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1 Introduction

The original concept of fidelity was proposed in the 1970s by
Uhlmann and Alberti [1–4] through a series of work concern-
ing the problem of transition probability in quantum mechan-
ics. Jozsa et al. [5,6] then proposed a definition of fidelity by
developing a general quantum analogue of Shannon’s noise-
less coding theorem. In his theorem, the original signal is
a pure quantum state and the signal after the transmission
is a mixed state. The transmission is performed through
some channel. Fidelity is defined as the overall probability
that the original signal could be transmitted into the target
one [6]. Furthermore, Jozsa [5] realized that Uhlmann’s tran-
sition probability is the extension of Schumacher’s fidelity.
Now Uhlmann’s transition probability is well known in quan-
tum information and usually called Uhlmann-Jozsa fidelity
nowadays. Uhlmann-Jozsa fidelity is usually defined as:

FU (ρ, σ) = Tr
√√

ρσ
√
ρ, (1)

*Corresponding author (email: xgwang@zimp.zju.edu.cn)

where ρ, σ are two density matrices. Both the density matri-
ces ρ and σ can either be pure or mixed.

This fidelity has many properties, e.g., for the two pure
states |ψ〉, |φ〉, the fidelity reduces to the modulus of the inner
production, namely, FU = |〈ψ|φ〉|. The fidelity keeps invari-
ant under unitary transformations; the fidelity has the strong
concavity, as well as the monotonicity under trace-preserving
quantum operations [7]. Having these properties, the fidelity
has a wide use in many fields as a quantitative measure of dis-
tinguishability. Because of its usefulness, several alternative
forms of fidelity have been proposed [8, 9] and discussed.

Jozsa [5] proposed four axioms that any definition of a
fidelity should satisfy. An alternative fidelity was recently
proposed [8] based on the Hilbert-Schmidt inner product and
perfectly satisfies all the four Jozsa axioms up to a normal-
ization factor. It can be regarded as the well-defined operator
fidelity for the two operators.

In recent years, fidelity susceptibility of Uhlmann-Jozsa
fidelity has been studied in the field of quantum phase transi-
tions (QPTs) [10,11]. It is natural to introduce the Uhlmann-
Jozsa fidelity as an indicator in the QPTs because Uhlmann-
Jozsa fidelity is effectively the overlap between two states.



1530 Liu J, et al. Sci China-Phys Mech Astron September (2012) Vol. 55 No. 9

Based on the importance of fidelity susceptibility, we calcu-
late the fidelity susceptibility of fidelity based on the Hilbert-
Schmidt inner product in both Hilbert space and Liouville
space, as well as its time derivative using the normalized den-
sity vector.

This paper is organized as follows. In sect. 2, we give a
brief introduction of this fidelity, simplify its form, and give
the relative formula in Liouville space. Concurrently, we
show the geometric meaning of this fidelity. In sect. 3, we
show the results of fidelity susceptibility in both Hilbert and
Liouville space. In sect. 4, with the reconstruction of SLD
in Liouville space, we give the time derivative of the fidelity
susceptibility in Liouville space with normalized density vec-
tor representation.

2 Fidelity based on Hilbert-Schmidt inner pro-
duct

Let us consider an alternative quantum fidelity based on
Hilbert-Schmidt inner product and proposed in ref. [8], which
is defined as:

FHS (ρa, ρb) =
|Tr (ρaρb) |√
Tr
(
ρ2

a
)

Tr
(
ρ2

b

) , (2)

where ρa, ρb are density matrices in the same Hilbert space.
For any two density matrices ρa and ρb in the same Hilbert
space, the spectral decomposition of ρa, ρb can be written as:
ρa =

∑
i λ

a
i |i〉〈i|, ρb =

∑
j λ

b
j | j〉〈 j| where λa

i , λb
j � 0. Then,

Tr (ρaρb) =
∑

i j λ
a
i λ

b
j |〈i| j〉|2 � 0. Thus, Tr (ρaρb) � 0. Ac-

cording to this inequality, the fidelity can be rewritten as:

FHS (ρa, ρb) =
Tr (ρaρb)√

Tr
(
ρ2

a
)

Tr
(
ρ2

b

) . (3)

Jozsa axioms [5] are treated to be natural properties of
any fidelity. It can be confirmed that this fidelity satisfies all
these axioms, which indicates that it has the following prop-
erties [8]:

(1) The fidelity is normalized and the maximum 1 is at-
tained if and only if ρa = ρb.

