.01
Cl� 1.02 0.58 0.20 0.07
NO�

3 5.12 2.05 0.00 0.00
SO2�

4 19.60 5.10 5.16 1.94

PM10 219.85 54.58 133.54 49.33

*TC: total carbon.
The first factor, identified as a complex source (EC-source) in the
analysis above, was treated as a secondary receptor, where the URD,
soil dust, coal combustion and cement dust were theMsub-sources.
They can be fitted by the CMB model in the second stage.

Next, the absolute principal component scores (APCS) were
calculated according to the method described in detail by Thurston
and Spengler (1985). The source contribution to the ith species of
the receptor (ci) can be calculated using multiple linear regression:

ci ¼ ðb0Þiþ
X7
p¼1

APCSp*bpi; (4)

where (b0)i is the constant term of multiple regression for ith
species, bpi is the coefficient of multiple regression for the pth factor
and ith species of the receptor and APCSp is the scaled value of the
rotated pth factor. APCSp*bpi represents the contribution of the pth
source to ci. Therefore, the average of the product APCSp*bpi for all
samples represents the average contribution of the pth source to ci
(Guo et al., 2004).

Similarly, the source contribution to the total PM10 mass can be
described as

total mass ¼ a0 þ
X7
p¼1

APCSp*ap; (5)

where the average of APCSp*ap for all samples represents the
average contribution of the pth source to the total mass of the
receptor.

The average contributions of the seven factors to the total mass
and species of the TY-original synthetic receptor are listed in
Table 2.

3.2.2. Stage 2: using the CMB model to fit the secondary receptor
The estimated average concentrations of the total mass (calcu-

lated according to Eq. (5)) and species (ci) (calculated according to
Table 2
Factor profiles (mg m�3) obtained by PCA/MLR stage for TY-original synthetic
dataset.

Species Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7

Na 0.25 1.57 �0.75 �0.05 0.54 0.08 0.43
Mg 2.01 0.36 0.29 0.26 0.15 �0.05 0.07
Al 9.76 1.14 0.27 0.14 0.11 �0.05 0.42
Si 24.68 3.12 0.14 �0.01 0.19 �0.01 0.10
P 0.12 0.38 0.13 0.02 0.00 0.02 0.00
K 1.43 0.31 0.13 �0.03 0.03 0.00 0.04
Ca 13.60 0.65 �0.75 0.15 0.27 0.30 �0.01
Ti 0.52 0.02 �0.01 0.01 0.01 0.00 0.01
V 0.02 0.00 0.01 0.02 0.01 0.00 0.00
Cr 0.02 0.01 0.00 0.00 0.00 0.00 0.01
Mn 0.31 1.21 0.58 �0.07 �0.03 �0.01 �0.07
Fe 3.91 0.05 0.48 �0.07 0.05 0.03 0.06
Co 0.01 0.00 �0.01 0.00 0.04 0.00 �0.01
Ni 0.01 0.01 0.02 0.01 0.01 �0.01 0.01
Cu �0.09 �0.04 0.26 0.34 0.16 0.18 0.19
Zn 0.17 �0.11 0.19 0.20 0.07 �0.04 0.03
Br 0.00 �0.01 �0.04 0.05 0.00 0.00 0.01
Ba 0.03 �0.01 0.01 0.01 �0.02 0.00 0.11
Pb �0.02 0.05 0.01 0.11 �0.02 �0.01 �0.03
TC 21.12 19.97 7.17 �0.03 0.30 �0.03 �1.13
NHþ

4 0.24 0.64 5.21 �0.03 �0.12 0.17 0.06
Cl� 0.09 0.24 0.18 �0.03 0.03 0.40 0.03
NO�

3 �1.19 1.16 2.94 0.27 0.17 �0.18 �0.16
SO2�

4 5.53 2.04 11.08 �0.66 �0.53 0.28 0.44

Total
mass

127.93
Complex
source

33.09
Vehicle
exhaust

28.54
Secondary
sulfate
and nitrate

6.34 3.60 2.09 4.59

The species with bold value got high loading.
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Eq. (4)) in the secondary receptor (factor 1) are listed in Table 2.
Since the CMB model takes the uncertainties (standard deviations)
of these average concentrations into account, the standard devia-
tions of ci in the secondary receptor should be first calculated.

