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Multichannel Sampling and Reconstruction of
Bandlimited Signals in Fractional Fourier Domain

Jun Shi, Yonggang Chi, and Naitong Zhang

Abstract—The classical multichannel sampling theorem for
common bandlimited signals has been extended differently to
fractional bandlimited signals associated with the fractional
Fourier transform (FRFT). However, the implementation of those
existing extensions is inefficient because of the effect of spectral
leakage and hardware complexity. The purpose of this letter is
to introduce a practical multichannel sampling theorem for frac-
tional bandlimited signals. The theorem which is constructed by
the ordinary convolution in the time domain can reduce the effect
of spectral leakage and is easy to implement. The classical multi-
channel sampling theorem and the well-known sampling theorem
for the FRFT are shown to be special cases of it. Some potential
applications of this theorem are also presented. The validity of the
theoretical derivations is demonstrated via simulations.

Index Terms—Fractional bandlimited signal, fractional filter,
fractional Fourier transform, multichannel sampling theorem.

I. INTRODUCTION

HE fractional Fourier transform (FRFT)-a generalization
T of the Fourier transform (FT)-has received much atten-
tion in recent years due to its numerous applications, including
quantum physics, communications, optics and signal processing
[1]-19]. For more details of the FRFT, see [3]. The definition of
the FRFT is as follows [2]:

+oo
Fo(u) = F [£(1)] (u) = / FOKalwtydt (1)

where the transform kernel is given by

Aae(j/Z)(tz—l—uz) cot a—jutcsca? if Oé?é km
Kao(u,t)=S 6t —u), if a=2kmw
o(t + u), ifa=(2k - 1)7

2
where A, = /(1 — jcota)/2m, k € Z. The inverse FRFT is

the FRFT at angle —a, given by
+oo

/ Fo(u)Ko(u,t)du  (3)

— 00

ft) =F “[Fa(u)] (t) =
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Fig. 1. Filtering the signal f(¢) in the fractional Fourier domain.
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Fig. 2. FRFT domain filtering with &« = /4. (a) Theoretical waveform of
g1(t). (b) DFRFT out for g1 (t), where DFRFT length N = 128.

where the bar denotes the complex conjugation. Whenever o =
/2, (1) reduces to the FT.

Many properties of the FRFT including its multichannel sam-
pling theorem have been currently derived as counterparts to the
corresponding properties of the FT [4], [7]-[10]. The classical
multichannel sampling theorem introduced by Papoulis [11] is
a powerful extension of the Shannon sampling theory, revealing
that a common bandlimited signal f(¢) could be restored ex-
actly from several filtered versions {gi(¢)|k = 1,..., M} of
f(t) where each filtered version is sampled at a fraction of the
Nyquist rate associated with f(¢). Due to the importance of
the FRFT in signal processing, the concepts of the classical
multichannel sampling have been extended to fractional ban-
dlimited signals. However, the implementation of those exten-
sions [12]-[14] is not practical. To be specific, in [12]-[14],
the filtered version of the fractional bandlimited signal f(t) is
achieved by the method of transform domain filtering based on
the discrete FRFT (DFRFT) shown in Fig. 1.

This method is inefficient due to the effect of spectral leakage.
Spectral leakage results from an assumption in the DFRFT al-
gorithm that the time record exactly repeats throughout all time.
In other words, when you use the DFRFT to measure the frac-
tional frequency content of data, the transform assumes that
the finite data set is one period of a chirp-periodic signal [15].
Thus, if the samples of the signal f(¢) shown in Fig. 1 are not
chirp-periodic in the DFRFT’s window of observation, a discon-
tinuity occurs at the DFRFT’s block boundary. For the case of a
nonwindowed DFRFT, the discontinuity is abrupt and the spec-
tral leakage can be significant. To illustrate this, Fig. 2 depicts
the filtered version g1 (¢) of f(¢) that is composed of g1 (t) =
0.5 exp(—750.5t%) sin t and go(t) = 2 exp(—40.5t2) sin 40t (the
solid lines are real parts and the dash lines are imaginary parts).
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Comparing Fig. 2(a) with Fig. 2(b), we find that the filtered
version gi (t) of f(t) is distorted at the DFRFT’s block boundary
because of the effect of spectral leakage. Thus, the method of
FRFT domain filtering shown in Fig. 1 is not practical in actual
applications. In [12], each g () can be also derived by the gen-
eralized convolution for the FRFT in the time domain, i.e.

gk (t) @hk

|csc o ///f e 6(1/2)(f12+“ +72212) cot o

x edut=T—t)esca gyl gy qr 4)

where © indicates the generalized convolution operator, and
hi(t) is the impulse response of the fractional filter. Unfortu-
nately, it is complicated to reduce the expression of the general-
ized convolution to a single integral form as in the ordinary con-
volution expression, so it is not easy to implement. Hence, those
extensions derived in [12]-[14] of the classical multichannel
sampling theorem are not practical.