(2) The fidelity is invariant under swapping ρa and ρb.
(3) The fidelity is invariant under unitary transformation U

on the state space.
(4) When one of the states is pure, which implies

ρa = |ψ〉〈ψ|, the fidelity reduces to FHS (ρb, |ψ〉〈ψ|) =
〈ψ|ρb|ψ〉/Tr

(
ρ2

b

)
.

(5) The fidelity has the property of multiplica-
tion under tensor products of the density matrices:
FHS (ρa ⊗ σa, ρb ⊗ σb) = FHS (ρa, ρb) FHS (σa, σb).

Because this fidelity satisfies FHS � 1, and Tr
(
ρ2
)
� 1,

then we have Tr (ρaρb) � 1. Therefore, Tr (ρaρb) ∈ [0, 1].
Liouville space is a very important concept in quantum

theory of relaxation as well as in quantum information the-
ory. It was first termed by Fano [12] and important contri-
butions were made by Fano et al. [12–21]. It is known that

the density matrix ρ is a vector which would be denoted as
|ρ〉 in N2 × N2 Liouville space (N is the dimension of the
Hilbert space where the system is in) [22]. Thus, this fidelity
in Liouville space could be expressed as:

FHS (|ρa〉, |ρb〉) =
〈ρa|ρb〉√〈ρa|ρa〉〈ρb|ρb〉

. (4)

The density matrix is Hermitian, such that 〈ρa|ρb〉 =
〈ρb|ρa〉, which implies that the inner product 〈ρa|ρb〉 is real.
Next we construct the normalized density vector |̃ρ〉 in Li-
ouville space which defined as |̃ρ〉 = 〈ρ|ρ〉−1/2|ρ〉, then the
fidelity could be rewritten as:

FHS (|̃ρa〉, |̃ρb〉) = 〈ρ̃a |̃ρb〉. (5)

This formula has the same formula with the Uhlmann-
Jozsa fidelity of pure states under the circumstances that the
inner product between the two states is real. Actually, the nor-
malized density vectors could be treated as states in N2 × N2

Hilbert space. Thus, it should not be unexpected that they
have similar form.

In the following we show the geometric meaning of this
fidelity. Considering the qubit system, in the Bloch represen-
tation, the density matrix could be written as:

ρ = r · Λ, (6)

where r = (1, x, y, z) and Λ = 1
2

(
I, , σx, σy, σz

)
. The real

numbers x, y, z satisfies x, y, z ∈ [0, 1]. I is identity matrix
and σi (i = x, y, , z) is corresponding Pauli matrix. Using this
representation of density matrix, we could obtain the expres-
sion of the fidelity

FHS (ρa, ρb) =
ra · rb

|ra| · |rb| . (7)

It is known that the angle between two vectors in Euclidean
space is defined as:

cos θ =
ra · rb

|ra| · |ra| .

Thus, the fidelity has a strong connection with the angle θ,
which is

FHS (ρa, ρb) = cos θ. (8)

Generally, for an N-level system, the density matrix could be
expressed using the generalized Bloch vectors [23],

ρ =
1
N
I +

1
2

N2−1∑
j=1

〈λ j〉λ j, (9)

where I is the identity matrix, λ j is called generalized Pauli
matrices which is actually the generators of S U(n), and sat-
isfies the following relations [23]:

Tr(λi) = 0, Tr(λiλ j) = 2δi j, (10)

and 〈λ j〉 denotes the average value of λ j which is defined as
〈λ j〉 ≡ Tr(λ jρ). Eq. (9) could also be rewritten in the form
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of ρ = r · Λ, where r = (1, 〈λ1〉, · · · 〈λ j〉, · · · 〈λN2−1〉) and
Λ = ( 1

N I,
1
2λ1, · · · 1

2λ j, · · · 1
2λN2−1). Using this representa-

tion, we could obtain the expression of the fidelity like above,

FHS (ρa, ρb) = cos θ =
ra · rb

|ra| · |ra| . (11)

This equation implies that this fidelity is indeed the cosine
function of the angle θ between two N2 dimensional general-
ized Bloch vectors.