According to our previous study (Shi et al., 2009b), the standard
deviation can be estimated as

si ¼
ffiffiffiffi
hi

p
$di; (6)

hi ¼ CiðsecondaryÞ=CiðoriginalÞ; (7)

where si is the standard deviation of ci in the EC-source, di is the
standard deviation of ci in the original receptor, Ci(secondary) is
the estimated average concentration (mgm�3) of the ith species in the
secondary receptor (Table 2) andCi(original) is the average concentration
(mg m�3) of the ith species in the original receptor (Table 1).

For example, the estimated average concentration of Na in the
secondary receptor (factor 1) was 0.25 mg m�3 (see Table 2), while
the average concentration of Na in the original receptor was
2.45 mg m�3 with a standard deviation of 1.21 mg m�3 (see Table 1).
Therefore, the estimated standard deviation of the average
concentration of Na in the secondary receptor was calculated as
sNa ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:25=2:45
p � 1:21 ¼ 0:39.

If the estimated average concentration of a species in the
secondary receptor was negative (e.g., that for NO�

3 was �1.19
mg m�3), it was replaced by half the detection limit.

All standard deviations of the average species concentrations of
the secondary receptor were estimated according to Eqs. (6) and (7)
and are listed in Table 3. To compare the estimated values of the
standard deviation with the true values in the secondary receptor,
we need to obtain the true average concentrations and their stan-
dard deviations. These true values can be calculated using to Eq. (2).
If only the Msub-source profiles are included in the calculation, the
secondary receptor can be generated:

syntheticsecondaryreceptor¼URDþsoilþcoalþcement: (8)
Table 3
Estimated standard deviations of the average concentrations of all species of the
secondary receptor (mg m�3).

Species Secondary receptor dataset

Estimated sd Estimated
sd/true sd

Estimated
mean/true mean

Na 0.39 1.37 0.33
Mg 0.87 1.28 1.09
Al 3.59 0.94 0.95
Si 8.89 0.90 0.93
P 0.09 1.85 0.95
K 0.58 1.08 1.00
Ca 5.27 0.91 0.87
Ti 0.22 1.05 0.93
V 0.02 3.84 1.87
Cr 0.01 1.49 1.13
Mn 0.26 10.63 4.77
Fe 1.54 1.04 0.99
Co 0.02 32.89 5.46
Ni 0.01 3.51 1.68
Cu 0.00 0.00 0.00
Zn 0.19 11.41 3.74
Br 0.00 0.00 0.00
Ba 0.05 2.31 0.49
Pb 0.00 0.00 0.00
TC* 8.59 1.20 1.10
NHþ

4 0.37 26.83 6.49
Cl� 0.17 2.32 0.46
NO�

3 0.00 e e

SO2�
4 2.71 1.40 1.07

PM10 42.09 0.85 0.96

sd: estimated standard deviations for secondary receptor.
*TC: total carbon.
The average species concentrations and the standard devia-
tions of the synthetic receptor data were obtained, and all values
are listed in Table 1. Therefore, the values in Table 1 are the true
values in this study. The ratios of estimated values to true values
are also given in Table 3. From these ratio values, we see the
estimated values of some species (such as the markers for factor
1: Mg, Al, Si, K, Ca, Ti, Fe and TC) were close to the true values
(ratios approaches to 1). However, some species got high ratio
values, such as Mn, Co, Zn and NHþ

4 . It might be because that
these species did not get high loadings in factor 1. PCA/MLR
model estimates the high loading species more exactly than the
low loading specie.

Next, the secondary receptor and the profiles of Msub-sources
(URD, soil dust, coal combustion and cement dust) were fitted by
the CMB model. The contributions of these sources were obtained:
65.51 mg m�3 for URD, 25.25 mg m�3 for soil dust, 31.13 mg m�3 for
coal combustion and 10.83 mg m�3 for cement dust. The perfor-
mance indices for CMB model (USEPA CMB8.2, 2004) were:
R2 ¼ 0.96, c2 ¼ 0.21 and 100.96% of mass accounted for. These
values all meet the requirements of the CMB model and indicate
that acceptable results were obtained in stage 2.

On the other hand, factor 3 could also be a secondary receptor, and
thus the contributions of secondary sulfate and secondary nitrate can
be fitted by the CMB model. The results were: secondary
sulfated15.53 mg m�3, secondary nitrated3.81 mg m�3.