The purpose of this letter is to propose a practical multi-
channel sampling theorem for fractional bandlimited signals,
which differs from those introduced in [12]-[14]. The proposed
theorem is advantageous over the existing ones [12]-[14] in that
it can reduce the signal distortion, and is easy to implement with
ordinary convolution structure.

The outline of this letter is organized as follows. In the next
section, the concept of fractional bandlimited signals is briefly
introduced and some useful formulas are given. In Section III,
the practical multichannel sampling theorem is proposed, and
some potential applications are presented. Conclusions appear
at the end of the letter.

II. PRELIMINARIES

A. Fractional Bandlimited Signal

A signal f(¢t) is often called Q,-fractional bandlimited if its
energy is finite and its FRFT F,, (u) vanishes outside the region

(=0, +Q20)
F,(u) =0,

400 +Qq
/|f(t)|2dt: / |Fo(u)]? du < oo. (6)
—Q,

Then, the signal f (¢ ) can be resorted as follows:

f(t)—e_]Tcom Z f(nTs )ej

n=—oo

for |u] > Q,, ®)

T ) cot a

sin [(t — nT5)Qq csc o] 7
(t — nTs)Qy csc

where Ty = 7 sin /€2, . This basic result, originally due to Xia,
is the well-known sampling theorem for the FRFT [9].

B. Some Useful Formulas

The relationship between the FRFT and the FT [10] is given
below which will be used in the current subsection

].'Oé[ ( )]( ) \/—A e(]/2 u? cot o |
X |:f(t)e(1/2)t2 cot ai| (UCSC Ol) (8)

where § denotes the FT operator.
A formula is given below which will be used in Section III

o(t) B e- /2P cotar, [(x(t)ewz)# com) * h(t)} )
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where * denotes the ordinary convolution operator. The formula
can be easily deduced by the method of defining fractional op-
erations introduced in [8]. It is easy to verify that

Za(u) = V21 Xa(u)H(ucsc ). (10)
The proof of (10) is as follows. According to (9), the definition

of the FRFT and (8), we have
+oo

() = / o= (/2P cotar [(x(t)e(j/2)t2 cota) . h(t)}

—00

X Ko(u,t)dt
=F [(x(t)e(j/Q)t2 CO“‘) * h(t)} (ucsc )

> A(ye(j/Z)u2 cota

(11)
By applying the ordinary convolution theorem [3] and (8) again,
we obtain

Zao(u) =F [at(t)e(j/Q)t2 Com] (ucsca)

> mAae(j/2)u2 cotag [h(f)]
=27 X, (u)H (ucsca) (12)

where H denotes the FT of h. This completes the proof of (10).
Whenever & = 7/2, (10) reduces to the ordinary convolution
theorem of the FT [3]. The proof is easy and omitted.

Equations (9) and (10) state that a modified ordinary convo-
lution in the time domain is equivalent to a simple multiplica-
tion in the fractional Fourier domain. This convolution-multi-
plication property of the FRFT is useful for fractional filter de-
sign. For instance, if we are interested only in the FRFT X, (u)
in the region (—umy, +uy,) of a signal z(t), we can chose a
transfer function H (u csc «) which is constant over the region
(—%m, +um), and zero or of rapid decay outside that region.
Particularly, the (9) is useful for deriving the practical multi-
channel sampling theorem for fractional bandlimited signals as
will be shown later on.