3 Fidelity susceptibility

Fidelity susceptibility is important and meaningful in the
study of fidelity. It describes the distinguishability of two
states when the inner parameters of one state are very close
to those of the other state. In some fields, the fidelity suscep-
tibility has applications. For instance, in QPTs, the fidelity
susceptibility of Uhlmann-Jozsa fidelity is an effective tool
in studying critical properties in many-body systems [11]. In
the following, we will show the susceptibility of the fidelity
based on Hilbert-Schmidt inner product.

Assuming that a parameter λ is involved in the density ma-
trices and denoting ρa = ρ (λ), ρb = ρ (λ + δλ), the Taylor
expansion of ρb till the second order δ2λ is

ρb = ρ + ∂λρδλ +
1
2
∂2
λρδ

2λ. (12)

Using this Taylor expansion, one could have

Tr(ρaρb) = [Tr(ρ2)]
(
1 + f1δλ + f2δ

2λ
)
, (13)

and

Tr(ρ2
b) = [Tr(ρ2)]

(
1 + 2 f1δλ + f3δ

2λ
)
, (14)

where the coefficients f1, f2, f3 read

f1 =
Tr(ρ∂λρ)

Tr(ρ2)
, f2 =

1
2

Tr(ρ∂2
λρ)

Tr(ρ2)
, f3 =

∂λTr(ρ∂λρ)
Tr(ρ2)

.

Substituting eqs. (13) and (14) into eq. (3), the fidelity can be
written as:

FHS =
1 + f1δλ + f2δ2λ(

1 + 2 f1δλ + f3δ2λ
)1/2 . (15)

Using the Taylor expansion
[
1 + f (x)

]− 1
2 = 1 − 1

2 f (x) +
3
8 f 2 (x), the expansion of eq. (15) till δ2λ could be obtained
as:

FHS = 1 − 1
2
Fλδ2λ, (16)

where Fλ is the fidelity susceptibility we expect and the ex-
pression of it is

Fλ = f3 − 2 f2 − f 2
1

=
1

[Tr(ρ2)]2

{
Tr[(∂λρ)2]Tr

(
ρ2
)
− [Tr (ρ∂λρ)]2

}
. (17)

In Liouville space, the fidelity susceptibility could be rewrit-
ten as:

Fλ = 1
〈ρ|ρ〉2

[
〈∂λρ|∂λρ〉〈ρ|ρ〉 − 〈ρ|∂λρ〉2

]
. (18)

As ∂λρ is Hermitian and Tr(ρ∂λρ) = Tr[(∂λρ)ρ], we have

〈ρ|∂λρ〉 = 〈∂λρ|ρ〉, (19)

which indicates that 〈ρ|∂λρ〉 is real and 〈ρ|∂λρ〉2 =

|〈ρ|∂λρ〉|2. Based on the Cauchy-Schwarz inequality, there is
〈∂λρ|∂λρ〉〈ρ|ρ〉 � |〈ρ|∂λρ〉|2 . Thus, the fidelity susceptibility
is nonnegative, which means Fλ � 0.

Next, we consider the normalized density vector represen-
tation in Liouville space. As we mentioned before, the nor-
malized density vectors could be treated as states in N2 × N2

Hilbert space, then the fidelity susceptibility should be writ-
ten as:

Fλ = 〈∂λρ̃|∂λρ̃〉 − |〈ρ̃|∂λρ̃〉|2. (20)

Recalling the definition of |̃ρ〉, which is |̃ρ〉 = 〈ρ|ρ〉− 1
2 |ρ〉, one

has

|∂λρ̃〉 = ∂λ(〈ρ|ρ〉− 1
2 |ρ〉)