3.2.3. Stage 3: final results
The final results for the PCA/MLReCMB model are listed in

Table 4. It is seen that the estimated source contributions were
close to the true values.

In addition, the uncertainties of the estimated contributions
were calculated.

(1) In stage 1, the contributions for each sample can be esti-
mated by PCA/MLR, so the mean contributions and their
standard deviations for simplex sources can be obtained
accordingly.

(2) In stage 2, a balance between weighted receptor profile (Cw)
and weighted source profiles (Fw) were established by CMB
model:

Cw ¼ Fw S (9)
where Cw ¼ ðVeÞ�1=2C; Fw ¼ ðVeÞ�1=2F (10)

V�1
e ¼ ðVeÞ�1=2ðVeÞ�1=2 (11)

ðVeÞ�1=2 ¼
�
ðVeÞ�1=2

�0
(12)

where, C is the receptor profile vector; F is the source profile
matrix; Ve(n � n) is the diagonal effective variance matrix (USEPA
CMB8.2, 2004).

According to the reference (Belsley et al., 1980), for an ordinary
least squares (OLS) regression process, the uncertainties of the
regression coefficient b can be calculated as:

s2bj
¼
2
4 1
n� p

Xn
k¼1

 
yk �

Xp
i¼1

xkibi

!2
3
5*�X0 X

��1
jj (13)

Where, y(n � 1) is the dependent variable; x(n � p) is the inde-
pendent variable; b(p � 1) is the regression coefficient.



Table 4
Source contributions (mg m�3) for three synthetic receptor datasets estimated by the PCA/MLReCMB model.

Sources True values Estimated contribution (mean � sd)

TY-receptor AY-receptor TJ-receptor

URD 65.51 � 24.86 60.25 � 17.45 61.84 � 29.07 57.58 � 14.85 Stage 2
Soil 25.24 � 10.66 24.41 � 16.69 23.72 � 26.81 20.77 � 12.82 Stage 2
Coal combustion 31.96 � 13.00 34.57 � 18.34 33.08 � 16.75 29.31 � 4.02 Stage 2
Cement 10.83 � 4.47 9.92 � 9.76 10.43 � 8.60 8.23 � 2.97 Stage 2
Secondary sulfate 14.79 � 5.72 15.53 � 0.44 15.68 � 0.65 14.80 � 0.12 Stage 2
Secondary nitrate 5.03 � 2.43 3.81 � 0.20 6.53 � 0.36 4.59 � 0.06 Stage 2
Vehicle 35.98 � 14.28 33.09 � 13.69 28.82 � 15.82 35.20 � 18.22 Stage 1
Noise 30.51 � 11.53
Total PM mass 219.85 � 54.58

TY-receptor: Taiyuan synthetic receptor, AY-receptor: Anyang synthetic receptor, TJ-receptor: Tianjin synthetic receptor, URD: urban resuspended dust.

Table 6
Summary statistics for the Chengdu dataset (mg m�3).

Species Average Stdev Max Min

G.-L. Shi et al. / Atmospheric Environment 45 (2011) 2811e2819 2815
So, for CMB model, the uncertainties of the estimated contri-
bution s should be:

s2sj ¼
(

1
n�p

Xn
k¼1

"
ðcwÞk�

Xp
i¼1

ðfwÞkisi
#29=
;*
�
F 0wFw

��1
jj

¼
(

1
n�p

Xn
k¼1

2
4 ck�Xp

i¼1

fkisi

!2�
Veii

3
5
9=
;*
�
F 0ðVeÞ�1F

��1

jj

(14)

where, n is the number of the fitted species; p is the number of the
source profiles. In this way, the receptor profile, source profiles and
their uncertainties can be all considered in Eq. (14).

The uncertainties of estimated contribution for TY-receptor
were listed in Table 4.

In addition, the collinearity for the source profiles can be dis-
cussed. The concepts of the condition indexes (CI) and the variance-
decomposition propositions (VDP) (Hopke, 1985) were introduced
to identify the collinearity problem in source profiles. According to
Hopke’s discussion, the collinearity problem arises when (1) there
is a singular value with a high CI (>5) and (2) there are high VDP
values (>0.5) for two or more sources associated with the same
singular value (Hopke, 1985).

