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Abstract

Background: Cancer is a heterogeneous disease caused by genomic aberrations and characterized by significant
variability in clinical outcomes and response to therapies. Several subtypes of common cancers have been identified
based on alterations of individual cancer genes, such as HER2, EGFR, and others. However, cancer is a complex disease
driven by the interaction of multiple genes, so the copy number status of individual genes is not sufficient to define
cancer subtypes and predict responses to treatments. A classification based on genome-wide copy number patterns
would be better suited for this purpose.

Method: To develop a more comprehensive cancer taxonomy based on genome-wide patterns of copy number
abnormalities, we designed an unsupervised classification algorithm that identifies genomic subgroups of tumors. This
algorithm is based on a modified genomic Non-negative Matrix Factorization (QNMF) algorithm and includes several
additional components, namely a pilot hierarchical clustering procedure to determine the number of clusters, a
multiple random initiation scheme, a new stop criterion for the core gNMF, as well as a 10-fold cross-validation stability
test for quality assessment.

Result: We applied our algorithm to identify genomic subgroups of three major cancer types: non-small cell lung
carcinoma (NSCLC), colorectal cancer (CRC), and malignant melanoma. High-density SNP array datasets for patient
tumors and established cell lines were used to define genomic subclasses of the diseases and identify cell lines
representative of each genomic subtype. The algorithm was compared with several traditional clustering methods and
showed improved performance. To validate our genomic taxonomy of NSCLC, we correlated the genomic classification
with disease outcomes. Overall survival time and time to recurrence were shown to differ significantly between the
genomic subtypes.

Conclusions: We developed an algorithm for cancer classification based on genome-wide patterns of copy number
aberrations and demonstrated its superiority to existing clustering methods. The algorithm was applied to define
genomic subgroups of three cancer types and identify cell lines representative of these subgroups. Our data enabled
the assembly of representative cell line panels for testing drug candidates.

-

Background

Cancer is a disease of the genome that is characterized by
substantial variability in the clinical course, outcome, and
response to therapies. A key factor underlying this vari-
ability is the genomic heterogeneity of human tumors:
individual tumors of the same histopathological subtype
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and anatomical origin typically carry different aberra-
tions in their cellular DNA. Many of the most efficacious
recent drugs target specific genetic aberrations rather
than histological disease subtypes, for example trastu-
zumab and lapatinib for treating HER2-positive breast
cancers [1], tamoxifen for treating ER-positive breast can-
cers[2,3], and gefitinib and erlotinib for non-small cell
lung cancer with EGFR mutations [4-8].

Several subtypes of common cancers have been identi-
fied based on the aberrations of individual cancer genes,
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for example HER2-amplified breast cancer [1,9,10],
EGFR-mutated and EGFR-amplified non-small-cell lung
cancer [5,8], and others. However, cancer is a complex
disease driven by the interaction of multiple genes and
pathways [11,12]. Therefore, the copy number status of
individual genes may not be sufficient to define cancer
subtypes and predict the response to treatments. More
comprehensive cancer taxonomy needs to be designed
based on genome-wide patterns of DNA copy number
abnormalities.

Previous ground-breaking studies have reported
molecular classifications for key cancer types based on
their global patterns of gene expression [13-16]. As the
high-density array technology became a reliable tool for
copy number profiling, multiple gene copy number data-
sets were generated, revealing the genomic heterogeneity
of key cancer types at the gene copy number level [17].
Various clustering methodologies have been applied to
comparative genomic hybridization (CGH) data sets to
classify cancers based on their copy number patterns and
identify copy number aberration hotspots [17-23]. Tax-
onomies based on gene copy number have a number of
advantages over gene expression-based classifications. In
particular, copy number alterations are stable events, not
affected by cell cycle or cytokine stimulation. Addition-
ally, they show greater consistency between primary
human tumors and cultured cell lines.

Here we developed a copy number-based methodology
for cancer classification in order to enable identification
of genomic subgroups of major cancer types and facilitate
rational selection of tumor models representative of indi-
vidual subgroups. The methodology is based on the pre-
viously published genomic non-negative matrix
factorization (gNMF) algorithm [23-26], with several
major modifications to enhance the performance. We
applied the algorithm to three major tumor types: non-
small cell lung carcinoma (NSCLC), colorectal carcinoma
(CRC), and malignant melanoma, identified distinct
genomic subtypes for each cancer, and identified cell lines
representative of each subtype. Our data enabled the
assembly of representative cell line panels for testing drug
candidates.