III. A PRACTICAL MULTICHANNEL SAMPLING THEOREM FOR
THE FRFT AND ITS POTENTIAL APPLICATIONS

A. A Practical Multichannel Sampling Theorem

In the following, we propose a practical multichannel
sampling theorem, revealing that a €),-fractional ban-
dlimited f(t) can be recovered in terms of the samples
{gr(mA)|E = 1,...,M;n = —o0,...,+00} of M linear
functions gy (t) sampled at the slower rate as follows:

T = 204 /M. (13)

For this purposes, we first give M linear systems with system
functions {hx(t)|k = 1,..., M} and let the Q,,-fractional ban-
dlimited signal f(¢) be applied to the input of these systems.
From (10), the resulting outputs are M functions

Gra(u) = V2w Fy(u)Hy(ucsca),

14
where G, and F, denote the FRFT of g, and f, respecti\gely),
and Hj, indicates the FT of hy. It follows from (9) that

gi(t) = e ot [ (p()eli o) )] 15)

Since the derivation of g (¢) is realized in the time domain with
ordinary convolution structure, it is advantageous over the ex-
isting method [12]-[14] which is shown in Fig. 1 in that it can

A =2rsina/o,,

—Qo <u <+,



SHI et al.: MULTICHANNEL SAMPLING AND RECONSTRUCTION

0.5

-0.5 o
0 128 256 384 512

Fig. 3. Using the modified ordinary convolution to derive the filtered version
g1(t) of f(t) given in Fig. 2.

reduce the signal distortion, and it is easier to implement than
the alternative method [12] given in (4). Fig. 3 depicts the fil-
tered version g1 (t) of f(t) given in Fig. 2 by using the modified
ordinary convolution in (15).

Obviously, the distortion of the filtered version can be avoided
if we use the modified ordinary convolution instead of FRFT
domain filtering, see Fig. 2(b) and Fig. 3.

To derive the practical multichannel sampling theorem for
fractional bandlimited signals, according to (9) and (10), we
form the following system of equations:

M
Z V2rHy, (u+ 704) csca) Yi(ucsca,t) = efm7e esco
k=1

r=0,1,...,M -1

’

(16)

where t is any number, u € (—Qs, —Q4 + 04), 7 is SOme in-
teger, and Hy,(u) denotes the FT of hy(t). This system defines
M functions {Yi(ucsca,t)|lk = 1,...,M} of u and ¢ be-
cause the coefficients Hy((u + 704 ) csc o) of the system (16)
depend on u, and the right side depends on ¢. Although func-
tions { Hx(ucsca)|k = 1,..., M} are general, they cannot be
completely arbitrary: they must meet the condition that the de-
terminant of the coefficients Hy ((u+ro, ) csc «) of (16) differs
from zero for every u € (—Q4, —a + 04 ). We will also make
an assumption that the solutions {Yj (ucsca, t)|k = 1,..., M}
of (16), considered as functions of u, can be expanded into a
Fourier series in the region (—Q,, —, + 0,). The practical
multichannel sampling theorem can be concluded as follows:

Theorem 1: If f(t) is a Q,-fractional bandlimited signal, it
can then be restored by the interpolation formula:

+o0o M

J(@) = 02t 57N ()

n=—oo k=1

Xe(j/Z)(nA)2 cot ozyk(t _ TLA) (17)

where
—Qa+0oa
yr(t)=o;! / Yi(ucsca,t)e ™ du, k=1,....M
—Qa
(18)

and gy, (t) is given in (15).
Proof: Tt follows from (13) that

(t+ A)ro, csca = tro, csca + 27r. (19)

Thus, the right side of (16) consists of periodic functions of ¢
with period A. Since the coefficients Hy((u + ro4) csca) of
(16) are independent of ¢, the solutions Y} (u csc a, t) are run

Yi(ucsca,t + A) = Yy (ucsca,t). (20)

911

Then, according to (18) and (20), we have
—Qa+0a

yr(t —nA) =0t Yi(ucsca,t — nA)

—Qa
N (t—nA)ucsc > du
—Qa+0oq
_ -1 Jtucsca
=0, Yi(ucsca,t)e
Q.
—jnAucsca
X e du (1)

which states that y(t — nA) is the nth Fourier series ex-
pansion of the function Yj(ucsca,t)e?™* in the region
(=, —Qa + 04). Hence

+oo
Z yk(t — nA)ej'n,Au csca (22)

n=—oo

Yi(ucsca,t)ed™ S =

foru € (=, —Qa +04). Then, multiplying the first equation
of (16) with 7 = 0 by e/t ¢« and using (22) results in

M +oo
ejtu csca Z mHk (u cse (M) Z n (t _ nA)ejnAu csca
k=1 n=—oo

2
forevery u € (—Qq, — Q4 + 04). (23)

Now along the lines of [11], it can be shown that (23) also
holds good for every u € (—Q4q, +4), i.e.