If the TY-original synthetic receptor dataset is apportioned using
traditional CMBmodel, all the seven source profiles should be fitted
by the CMB model. The results of CI and VDP analysis of the source
profile matrix are presented in Table 5(a). In the table, there are two
high CI values of 17.78 and 40.04. For the value of 17.78, there was
only one VDP value greater than 0.5. And, for the value of 40.04, five
source categoriesdURD, soil dust, cement dust, vehicle exhaust
and secondary sulfatedhad values greater than 0.5. It can be
inferred that there is a serious collinearity problem in the source
profiles if the apportionment is conducted in a traditional way.

However, when using the combinedmodel, therewere only four
source profiles (URD, soil dust, coal combustion and cement dust)
Table 5
Condition indexes (CI) and variance-decomposition propositions (VDP) analysis.

CI VDP

URD Soil Coal Cement Vehicle Secondary
sulfate

Secondary
nitrate

a. TY source matrix (seven source categories)
17.78 0.92 0.02 0.02 0.05 0.41 0.12 0.01
40.04 0.97 0.98 0.09 0.82 0.56 0.70 0.13

b. TY source matrix (four source categories)
11.98 1.00 0.77 0.58 0.49

c. AY source matrix (four source categories)
12.93 0.99 0.44 0.73 0.42

d. TJ source matrix (four source categories)
18.48 0.87 0.79 1.00 0.22

The source with bold value got high VDP.
and the secondary receptor was fitted by the CMB model. The
dimension of the source profile matrix was reduced. The CI and VDP
values are listed in Table 5(b). In this instance, therewas only one CI
value (11.98) greater than 5, which was much lower than the CI
value of 40.04. Therefore, the collinearity problem was greatly
reduced in the combined model.

In addition, this synthetic dataset was also studied by traditional
CMBmodel. Thediscussionof the results between traditional CMBand
PCA/MLReCMB models was discussed in the file of Supplementary
material.
3.3. Combined source apportionment for other synthetic datasets

Besides the TY-synthetic dataset, two other synthetic datasets
were generated according to Eq. (2): AY-synthetic receptor (source
profiles obtained from Anyang) and TJ-synthetic receptor (source
profiles obtained from Tianjin) datasets. To compare the estimated
source contributions easily, the actual source categories for these
two synthetic receptor datasets were the same as those for the
TY-synthetic dataset; the true source contributions were the same
as the values listed in Table 4.

The final results of PCA/MLReCMB model for TY, AY and TJ
synthetic datasets were shown in Table 4. For the three synthetic
datasets, it can be found that the results of TJ-receptor datasets are
less close to the true values, compared with those of TY and AY
datasets. It might be because the different levels of collinearity
among the source categories in different cities. Table 5(bed) list the
CI and VDP values for the source profile matrices from three cities.
TJ source matrix got the highest collinearity. It might indicate that
Na 4.69 2.87 11.47 0.13
Mg 1.77 0.89 4.94 0.06
Al 13.03 6.60 28.20 0.78
Si 25.02 16.25 77.21 1.02
K 5.14 3.27 13.39 0.01
Ca 14.06 6.72 32.29 0.37
Cr 0.13 0.23 1.53 0.00
Mn 0.18 0.23 1.65 0.00
Fe 2.76 1.10 5.58 0.03
Cu 0.24 0.22 1.03 0.01
Zn 1.36 0.94 6.69 0.04
Cd 0.00 0.00 0.00 0.00
TC 83.11 54.54 220.25 7.14
NHþ

4 6.40 3.24 13.73 0.27
Cl� 0.53 0.73 3.54 0.00
NO�

3 5.11 5.07 26.16 0.16
SO2�

4 30.58 19.23 121.64 0.45

PM10 280.21 138.19 608.71 16.67

TC: total carbon.
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collinearity among the source profiles can affect the final results of
the combined model.

Also, the uncertainties of the estimated source contributions
were listed in Table 4. It can be found that the nearly collinear
sources usually got higher values. It might be because that the
source profile data can significantly affect CMB source apportion-
ment results and uncertainties (Lee and Russell, 2007).

In next section, the ambient receptor from Chengdu is appor-
tioned by the PCA/MLReCMB model to test its practicability.