Methods

Development of a tumor classification methodology based
on genome-wide copy number profiles

The overall flow of our tumor classification methodology
is illustrated in Fig. 1. After data pre-processing, a sample
quality control procedure was applied to eliminate con-
taminated samples. For the remaining samples, a pilot
hierarchical clustering was first applied to the segment
smoothed tumor and cell line CGH data to determine the
range of possible numbers of clusters, because the num-
ber of clusters needs to be fed into the gNMF algorithm,
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but is usually unknown for a given data set. The modified
gNMF algorithm was then applied to the same set of seg-
ment smoothed CGH data to classify it into the initial
numbers of clusters suggested by the hierarchical cluster-
ing. Using divergence as a stopping criterion and averag-
ing results over multiple initiations, this modification
significantly improved the accuracy of clustering at the
cost of a higher computational complexity.

To determine the best of the models built by gNMF
algorithm with different numbers of clusters, we calcu-
lated the Cophenetic correlation coefficient and Bayesian
Information Criterion (BIC) for these models, and then
selected the one with the minimum BIC or the greatest
decrease of Cophenetic correlation. In our study, the
minimum BIC and greatest decrease of Cophenetic cor-
relation often pointed to the same model. Finally, the 10-
fold stability test was performed on the selected model.
Thus, the iteration procedure converges to the best solu-
tion, and the optimal model is identified. The entire
methodology was implemented using the R language

http://cran.r-project.org/. The source code is available

from the authors.

Copy number profiling and primary data processing

The use of human tumor specimens collected at Rush
University was approved by the Rush Institutional Review
Board. Additional human tumor specimens were
obtained from tissue banks (Caprion Proteomics, Mon-
treal, Canada; ProteoGenex, Culver City, CA; Asterand,
Detroit, MI; Genomics Collaborative, Inc, Cambridge,
MA; and Ontario Tumor Bank, Toronto, Ontario, Can-
ada), and the use was approved by the vendors. Written
informed consent was obtained from all the individuals.
Genomic DNA was extracted from tumor samples and
cell lines using a DNAeasy kit (Qiagen, Valencia, CA).
The DNA samples were then processed and hybridized to
Affymetrix GeneChip Mapping arrays (Affymetrix, Santa
Clara, CA, http://www.affymetrix.com). The arrays were
run according to the manufacturer's protocol and
scanned using a GeneChip Scanner 3000 G7 (Affymetrix,
Santa Clara, CA). The Affymetrix GeneChip® Operating
Software (GCOS) collected and extracted feature data
from the scanner.

Partek Genomic Suite software (Partek Inc., St. Louis,
Missouri, http://www.partek.com/) was used for low-
level processing of the raw data to determine the copy
numbers at each locus and define regions of copy number
alteration. Copy numbers were calculated by comparing
the signal intensities for the DNA samples to those for a
reference set of 48 normal female tissue samples. The
original array scan files and the calculated copy number
data were deposited into the Gene Expression Omnibus

database http://www.ncbi.nlm.nih.gov/geo/ with series
ID GSE20481. The resulting probe-level copy number
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Figure 1 Workflow of the genomics-based tumor classification procedure.
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data were then segmented, and the copy number altera-
tion regions were detected for each sample. Specifically,
probe-level copy numbers were segmented into regions
using the following control parameters: (i) a region must
contain at least 100 probes, (ii) the p-value comparing the
mean copy number of the region versus the adjacent

regions must be less than 0.00001, and (iii) the signal/
noise ratio of the transition must be greater than 0.1. The
copy number alteration regions were detected when the
mean copy numbers in these regions were lower than
1.65 (deletion) or higher than 2.65 (gain), with P values
below 0.01.
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Data quality control

Tumor samples may contain a significant percentage of
normal adjacent tissue, which will dilute the signal of
copy number alteration and result in false negatives.
Therefore, we developed a machine learning algorithm to
distinguish between copy number patterns of tumor and
normal samples and applied it to identify and eliminate
samples contaminated with normal tissue from further
analyses. We first selected a subset of samples with the
highest number of copy number alteration regions and a
set of normal samples. These two groups of samples were
used as a training set to train a Random Forest (RF) [27]
classifier to classify tumors from normal samples. The
trained classifier was then applied to all incoming tumor
samples to assign a score to each of them representing the
probability of being contaminated by normal tissue. Sam-
ples with normal contamination probability over 50%
were excluded from our clustering analysis.