M +o0
ejtucsco/ — Z \/%Hk(UCSC 0[) Z yk(IL/_nA)ejTl,Au(‘,Sc(y7
k=1 n=-—o00
-y <u< 4+ (24)

Since f(t) is a Q,-fractional bandlimited signal, it follows form
(3) that

+Qa
f(t):A_aef(j/Q)tQ cot o / Fa(u)ef(j/Z)uz cot atjtucsca g,
—Q.
Substituting (24) into (25) yields 25)
‘ M 4oo
f(t) = /DT cta ST Ny (¢ —nA)A,
k=1n=—oo

+Qa

/ V2rF, (u)Hy(ucsc ()z)(f(j/z)“2 cotahinAucscady, - (26)
—Q.
Next, from (14) and the inverse FRFT, we have

+Qq
gk(t)e(j/z)tzm“’:A_a / V2m F, (u)Hy(ucsc a)
_Qn

><e—(j/2)u2 cot a+jtu csca g, (27)

from which it follows that

+Qa
gk(nA)e(j/2)(nA)2cota:A_(, / V271 Fo (u) Hy(u csc o)
—Q.

> e—(j/2)'u,2 cot a+jnAu csc e .

(28)
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Fig. 4. Configuration of the proposed multichannel sampling.

Inserting (28) into (26) yields (17). This completes the proof of
Theorem 1.

Corollary 1: 1f M = 1 and H;(ucsca) = (2r)~'/2, then
Theorem 1 reduces to the well-known sampling theorem for the
FRFT introduced by Xia [9] shown in (7).

Proof: Since M = 1 and Hy(ucsca) = (2r)~1/2, it
follows from (15) and (16) that

g(t) = f(t), Yi(ucsca,t) = 1. (29)
Inserting (29) into (16) results in
sin (€2, csc o
ya(t) = 2a csc2) (0)

tQ, csc

By putting (30) and (29) into (17), the (7) can be established.
This completes the proof of Corollary 1.

Corollary 2: Whenever a = /2, Theorem 1 collapses to the
classical multichannel sampling theorem earlier introduced by
Papoulis in [11].

The proof of Corollary 2 is easy and omitted. Moreover, by
designing different fractional filters, reconstruction methods for
other sampling strategies including the nonuniform sampling
theorem [13] and the derivative sampling theorem [14] can be
also achieved according to the results in this letter.

B. Potential Applications

The proposed multichannel sampling theorem states that frac-
tional bandlimited signals can be restored exactly in terms of
linear fractional filtering operations in the time domain (see
Fig. 4) Specially, if the original sampled signal is not directly
achieved, but the filtered version can be accessible, then the
proposed theorem reveals that the original signal can be still
restored.

The immediate application of the proposed theorem can be
found when processing some specific class of signals which
are not bandlimited in the Fourier domain but bandlimited in
the fractional Fourier domain or whose energy is better concen-
trated in the fractional Fourier domain than that in the Fourier
domain. For an example, the chirp signal which is widely used in
engineering systems such as radar, sonar and communications
[31, [5], [7]. In particular, the waveforms transmitted in chirp
ultra-wideband (UWB) communication systems [16] are very
short chirp signals with bandwidth on the order of several giga-
hertz, thus designing a single analog-to-digital converter (ADC)
to operate at the waveform Nyquist rate is not practical, and par-
allel ADC architectures with each ADC operating at a fraction
of the Nyquist rate need to be employed (see Fig. 4). Other po-
tential applications can be found in multichannel data acqui-
sition environment, such as flexible interleaving/multiplexing
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ADC for fractional bandlimited signals, the multicarrier mul-
tiplexing system based on the FRFT [5], the sampling and re-
construction of fractional multiband signals and the subcoding
in the fractional Fourier domain. Moreover, the proposed the-
orem can be also useful in image superresolution problems and
other problems of signal processing as discussed in [12]-[14].

IV. CONCLUSION

In this letter, we have proposed a practical multichannel sam-
pling theorem for fractional bandlimited signals. The proposed
theorem is advantageous over the existing ones [12]-[14] in
that it can reduce the signal distortion resulting form the ef-
fect of spectral leakage, and is easy to implement with ordinary
convolution structure in the time domain. The classical multi-
channel sampling theorem for common bandlimited signals and
the well-known sampling theorem for the FRFT are shown to
be special cases of it. In particular, by designing different frac-
tional filters, other interpolation expansions for other elaborate
sampling schemes can be also derived. Some potential applica-
tions of the proposed theorem are also presented. The validity
of the theoretical derivations is demonstrated via simulations.
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