4. Sampling and chemical analysis of the Chengdu samples

4.1. Sampling site

The city of Chengdu (102�540Ee104�530E, 30�050Ne31�260N) is
located in thewestern part of Sichuan basin, in themid-river area of
the Minjiang. Chengdu is one of the largest cities in China and the
capital of Sichuan province, with an area of 12,390 km2 and
a population of 11.123 million people. Chengdu has a humid
semitropical monsoon climate, with warm temperatures (16 �C
)
%(
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Fig. 1. Source profile
yearly average) and plentiful rainfall (1000mmyearly average). The
climate of Chengdu has little sunshine, with the dominant weather
being fog and clouds throughout the year (1071 sunshine hours per
year on average).

4.2. Ambient data sampling

Ambient PM10 concentration datawere obtained during sampling
campaigns in2007.A total of 135 sampleswere selected foranalyzing.
All samples were collected by filtration with a medium-volume air
sampler situated about 5 m above the ground. The pump was set at
100 L min�1 and ran continuously for 24 h. Two parallel medium-
volume air samplers were used for obtaining PM10 on polypropylene
membrane filters and quartz fiber filters. The sampling process was
referred to in our previous work (Bi et al., 2007).

4.3. Source sampling

Samples for five actual source categories were obtained in
Chengdu. The samples of the soil dust source were swept from
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Table 7
Factor profiles (mg m�3) obtained by PCA/MLR stage for Chengdu original receptor
dataset.

Species Factor 1 Factor 2 Factor 3 Factor 4

Na 4.79 0.42 0.58 0.21
Mg 1.24 0.20 �0.05 0.32
Al 11.15 0.63 0.96 �0.03
Si 26.94 0.79 1.88 �1.00
K 5.52 0.42 0.57 0.08
Ca 10.23 1.73 �0.63 1.09
Cr �0.01 �0.01 0.07 0.19
Mn 0.27 �0.01 �0.04 0.10
Fe 1.54 0.31 0.49 �0.07
Cu 0.23 �0.05 �0.04 0.01
Zn 1.00 0.23 �0.12 0.28
Cd 0.00 0.00 0.00 0.00
TC 91.91 0.58 3.21 1.31
NHþ

4 �0.26 �0.06 4.05 0.23
Cl� 0.24 0.43 �0.36 0.05
NO�

3 1.29 3.20 1.83 �0.70
SO2�

4 20.16 0.80 17.53 4.95

Total
mass

235.35
Complex
source

17.65
Secondary
nitrate

33.35
Secondary
sulfate

1.81
Smelter

The species with bold value got high loading.
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representativeportions of theground surfaceusing aplastic brush and
tray (Zhao et al., 2006). Coal combustion samples were collected from
particulate pollution control devices (electrostatic precipitators, fabric
filters or wet scrubbers) or sampled by a dilution stack sampler (Zhao
et al., 2006). Cement dust was collected from roofs of residential
buildings around the building site, or from production lines of nearby
cement factories. The collected source samples were dried in a dark
room with ventilation devices and sieved through 150 mesh sieves.
The sieved material was then suspended in a chamber and sampled
through size selective inlets onto filters to obtain the PM10 samples
used for analyses (Chow et al., 1994). Vehicle exhaust dust was
sampled fromanexhaust pipes. Thedilution stack andvehicle exhaust
samplers couldcollect sampleson theirfilters forPM10measurements.
All powder samples were sieved and suspended in a resuspension
chamber or separated by a Bahco centrifugal machine for PM10
measurements (Zhao et al., 2006).

As secondary aerosol sources, ammonium sulfate and ammo-
nium nitrate were expressed by “pure” secondary source profiles
(Mazzera et al., 2001; Park and Kim, 2005).

4.4. Chemical analysis

Thirteen elements (Na, Mg, Al, Si, K, Ca, Cr, Mn, Fe, Cu, Zn and Cd)
were analyzed by inductively coupled plasma (ICP) analysis (Zhao
et al., 2006). These elements were extracted from polypropylene
membrane filters using a laboratory system (ETHOS E, Milestone).
Quartz fiber filters were cut into pieces for the analysis of ions and
TC. Water soluble NHþ

4 , Cl
�, NO�

3 and SO2�
4 were extracted by an

ultrasonic extraction system (AS3120, AutoScience) and analyzed
by ion chromatography (DX-120, Dionex). TC was determined using
a carbon elemental analyzer (Vario EL, GmbH). The chemical
analysis was detailed in our previous work (Zhao et al., 2006).