Pilot hierarchical clustering to determine the possible
number of subgroups
Although broadly used for clustering of gene expression
and copy number patterns, hierarchical clustering is
highly sensitive to the distance metrics and typically
requires subjective evaluation to define clusters [26].
Nevertheless, this method provides an easy and intuitive
way to visualize the overall pattern of the data. The
gNMF algorithm requires the number of clusters as input
parameter, which is usually unknown for a given data set.
In previous applications of gNMF to cluster CGH data,
several numbers of clusters were tested, but without an
intuitive method to determine these initial numbers
[17,23]. We used hierarchical clustering as a pilot to esti-
mate the range of the possible numbers of clusters that
exist in the data before applying the gNMF algorithm.
For each data set, we hierarchically clustered the seg-
mented CGH data using Pearson dissimilarity (defined as
1 minus Pearson correlation coefficient). The hierarchical
clustering patterns were plotted and visually inspected to
derive a range of possible numbers of subgroups in the
dataset. These numbers were then used as input in the
gNMF clustering analysis.

The modified genomic non-negative matrix factorization
(gNMF) clustering algorithm

Non-negative matrix factorization (NMF) was first sug-
gested by Paatero et al [28]. Like principal component
analysis (PCA) or independent component analysis (ICA,
[18]), NMF is a linear decomposition algorithm which
decomposes a data matrix into a factor matrix and a
weight matrix with limited dimensions. However, NMF
adds a unique constraint that the factor matrix and
weight matrix have only non-negative entries. This fea-
ture makes NMF particularly useful in the analysis of pos-
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itive-value data, such as images, gene expression levels or
gene copy numbers. This mathematical tool was further
developed by Lee et al. and applied in image analyses
[24,25], and then in the analysis of gene expression data
[26] and genomic copy number data [17,23].

Given an # x m matrix V of smoothed copy number
data for a set of samples, where # is the number of seg-
ments and m is the number of samples, the NMF algo-
rithm factorizes the matrix V'into an # x » matrix Wand
ar x m matrix H:

V=W*H +e.

Here W can be viewed as the standard model for each
subgroup; H as the relative weights of each sample
belonging to each subgroup; e represents the model fit-
ting residues, and r is the dimension of decomposition
(usually much smaller than m). Given r and V as input,
the gNMF algorithm first randomly sets the initial value
of Wand H, and then iteratively updates W and H using
the multiplicative update rules:

ZWiOCVi/.l/(WH)i/,t
H,, < H,,*

2 Whka
k
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Hia — Hia £
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v

Where a runs from 1 to r, 4 runs from 1 to m, and i
runs from 1 to n.

Because of the positive constraint of the NMF algo-
rithm, the result can easily be adapted for clustering pur-
poses by assigning each sample into the cluster
(component) that has the maximum weight. Alterna-
tively, under a multiple-run scheme (discussed below),
the average correlation of H matrix of multiple runs can
be used to assign samples into clusters. Therefore, gNMF
can also serve as a tool for unsupervised clustering.

Here we introduced several modifications to the gNMF
algorithm. In previous applications of gNMF to cluster
CGH data, the algorithm was stopped when the subgroup
assignments of samples did not change after a pre-
defined number of steps (e.g. 100) [17,23]. Based on our
tests with simulated data as well as actual CGH data, we
determined that this criterion might stop the procedure
too early, suggesting that the results could potentially be
further improved if the algorithm were allowed to run
more steps. Therefore, we modified the algorithm so that
after every 100 steps of multiplicative updating the diver-
gence [25] of the current model from the data was calcu-
lated, and the iterative algorithm was stopped if the
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divergence did not decrease by more than 0.001% of the
previous divergence calculated 100 steps earlier.

Since gNMF is a stochastic procedure, the algorithm
may generate different outcomes when started from dif-
ferent initial values. To further improve the performance
of gNMF, we implemented a new multiple initiation strat-
egy. For each data set, we ran the gNMF algorithm 200
times following the above stop criterion, calculated the
Pearson correlation coefficient matrix of H from the out-
put of each of the 200 random gNMF runs, and averaged
the correlation matrices over the 200 runs. The final clus-
tering result was derived by running a hierarchical clus-
tering algorithm using one minus the average correlation
matrix as the distance matrix and cutting the dendro-
gram into the given number of subgroups.