= −〈ρ|ρ〉− 3
2 〈∂λρ|ρ〉|ρ〉 + 〈ρ|ρ〉− 1

2 |∂λρ〉. (21)

From eq. (21) we could obtain that

〈ρ̃|∂λρ̃〉 = −〈ρ|ρ〉−1〈∂λρ|ρ〉 + 〈ρ|ρ〉−1〈ρ|∂λρ〉
= 0, (22)

during which the equation 〈ρ|∂λρ〉 = 〈∂λρ|ρ〉 has been used.
Thus, it is not expected that the fidelity susceptibility reads

Fλ = 〈∂λρ̃|∂λρ̃〉. (23)

We give a brief check of this expression. Based on eq. (21),
we can obtain

〈∂λρ̃|∂λρ̃〉 = 〈ρ|ρ〉−1〈∂λρ|∂λρ〉 − 〈ρ|ρ〉−2〈ρ|∂λρ〉2

=
1
〈ρ|ρ〉2

[
〈∂λρ|∂λρ〉〈ρ|ρ〉 − 〈ρ|∂λρ〉2

]
, (24)

which is identical with the expression of the fidelity suscep-
tibility.

Using the same method as above, we could obtain the ex-
pression of fidelity susceptibility with a group of parameters
λi which are brought in at the initial time of the evolution,

F λ
i j =

1
[Tr(ρ2)]2

{
Tr
[
(∂λiρ)(∂λ jρ)

]
Tr
(
ρ2
)

−Tr
[
ρ(∂λiρ)

]
Tr
[
ρ(∂λ jρ)

]}
. (25)

Here, the fidelity susceptibility F λ is a matrix with the ele-
ments F λ

i j . In Liouville space, it could be written as:

F λ
i j =

1
〈ρ|ρ〉2

[〈∂λiρ|∂λ jρ〉〈ρ|ρ〉 − 〈ρ|∂λiρ〉〈ρ|∂λ jρ〉
]
. (26)
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Also, like the single parameter case, considering the normal-
ized density vector representation in Liouville space, the ele-
ment of the fidelity susceptibility could be rewritten as:

F λ
i j = 〈∂λi ρ̃|∂λ j ρ̃〉. (27)

If we choose i = j, we obtain the fidelity susceptibility of
single parameter λi, which indicates that the ith diagonal el-
ements of the fidelity susceptibility matrix with multiple pa-
rameters have a distinct physical meaning, which is the fi-
delity susceptibility of parameter λi.

4 Time derivative of fidelity susceptibility

The study on open systems has been carried on for some time.
It is well known that the time evolutions of many open sys-
tems could be described by master equation of Lindblad form
[24–26]. Considering two states, both of them are dependent
on parameter λ and time t, which are independent variables,
and the difference on the parameter λ brought in the initial
time between these two states is small. To reflect the evolu-
tion of the distinguishability between these two states, whose
evolutions are determined by the Lindblad master equation,
fidelity susceptibility is a useful quantitative measure. Some-
times we need to understand the changing rate of the fidelity
susceptibility with time, then the time derivative of fidelity
susceptibility needs to be considered.

In the following, we will show the calculation of the time
derivative of the fidelity susceptibility in Liouville space. It
should be noticed that the density matrices we consider below
are nonsingular.

4.1 SLD construction in Liouville space

In N × N Hilbert space, the symmetric logarithmic derivative
(SLD) is defined as [27]:

∂λρ =
1
2

(ρL + Lρ) , (28)

where λ is the parameter of the density matrix and brought
in at the initial state. As ρ is expanded to be a vector |ρ〉 in
Liouville space, the SLD in Liouville space has to be rede-
fined. According to the SLD definition in Hilbert space, it is
reasonable for us to define that

|∂λρ〉 = 1
2
L|ρ〉, (29)

where L is an operator (matrix) in Liouville space and the
relation between L and the SLD is

Li j,km = Lm jδik + Likδm j. (30)

From the elements of L one may find L is a Hermitian ma-
trix. Next we consider the normalized density vector which
is defined as |̃ρ〉 = 〈ρ|ρ〉− 1