5. Results and discussion

The concentrations of analyzed species and the total mass are
listed in Table 6. The average concentration of PM10 was
280.21 mgm�3, which is higher than reported data for other cities in
China, such as Shenzhen, Zhuhai (Cao et al., 2004), Tianjin and
Taiyuan (Zhao et al., 2006). Some species such as Si, TC and SO2�

4
were at high levels in the ambient receptor data, while other
elements such as Cr, Mn and Co were at low levels.

The source profiles are presented in Fig. 1.
The ambient receptor (shown in Table 6) (the original receptor

data in this study) was analyzed using the PCA/MLReCMB model.

5.1. Stage 1: PCA/MLR

PCA was performed on the original receptor data. After varimax
rotation, four factors (with eigenvalues of at least 1) were extracted
and they accounted for 80% of the variance.

Factor 1 (48% of the variance) is explained by crustal compo-
nents such as Na, Mg, Al, Si and Ca. In addition, this factor is related
to TC, the marker of vehicle exhaust. Therefore, this factor might be
a complex source. According to the emission inventory and the
investigation of the studying area (Feng et al., 2008), this factor
might relate to five Msub-sources: URD, soil dust, coal combustion,
cement dust and vehicle exhaust.

Factor 2 (12% of the variance) is related to NO�
3 , which is the

marker of secondary nitrate. Note that there was also a high loading
for Cl� and moderate loading for some other elements (such as Mg,
Ca, Fe and Zn).

Factor 3 (11% of the variance) had high loadings for NHþ
4 and

SO2�
4 . Therefore, this factor relates to a secondary sulfate source.
Factor 4 (9% of the variance) had a high loading for Cr and
moderate loadings for Mg, Mn, Zn and Cd. Hence, this factor might
relate to a smelter source.

After MLR, the contributions to the total mass from each source
and the species concentrations were obtained. The values are listed
in Table 7. The complex source (factor 1) contributed 235.35 mg m�3

to PM10, the secondary sulfate contributed 33.35 mg m�3, and the
secondary nitrate and smelter sources contributed 17.65 and
1.81 mg m�3 respectively.

5.2. Stage 2: CMB model

In stage 2, the complex source (factor 1) was treated as the
secondary receptor. The standard deviations were calculated using
Eqs. (6) and (7). Secondary receptor data were used for the ambient
data input file, and information on the five Msub-source (URD, soil
dust, coal combustion, cement dust and vehicle exhaust) profiles
was used for the source profile input file. These input files were
analyzed using the EPA CMB8.2 model.

The contributions of the five Msub-sources were estimated. The
estimated contributionsof vehicle exhaust, coal combustion,URD, soil
dust and cement dust to the secondary receptor were 80.46 � 67.99,
68.52�152.23,53.91�43.61, 46.31�70.80and12.47�20.38mgm�3,
respectively. The performance indices meet the requirements of the
CMB model: c2 was 0.29, R2 was 0.94 and the percentage of mass
accounted forwas 111.18%. In addition, the diagnosticMPIN (modified
pseudo-inverse normalized) matrix can be obtained by CMB model.
ThehighMPINvalue identifies the high influenceof thefitting species
on the source contributionestimated (Chowet al., 2007). For Chengdu
dataset, the influential specieswere:Mg and NO�

3 for URD; Si for soil;
Al and SO2�

4 for coal; Ca for cement; and TC for vehicle.

5.3. Stage 3: final results for the PCA/MLReCMB model

The final results are listed in Table 8. Vehicle exhaust contrib-
uted most to ambient PM10, and coal combustion was the second
highest contributor.

5.4. Study by NCPCRCMB

In addition, the receptor dataset from Chengdu was also studied
by Nonnegative Constrained Principal Component Regression



Table 8
Source contributions (mg m�3) to Chengdu ambient receptor data estimated by the PCA/MLReCMB and NCPCRCMB models.