Model selection using Bayesian Information Criterion and
Cophenetic correlation

The core gNMF algorithm was run with different num-
bers of clusters, r, as suggested by the pilot hierarchical
clustering. After that, to select the best model, we calcu-
lated the Cophenetic correlation coefficient and Bayesian
information criterion (BIC) for these models, and then
selected the one with the minimum BIC or the greatest
decrease in Cophenetic correlation.

The Cophenetic correlation coefficient [29] is a mea-
sure of how faithfully a dendrogram that is used to derive
the final clustering result preserves the pairwise distances
between the original unmodeled data points. Suppose the
original data X, have been modeled by a dendrogram T
Distance measures are defined as follows:

(i, j) = |X;- Xj|, the distance between the i"and jth sam-
ples.

t(i, j) = the dendrogrammatic distance between the
model points 7;and 7. This distance is the height of the
node at which these two points are first joined together.

Then, if x is the average of x(i, j), and ¢ is the average of
t(i, j), the Cophenetic correlation coefficient ¢ is defined
as follows:

2 (x(i,j)=x)(¢(i, j)-1)

i<j

J[ S (40, )-0)211 S (t(.j)-1)2]

i<j i<j

Cc =

The Cophenetic correlation coefficient has been used
to select the best model built by the gNMF algorithm in
previous applications [17,23], and it has been reported
that with the increase of r, the Cophenetic correlation will
decrease dramatically at certain point which suggests the
best number of clusters.
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The Bayesian Information Criterion (BIC) [30] is also
widely used in statistical applications for model selection
purposes. BIC is defined as follows:

BIC =-2*InL + kln(n),

where L is the likelihood which measures how good the
model approximate the data, k is the number of parame-
ters used in the model, and # is the number of samples.
The second term, kIn(n), serves as a penalty on the num-
ber of parameters used in the model to avoid overfitting.
A lower BIC value usually represents a good model with
relatively higher likelihood and also relatively lower risk
of overfitting.

Lognormal distribution is widely used to fit DNA copy
numbers [31]. To calculate the likelihood, we assume
samples in each cluster come from the same multi-log-
normal distribution where the mean copy number of each
segment follows a lognormal distribution. The correla-
tion between segments was weak, so independence was
assumed between segments in the calculation. The
resulting log-likelihood was

roonom 2
1 S~ (Vije—Hir)
lnL—Eln(27r)§ z Eizln(an)

i=1 j=1 t=1 204

where 7 is the number of clusters, #; is the number of
samples in cluster i, and m is the number of segments, y;;,
is the log transformed copy number of the #th segment of
the jth sample in the ith cluster, y,, is the average of log
transformed copy numbers of the #th segment in the ith
cluster, and o, is the standard deviation of log trans-

formed copy numbers of the #th segment in the ith cluster.
Then the number of parameters, k, in the specified model
would be 2 x r x m.

In our studies, the minimum BIC and greatest decrease
of Cophenetic correlation often pointed to the same
model.

10-fold cross-validation test of clustering stability

A 10-fold cross-validation test was used to assess the sta-
bility of clustering results. After assigning samples into
subgroups, we randomly left 10% of samples out and
applied the same procedure to the remaining 90% of sam-
ples using the same control parameters. The number of
samples that were assigned to a different subgroup was
counted as errors. This test was repeated 200 times to
derive an error rate, which represented the stability of the
clustering result with respect to the permutation of sam-
ples.
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Results

Classification of NSCLC tumors and cell lines

We applied the gNMF-based classification methodology
above to a dataset for 245 NSCLC tumors and 57 NSCLC
cell lines that contained both internally generated and
public Affymetrix Human GeneChip’ Mapping 100K
array data [32]. The Affymetrix 100K array measures the
copy number of > 100,000 Single-nucleotide polymor-
phism (SNP) loci covering the entire human genome with
an average distance between SNPs of 23.6 kb. The initial
processing yielded 11,419 copy number segments, and no
sample was detected to be contaminated by normal tis-
sue. Dimension reduction resulted in 8,172 segments for
the 302 samples. Pilot hierarchical clustering of the seg-
ments (Additional file 1Fig. S1) suggested the existence
of 3-8 major clusters in the data. The 302 tumors and cell
lines were then clustered using the gNMF algorithm with
cluster numbers 3-8, and the Cophenetic correlations and
BICs for these gNMF models were calculated (Table 1).
The model with four clusters had the minimum BIC, and
between four and five clusters the Cophenetic correlation
had the greatest decrease. Therefore, the four-cluster
model was chosen for the NSCLC data set. The heatmap
of the four-cluster model is shown in Fig. 2. The cell lines
selected to represent each subtype of NSCLC are listed in
Table 2. They can serve as disease models for the respec-
tive subtypes of NSCLC.