2 |ρ〉, and from eq. (21), we have

|∂λρ̃〉 = 1
2
L̃|̃ρ〉, (31)

where L̃ = L − 〈〈L〉〉 and 〈〈L〉〉 is defined as:

〈〈L〉〉 ≡ 〈ρ̃|L|̃ρ〉 = 〈ρ|L|ρ〉〈ρ|ρ〉 . (32)

In the following, we make an agreement that for a matrix A,
〈〈A〉〉 ≡ 〈ρ̃|A|̃ρ〉. It can be readily seen that L̃ is also a Hermi-
tian matrix because 〈〈L〉〉 is a real number. Following on one
may define 
 = |̃ρ〉〈ρ̃| as a “super” density matrix in Liouville
space. With this definition we obtain

∂λ
 =
1
2

(
L̃
 + 
L̃

)
. (33)

It is similar with the definition of the SLD in Hilbert space.
Substituting eq. (31) into eq. (23), the fidelity susceptibility
in Liouville space could be rewritten as:

Fλ = 1
4

Tr(
L̃2). (34)

4.2 Dynamics in Liouville space

Let us investigate the dynamics described by master equation
in Liouville space. In N × N Hilbert space, the time-local
master equation reads

∂tρ = KH (t) ρ, (35)

whereKH (t) is a superoperator acting on the reduced density
matrix and can be written as [24–26]:

KH (t) ρ = −i
[
H, ρ
]
+
∑

a

γa (t)
[
AaρA†a −

1
2

{
A†aAa, ρ

} ]
,

with H the Hamiltonian of the open system and {·, ·} denotes
anticommutator. Using the same method above, one could
obtain the form of master equation in Liouville space, the
process of which is similar with the derivation of the Red-
field equation [28],

|∂tρ〉 = KL (t) |ρ〉. (36)

Here KL (t) is defined as KL (t) = −iKI +
∑

a γaKa and the
definition of the elements of KI is

KI
i j,km ≡ Hikδ jm − H∗jmδik, (37)

and the definition of the elements of Ka is

Ka
i j,km ≡ Aa

ikAa∗
jm −

1
2

∑
n

(
Aa∗

ni Aa
nkδm j + Aa∗

nmAa
n jδki

)
.

According to the definition of KI , one could see that KI is
a Hermitian matrix. Like the SLD construction in Liouville
space, we consider the normalized density vector. Taking the
time derivative on both sides of |̃ρ〉 = 〈ρ|ρ〉−1/2|ρ〉, we obtain

|∂tρ̃〉 = [ − 1
2
〈ρ|ρ〉−1〈ρ|KL† +KL|ρ〉 +KL]〈ρ|ρ〉− 1

2 |ρ〉

=
[KL − 1

2
〈ρ̃|KL† +KL |̃ρ〉]|̃ρ〉. (38)
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Thus, the master equation reads

|∂tρ̃〉 = K̃L (t ; λ) |̃ρ〉, (39)

where

K̃L (t ; λ) = KL (t) − 1
2
〈〈KL (t) +KL† (t)〉〉. (40)

Compared with eq. (36), a significant difference between K̃L

and KL is that K̃L depends not only on the time t but also on
the parameter λ. With eq. (39), we could obtain

∂t
 = K̃L (t ; λ) 
 + 
K̃L† (t ; λ) . (41)

4.3 Calculation of the time derivative

Next we will use the same calculation procedure in ref. [29]
below. First, from eq. (33) we could have the time derivative
of ∂λ
, which is

∂t∂λ
 =
1
2
[
(∂tL̃)
 + L̃(∂t
) + (∂t
)L̃ + 
(∂tL̃)

]
. (42)

Next there is

Tr
[

(∂tL̃)L̃ + 
L̃(∂tL̃)

]
= Tr(2L̃∂t∂λ
) − Tr

[
2 (∂t
) L̃2].