Sources Estimated contribution: mg m�3 (100%)

PCA/MLReCMB NCPCRCMB Traditional CMB

URD 53.91 � 43.61 (19.24%) Stage 2 41.22 � 107.97 (14.71%) 161.91 � 110.52
Soil 46.31 � 70.80 (16.53%) Stage 2 27.45 � 58.53 (9.80%) 59.10 � 58.11
Coal combustion 68.52 � 152.23 (24.45%) Stage 2 30.43 � 122.78 (10.86%) �99.95 � 159.90
Cement 12.47 � 20.38 (4.45) Stage 2 49.47 � 34.70 (17.65%) 23.51 � 29.02
Vehicle 80.46 � 67.99 (28.71%) Stage 2 86.70 � 57.80 (30.94%) 75.39 � 59.69
Secondary sulfate 33.35 � 24.63 (11.90%) Stage 1 16.41 � 11.78 (5.86%) 16.59 � 14.66
Secondary nitrate 17.65 � 23.98 (6.30%) Stage 1 3.61 � 6.28 (1.29%) 0.14 � 5.91
Smelter 1.81 � 1.92 (0.65%) Stage 1 e e

G.-L. Shi et al. / Atmospheric Environment 45 (2011) 2811e28192818
Chemical Mass Balance Model (NCPCRCMB). NCPCRCMB is a new
receptor which was developed in our prior work (Shi et al., 2009a).
The Nonnegative Constrained Principal Component Regression
route is added into the traditional CMBmodel iteration, to solve the
near collinearity problem for source apportionment. The detailed
description of this model can be found in the reference (Shi et al.,
2009a).

For NCPCRCMB model, profiles of seven source categories (the
source categories were listed in Table 8 and source profiles were
descript in Fig. 1) and receptor (shown in Table 6) were introduced
into the model. The results of NCPCRCMB model for Chengdu
dataset were also shown in Table 8 (the uncertainties of the esti-
mated contribution were also calculated according to Eq. (14)). The
performance indices are: c2 ¼ 0.72, R2 ¼ 0.81 and PM ¼ 91.11%.

The results show that vehicle got the highest contribution
(86.70 mg m�3), which was similar to the results of PCA/MLReCMB.
However, the estimated contribution of coal by NCPCRCMB was
relatively lower than that by PCA/MLReCMB;while the cement was
the opposite case. Secondary sulfate and nitrate got higher esti-
mated contributions by PCA/MLReCMB than those by NCPCRCMB
model. It is because that the factors (factor 2 and 3 in Table 7)
extracted by PCA/MLReCMB included unknown sources. See
Table 7, the estimated concentration of NO�

3 in factor 2 was
3.20 mg m�3 and that of SO2�

4 in factor 3 was 17.53 mg m�3. These
values are close to the estimated contributions of secondary sulfate
and nitrate by NCPCRCMB, respectively. It can be found that the
sum of estimated contributions by NCPCRCMBwas less than that by
PCA/MLReCMB model. The differences are reasonable. In several
studies, different results might be obtained by two receptormodels.
NCPCRCMB and PCA/MLReCMB model are based on traditional
CMB model. For CMB model, the diagnostic PM within 80%e120%
meets the requirement. As presented above, the diagnostic indices
of results of PCA/MLReCMB and NCPCACMB all meet the CMB
requirement. So the results of both models can be acceptable. In
addition, for uncertainty, the nearly collinear sources got relative
higher values for both models.

The Chengdu ambient dataset was analyzed by traditional CMB
model. The results are shown in Table 8. Among the sources, soil
and coal combustion are the near collinear sources. For traditional
CMB results, coal combustion got negative results.
6. Conclusions

According to the discussion above, the combined model can be
used for source apportionment. The noise in the receptor can be
reduced in PCA/MLR stage; and some similar source categories
might be contained in one factor, this factor is a complex source;
then in CMB-stage, the complex source can be treated as
a secondary receptor, then the secondary receptor and its contained
sources can be more compatible. In this way, a more accurate result
(source contributions) of apportionment can be obtained.
The experiment in this study evaluated this technique by
applying synthetic datasets. Results for each stage of combined
model were compared with the true values, the results were
acceptable. In addition, the synthetic tests show that nearly
collinear sources usually got higher uncertainties. In addition, the
ambient receptor dataset was studied by PCA/MLReCMB and
NCPCRCMB models, and acceptable results were obtained.
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