Biological significance of the NSCLC classification

Thus, we identified genomic subgroups of NSCLC using
the unsupervised clustering methodology above and
selected representative cell lines for each subtype. How-
ever, the biological significance of the subgroups of
NSCLC was still unclear. One way to determine the phe-
notypical relevance of a classification is to test the differ-
ence in the clinical outcome of patients assigned into the
subgroups.

Among the 245 NSCLC tumor samples used to identify
subtypes of NSCLC, clinical outcome information (over-
all survival: OS; time to recurrence: TTR) was available
for a subset of 111 samples. The numbers of outcome-
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annotated samples in clusters 1, 2, 3, and 4 were 9, 3, 21
and 78, respectively. The logrank test showed that the
TTRs of the four clusters were significantly different with
a P-value of 0.001. The median TTRs for the four groups
were 1918, 281, 1710 and 2657 days. Since there were
only three clinically annotated samples in cluster 2, we re-
ran this analysis after combining the samples in clusters 1
and 2. The combined samples also had a significantly
lower TTR than those in the other two clusters (P-value
0.040), with the median TTR of 281 days. The Kaplan-
Meier curves for these analyses are shown in Fig. 3.

To further validate the ability of our algorithm to clas-
sify tumors into biologically relevant genomic groups, an
independent set of 71 NSCLC tumor samples was pro-
filed for copy number alterations, and the data were seg-
mented. These validation samples were then matched to
the four NSCLC clusters.

First, all tumors and cell lines in our defined clusters
were used to represent the clusters. We calculated Pear-
son correlation coefficients between the validation sam-
ples and each of the cell lines and tumors in the four
clusters. The validation samples were then assigned to
the cluster that contained the best matched representa-
tive cell line or tumor based on the correlation coeffi-
cients. Finally, the differences in TTR and OS of the
validation samples assigned into different clusters were
analyzed using a logrank test, and their Kaplan-Meier
curves were plotted (Fig. 4). In this analysis, both TTR
and OS showed significant differences between the four
clusters with P-values of 4.7E-5 and 0.002, respectively.
The median TTRs of the validation samples assigned to
the first and third clusters were 246 and 2679 days, and
that for second and forth clusters were not reached (less
than 50% of the patients in the second and forth clusters
have recurrence in the study). The median OS value of
the validation samples assigned to the first and fourth
clusters were 464 and 3147 days, and that for the second
and third clusters were not reached. Samples assigned to
cluster 1 had a significantly lower TTR and OS than sam-
ples assigned to other clusters (Fig. 4).

Table 1: Cophenetic correlation and BIC of the NSCLC gNMF models under different cluster numbers.

re Cophenetic correlatoin BIC

3 0.8031 1032670
4 0.7664 992443
5 0.7103 1249580
6 0.7166 1301055
7 0.7040 1301808
8 0.7109 1202876

a, The number of clusters by gNMF.
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Additionally, to test the cell line panel assembled, we
used only cell lines to represent the first three clusters,
while assigning the validation samples into clusters using
the highest Pearson correlation coefficient criterion.
Since the fourth cluster did not contain any cell lines, all
tumor samples in the cluster were used to calculate Pear-
son correlation coefficients and assign validation sam-
ples. In this analysis, the difference in TTRs between the
four clusters was still significant (P-value 0.045) with the
median TTR of 512 days for validation samples assigned
to cluster 1 but not reached for the remaining clusters
(Fig. 5a). The difference in OS between the four clusters
was not significant (P-value 0.25) for the validation sam-
ples, but the Kaplan-Meier curve showed a trend for
lower OS for samples in cluster 1 relative to the other
clusters (Fig. 5b) with the median OS of 733, not reached,
not reached and 3147 days for the 4 clusters. When sam-
ples in clusters 2, 3, and 4 were combined and compared

to samples in cluster 1, the P-value was marginally signifi-
cant (P-value = 0.116, Kaplan-Meier curve not shown)
with the median OS of 733 vs. 3147 days.