Taking the time derivative on both sides of eq. (34), we have

∂tFλ = 1
4

Tr
[
(∂t
)L̃2 + 
(∂tL̃)L̃ + 
L̃(∂tL̃)

]
. (43)

Combining the two equations above, we obtain

∂tFλ = 1
4

Tr
[(

2L̃∂λ − L̃2)∂t

]
. (44)

Substituting eq. (41) into eq. (44), we have

∂tFλ = 1
4

Tr
[
2L̃∂λ(K̃L
) + 2L̃∂λ(
K̃L†) − L̃2
K̃L†]

=
1
4

Tr
[
2L̃K̃L∂λ
 − L̃2K̃L


]

+
1
4

Tr
[
2L̃ (∂λ
) K̃L† − L̃2
K̃L†]

+
1
4

Tr
[
2L̃(∂λK̃L)
 + 2L̃
∂λK̃L†]. (45)

From the definition of K̃L in eq. (40), it is not difficult to
see that ∂λK̃L = 1

2∂λ〈〈KL(t) +KL†(t)〉〉 is a c-number, which
can be put out of the trace, and it is also easy to find out that
Tr(
L̃) = 〈ρ̃|L̃|̃ρ〉 = 〈ρ̃|L|̃ρ〉 − 〈〈L〉〉 = 0. Thus, we obtain
the expression of the time derivative of fidelity susceptibility,
which reads

∂tFλ = 1
4

Tr
[
2L̃K̃L∂λ
 − L̃2K̃L


+2L̃(∂λ
)K̃L† − L̃2
K̃L†]. (46)

Substituting eq. (33) into the equation above, we have

∂tFλ = 1
4

Tr(L̃K̃LL̃
 + L̃K̃L†L̃
)

=
1
4
〈ρ̃|L̃(K̃L + K̃L†)L̃|̃ρ〉

=
1
4
〈〈L̃(K̃L + K̃L†)L̃〉〉. (47)

Based on the definition of K̃L, we know that

K̃L + K̃L†

=
∑

a

γa
[
(Ka + Ka†) − 〈〈Ka + Ka†〉〉]. (48)

Therefore, the time derivative can be written as:

∂tFλ = 1
4

∑
a

γaMa, (49)

whereMa = 〈〈L̃
(
Ka + Ka†) L̃〉〉 − 〈〈Ka + Ka†〉〉〈〈L̃2〉〉.

From the above, we obtain the analytic expression of the
time derivative of fidelity susceptibility in Liouville space
with normalized density vector representation. The time
derivative can be treated as a flow of the fidelity suscepti-
bility and is determined by a group of subflow γaMa. It is
similar but not exactly the same with the Fisher informa-
tion flow [29]. One could find that under the circumstance
γa � 0 , if Ma satisfies Ma < 0, there is ∂tFλ � 0. Also
we know the fidelity reads F = 1 − 1

2Fλδ2λ, then we obtain
∂tF = − 1

2∂tFλδ2λ � 0. The inequality ∂tF � 0 strongly
implies no matter what the initial states are, the distinguisha-
bility between these two states is reducing and the lost infor-
mation has been flowing into the reservior.

5 Conclusion

In summary, we have re-investigated the properties of the al-
ternative fidelity based on Hilbert-Schmidt inner product and
simplified its form. Being similar with the Uhlmann-Jozsa fi-
delity, the fidelity based on Hilbert-Schmidt inner product has
a distinct geometric meaning. If we express the density ma-
trix using Bloch vector representation, the fidelity is actually
the cosine function of the angle between the two generalized
Bloch vectors. Following on, the analytic expression of the
fidelity susceptibility in both Hilbert and Liouville space is
shown.

In Liouville space with normalized density vector rep-
resentation, the fidelity susceptibility is a special form of
Uhlmann-Jozsa fidelity susceptibility for pure states. The key
observation is that the inner product of two normalized den-
sity vectors is a real number. Also, like the SLD in Hilbert
space, we construct the relative SLD in Liouville space. Us-
ing the SLD, we then give the time derivative of fidelity sus-
ceptibility with normalized density vector representation in
Liouville space. The results of the alternative fidelity and
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fidelity susceptibility developed in this investigation are be-
lieved to have further applications in the study of QPT, quan-
tum chao, and quantum information theory.
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