Thus, the NSCLC clusters identified using our cluster-
ing methodology are associated with different disease
outcomes, suggesting that these genomic clusters repre-
sent clinically distinct subgroups of the disease. Conse-
quently, the cell lines selected can be used as models to
represent the existing subtypes of the disease.

Comparison with other unsupervised clustering algorithms
We used the NSCLC dataset to compare the performance
of our method with several known unsupervised cluster-
ing methodologies, namely the hierarchical clustering,
the original gNMF method [17,23-26], and K-means clus-
tering [33]. The same NSCLC dataset was clustered into 4
subgroups by these methods. The ability of the proce-
dures to generate clinically relevant tumor subgroups was
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Table 2: Number of tumor patients in each of the four NSCLC subtypes and the cell lines selected to represent each

subtype.

Clusters Number of tumors Representative Cancer Cell Lines for each subtype

Cluster A 19 HCC827,NCI-H1437, NCI-H1563, NCI-H1568, NCI-H1623, NCI-H1651, NCI-H1693, NCI-H1755, NCI-
H1793, NCI-H1838, NCI-H1944, NCI-H1975, NCI-H1993, NCI-H2023, NCI-H2073, NCI-H2085, NCI-
H2087, NCI-H2122, NCI-H2126, NCI-H2228, NCI-H2291, NCI-H23, NCI-H2342, NCI-H2347, NCI-H647,
NCI-H920, NCI-H969, CLS-54, LX-289, SK-LU-1, H2882, Calu-6, H358, H460

Cluster B 60 NCI-H2405, NCI-H522, SK-MES-1,H157,H1819,H2009, H2887,HCC1171,HCC1359, HCC15,HCC193,
HCC366, HCC461, HCC515, HCC78, HOP-62, HOP-92, NCI-H266

Cluster C 42 A549, Calu-3, NCI-H1734, NCI-H838, HCC95

Cluster D 124

used as the main performance criterion. The cluster sta-
bility was assessed as an additional performance metric.
The performance comparison of the various clustering
methods is presented in Table 3. In the TTR analysis, the
p-values for Hierarchical Clustering, the original gNME,
and K-means clustering were 0.168, 0.085, and 0.566,
respectively. In the OS analysis, the p-values were 0.137,
0.144 and 0.413, respectively. Thus, the clustering pat-
terns generated by these procedures did not correlate sig-
nificantly with the clinical outcomes. Whereas our
method yielded a significant P value of 0.001 for separat-
ing NSCLC tumor patients with different TTR, implying

that it classifies samples into biologically relevant sub-
groups.

To evaluate the relative stability of clusters produced by
different procedures, the 10-fold cross-validation scheme
was applied. For our algorithm, the total error rate for the
NSCLC data set was 14.24%, while the error rates for
hierarchical clustering, the original gNMF, and K-means
clustering were 23.32%, 21.59%, and 23.27%, respectively.
Thus, our comparison shows that the tumor classification
methodology described here outperforms the existing
algorithms, both in terms of cluster stability and the bio-
logical relevance of clusters.
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Classification of colorectal and melanoma tumors and cell
lines

Our classification methodology was also applied to two
additional copy number datasets, one for colorectal can-
cer (CRC) and the other one for malignant melanoma.
Normal contaminated samples were detected and
removed before clustering. Pilot hierarchical clustering

was used to determine the initial numbers of clusters
(Additional file 1Figs. S2, S3), then the gNMTF clustering
algorithm was applied. In the CRC study, 101 tumors and
35 cell lines were classified into five distinct genomic
clusters. The heatmap is shown in Fig. 6, and the cell lines
selected to represent each subtype are listed in Table 4. In
the melanoma study, 30 cell lines and 80 short-term mel-

(a)

E » f - —H
= — 2
g [THIT ] RN 3
= 4
o
(4]
uh_ L1 i I ]
8 UL LI T T
=
L
5 o
3 © 7
o
o
S
I I I I
0 1000 2000 3000 4000

Follow-up Time (days)

(b)

|
T =1
£ 2- ; =
E — 3
o
£ g- )
©
= H— }
<
U=)o
5
s o
C>)C>
o
o _
I I | I
0 1000 2000 3000 4000

Follow-up Time (days)

Figure 5 Kaplan-Meier curves of the TTR and OS between the validation samples assigned into the four clusters using cell lines to represent
the first 3 clusters and tumors to represent the 4th cluster: (a) TTR; and (b) OS.
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Table 3: Performance comparison of the unsupervised clustering algorithms on NSCLC data set.

Methods P-value for TTR2 P-value for OSP Stability Testc
our gNMF 0.001 0.250 14.24%
hierarchical clustering 0.168 0.137 23.32%
original gNMF 0.085 0.144 21.59%
K-means 0.566 0413 23.27%

aThe p-values comparing TTR of NSCLC patients classified into different subtypes by each clustering method
bThe p-values comparing OS of NSCLC patients classified into different subtypes by each clustering method

¢The error rate of 10-fold stability test for each method

anoma cultures were clustered into six distinct genomic
clusters. The heatmap is shown in Fig. 7, and the cell lines
selected to represent each subtype are listed in Table 5.
These cell lines can serve as disease models for the
respective subtypes of CRC and melanoma. Clinical
information for these tumors was not available, so we
were not able to evaluate the biological significance of
these clusters. However, we believe that the genomics-
based cell line panels for these cancer types will improve
screening of drug candidates by ensuring representation
of all genomic subtypes.

Discussion

Currently, pre-clinical models for oncology drug testing
are selected based on their availability, adaptability to
tumor formation in mice, growth in culture, as well as
other parameters. This approach does not take into
account the genetic heterogeneity of the parent tumor,
resulting in poor representation of molecular subtypes of
tumors during preclinical testing. Thus, the high
response rates that are frequently seen in pre-clinical
testing may only represent the response of the single
molecular subtype represented in the preclinical testing
laboratory. If this subtype represents only a fraction of
the patient population, and if the drug is efficacious only
against this specific subtype, then the response rate in the
clinic will be significantly lower. Therefore, there is a
need for improved pre-clinical testing models that would
cover a broader spectrum of parent tumors. Such
improved pre-clinical testing will increase the predict-
ability of the preclinical testing of new drugs.

Recently, application of high-density SNP genotyping
microarrays for gene copy number profiling enabled gen-
eration of comprehensive copy number datasets for most
major tumor types. However, the processing and use of
high-density copy number for cancer classification
remains a challenge due to the complexity of using altera-
tions of varied length and amplitude in clustering sam-

ples. We believe that copy number profiles are best suited
for developing a genomic taxonomy of cancer due to their
temporal stability and easier detection in various sam-
ples. Therefore, we developed an unsupervised method-
ology based on revised gNMF algorithm for classifying
samples based on their genomic patterns of copy number
aberrations and applied it to three datasets, which con-
tained both internally generated and public data. The
NMEF algorithm has previously been used in image analy-
sis [24,25]. It has been adapted for use in gene expression
profiling [26] and gene copy number analysis [17,23]. It
has shown advantages over traditional clustering and
component analysis algorithms such as Princial Compo-
nent Analysis (PCA), Self-Organizing Maps (SOM), and
hierarchical clustering when applied to gene expression
data [26]. We further improved the original gNMF algo-
rithm and developed an integrated workflow, which
includes pilot hierarchical clustering to estimate the pos-
sible number of clusters, gNMF with a revised stop crite-
rion and multi-run strategy, model selection using
Cophenetic correlation and BIC, and a cross-validation
stability test.

We applied our algorithm to datasets for NSCLC, CRC,
and melanoma, each containing copy number profiles for
hundreds of patient tumors and ~50 cell lines. The algo-
rithm identified distinct new genomic subtypes for each
tumor type. The clustering results were then evaluated
for stability and reproducibility by using 10-fold cross-
validation schemes. To determine whether the clusters
discovered have biologically meaningful differences, we
correlated the available disease outcome parameters
(overall survival and time to recurrence) with the cluster
distribution of samples and found a significant difference
in clinical outcome between samples assigned into differ-
ent clusters. As an additional test to validate the correla-
tion between the classification and the outcome, we also
profiled a group of outcome-annotated validation sam-
ples and assigned them to the existing clusters based on
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Figure 6 Heatmap of the CRC tumors and cell lines classified into 5 clusters.

their copy number profiles. It was shown that the cluster
assignment of the samples also significantly correlates
with the clinical outcome, providing additional validation
to our methodology.

Copy number alterations of single oncogenes and
tumor-suppressor genes have previously been implicated
as important biomarkers in cancer. Notable examples
include HER2 amplification in breast cancer [1,9,10],
EGFR amplification in lung cancer [4-8], and MYCN
amplification in neuroblastoma [34,35]. In these and
other examples of previous validation and use of copy
number alterations as predictors of outcome and
response to therapeutic agents, only individual altera-
tions were considered. Our methodology is based on the
analysis of complex whole-genome wide patterns of copy
number alterations. Therefore, it provides a complete
characterization of genomic subtypes of the cancer under
consideration and is expected to generate more precise
correlates of clinical behaviour and response to drugs. We
believe that the proposed genomic taxonomy is valid for
the entire population of tumor patients, because (i) the

sample sets used to develop it were large enough
(150~300 samples) and (ii) the samples were acquired
from a variety of sources, thus eliminating the possibility
of bias.

Heatmaps of our clustering models shown in Figs. 2, 6,
and 7 revealed major genomic aberrations characteristic
of individual clusters, such as 8q gain for cluster 1 or 3q
gain for cluster 3 of NSCLC, 13q gain for cluster 3 or 18q
loss and 20q gain for cluster 2 of CRC, and chr7 gain for
cluster 3 of melanoma. However, we would like to empha-
size the fact that the classification patterns observed are
driven by the genome-wide copy number aberration pro-
files rather than selected major aberrations. In many
cases, smaller copy number aberrations contain impor-
tant cancer genes. Some aberrations may also represent
secondary events that are part of the tumor's genomic
signature. To identify the exact genes that differentiate
between clusters in a statistically rigorous manner, we
would need to address several complex issues related to
variable selection from high-dimensional data, including
controlling for false-positives and false-negatives, corre-
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Figure 7 Heatmap of the melanoma tumors and cell lines classified into 6 clusters.

Table 4: Number of tumor patients in each of the five CRC subtypes and the cell lines selected to represent each subtype.

Clusters Number of tumors Representative Cancer Cell Lines for each subtype

Cluster A 0 HCT-8, LS 174T, SK-CO-1, SW48, DLD-1, HCT-15, HCT116, LoVo, CL-34, CL-40, C170, LS180

Cluster B 2 Caco-2,LS1034, LS411N, LS513, NCI-H498, NCI-H747, SW1116, SW1417, SW837, HT-29,
SW620, CL-11, CL-14, Colo-678, SW-480

Cluster C 8 Colo 320DM, NCI-H508, NCI-H716, SW1463, SW403, SW948, Colo 205, Colo-206F

Cluster D 40

Cluster E 51
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Table 5: Number of tumor patients in each of the six melanoma subtypes and the cell lines selected to represent each

subtype.
Clusters Number of tumors Representative Cancer Cell Lines for each subtype
Cluster A 15 SKMEL119, HS944, WM1366, WM88
Cluster B 12 WM3248
Cluster C 14 1205LU
Cluster D 4 451LU, SKMEL19, SKMEL28, SKMEL30, SKMEL63, WM35, WM983, WM983C
Cluster E 25 WM3211, M14, MEWO, SKMEL2, SKMEL5, UACC257, UACC62, WM122, WM13662, WM239A,
WM32112, WM32482, WM793B, 50TMEL
Cluster F 10 MALME3M, WM882

lation between variables, and the lack of reproducibility
between studies due to systematic biases. Analysis of
these issues is beyond the scope of this manuscript.

We are currently testing the classification methodology
for its ability to predict disease outcome for new patients.
To predict the disease outcome for a new patient, a tumor
sample will be profiled for copy number alterations by
high-density arrays and assigned into one of the sub-
groups. Alternatively, a panel of FISH probes may be
designed based on the most characteristic copy number
abnormalities for each subgroup, and new patient sam-
ples would be tested by FISH using the probe panel devel-
oped and classified into one of the subgroups based on
the pattern of aberrations observed. The association with
one of the groups would be used to predict response to
the agent under consideration. A companion diagnostic
can thus be developed for use with the drug considered.
An additional application of the proposed classification
methodology is in the assembly of a collection of preclini-
cal testing models representative of the genetic diversity
of tumors, such as the NSCLC, CRC, and melanoma test-
ing panels that are described here.

Conclusion

We developed a modified genomic non-Negative Matrix
Factorization (gNMF) clustering algorithm to cluster
CGH data of tumor and cell lines to identify genomic
subtypes of tumors and select representative cell lines.
Our algorithm enables the assembly of panels of cell lines
representative of the genomic heterogeneity of cancers.

Additional material

Additional file 1 Additional figures for the gNMF based unsupervised
clustering algorithm.
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