Cite this: J. Mater. Chem., 2011, 21, 8987

www.rsc.org/materials

COMMUNICATION

A novel method for the synthesis of well-crystallized β -AlF₃ with high surface area derived from γ -Al₂O₃†

Wen-Zhi Jia, Ji-Qing Lu, Ping Chen, Yue-Juan Wang and Meng-Fei Luo*

Received 15th April 2011, Accepted 9th May 2011 DOI: 10.1039/c1jm11630d

Well-crystallized β -AlF₃ with high surface area was synthesized by a carbon template method. Porous γ -Al₂O₃ was filled with carbon and transformed into AlF₃ by fluorination. After removing the carbon template by thermal combustion, the resulting β -AlF₃ had a surface area of 114 m² g⁻¹. Temperatures for fluorination and thermal combustion were crucial for the phase composition of the resulting sample. The high surface area β -AlF₃ was very active for dismutation of CF₂Cl₂ due to its large amount of surface acid sites.

Aluminum fluoride (AIF₃) has many properties and applications such as electrolysis, electrical conductivity and fluoro-aluminate glasses. Moreover, AIF₃ is of great interest in heterogeneous catalysis as the well-known halogen exchange catalyst, which plays an important role in the synthesis of hydrofluorocarbons (HFCs) as Freon-alternatives and novel fluorinated organic compounds applied in pharmaceuticals.^{1,2}

AlF₃ could be synthesized through the fluorination of high surface area γ -Al₂O₃ with HF, NH₄F, SF₄, hydro-fluorocarbons, or chlorofluorocarbons.³ However, the resulting AlF₃ usually has a low surface area of 10–60 m² g⁻¹.

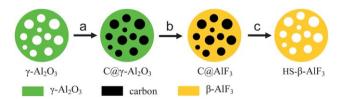
Recently, new methods have been developed to synthesize AlF₃ with high surface area, such as the NF₃ plasma-etching treatment of aluminum-rich zeolites reported by Delattre *et al.*,⁴ resulting in a surface area of 190 m² g⁻¹. Kemnitz *et al.*⁵ employed a sol–gel method to synthesize amorphous AlF₃ with a high surface area of 200 m² g⁻¹ (HS-AlF₃). Wolfgang *et al.*⁶ reported that Al₂O₃ reacting with HF solution and consecutive thermal decomposition resulted in β -AlF₃ with a surface area of 120 m² g⁻¹. However, by these methods, either the synthetic procedure is complicated or corrosive HF solution, explosive NF₃ and costly metal-alkoxide Al(O*i*Pr)₃ are used. In particular, as halogen exchange reactions usually take place in a temperature range of 200 to 400 °C,⁷ amorphous AlF₃ may undergo phase transition under rigorous reaction conditions. Therefore, well crystallized AlF₃ is more thermally stable, and thus desirable for catalysis purpose.

Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces Institute of Physical Chemistry Zhejiang Normal University, Jinhua, China. E-mail: mengfeiluo@zjnu.cn; Fax: (+86) 579-82282595; Tel: (+86) 579-82283910

† Electronic supplementary information (ESI) available: Details of experimental procedures, tables, Raman, SEM-EDX, TG-DTA, FTIR and graphics. See DOI: 10.1039/c1jm11630d

In spite of AlF₃ existing in crystalline forms of α , β , η , θ , κ ,⁸ the β -phase posses significant catalytic activity for halogen exchange and strong Lewis acid sites⁹ compared to the α -phase. For heterogeneous Cl/F exchange reaction, catalysts with strong Lewis acid sites are required.^{1,10} More importantly, the reactivity is generally correlated to the amount of surface acid sites on the AlF₃, and thus high surface area AlF₃ is more advantageous in the reactions.

In this work, we report a novel method for converting γ -Al₂O₃ to high surface area β -AlF₃ (hereafter denoted as HS- β -AlF₃) by the gas-solid fluorination reaction with gaseous HF. The prepara-tion process could be described as the following equations:


$$\gamma - \mathrm{Al}_2\mathrm{O}_3 + \mathrm{C}_{12}\mathrm{H}_{22}\mathrm{O}_{11} \xrightarrow{\mathrm{N}_2,400^\circ\mathrm{C}} \mathrm{C}_{@}\gamma - \mathrm{Al}_2\mathrm{O}_3 + \mathrm{H}_2\mathrm{O}$$
(1)

$$C@\gamma-Al_2O_3 + HF \rightarrow C@AlF_3 + H_2O$$
(2)

$$C@AlF_3 + O_2 \rightarrow \beta - AlF_3 + CO_2$$
(3)

Firstly, solid γ -Al₂O₃ was immersed in an aqueous sucrose (C₁₂H₂₂O₁₁) solution and the dried mixture was thermally treated under N₂ flow at 400 °C to obtain a γ -Al₂O₃ with carbon filled in the pores (denoted as C@ γ -Al₂O₃), as shown in eqn (1). Then the C@ γ -Al₂O₃ was fluorinated with gaseous HF at 250 °C to obtain C@AlF₃ [eqn (2)]. Finally, the carbon template was removed by combustion under oxygen flow to obtain well crystalline β -AlF₃ [eqn (3)]. The process is demonstrated in Scheme 1.

Fig. 1 shows the N₂ adsorption–desorption isotherms and XRD patterns of the samples during the preparation procedure. From Fig. 1a, it can be seen that after carbon filling into the pores of γ -Al₂O₃, the surface area of γ -Al₂O₃ dramatically declines from 347 to 77 m² g⁻¹, due to the blocking of pores by carbon particles. The C@AlF₃ has similar surface area to the C@Al₂O₃, indicating the

Scheme 1 Schematic diagram for the synthesis of $HS-\beta-AIF_3$. a: filling carbon hard template; b: fluorination with gaseous HF; c: combustion of carbon template in oxygen atmosphere.

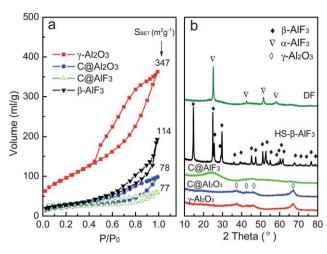


Fig. 1 a) N_2 adsorption–desorption isotherms, BET areas and b) XRD patterns of samples represented in the synthesis procedure. DF means the direct fluorination of γ -Al₂O₃ with HF.

maintenance of the sample structure. When the carbon template is removed, the resulting HS- β -AlF₃ has a surface area of 114 m² g⁻¹. Also, as can be seen from Fig. 1b, the γ -Al₂O₃ crystallite phase remains unchanged after filling of carbon template (C@Al₂O₃). After fluorination, the sample is amorphous (C@AlF₃). When the carbon is removed under a thermal treatment in oxygen at 425 °C for 8 h, well crystallized HS- β -AlF₃ is obtained, which exhibits the hexagonal tungsten bronze type structure.^{8,11} This implies that during the thermal treatment, amorphous AlF₃ formed in fluorination stage transforms to β -AlF₃. However, direct fluorination of γ -Al₂O₃ at 250 °C results in the formation of α -AlF₃, which has a surface area of only 15 m² g⁻¹.

In order to further describe the preparation process for HS- β -AlF₃, Raman spectroscopy was also conducted and the results are shown in the ESI (Fig. S1[†]). Concerning the strong fluorescence and the fact that γ -Al₂O₃ and AlF₃ has no visible Raman signals, the Raman spectra are not very informative. However, distinct bands at 1360 and 1600 cm⁻¹ which are characteristic of carbon¹² are found in the spectra for C@Al₂O₃ and C@AlF₃. This confirms that carbon is present in γ -Al₂O₃, which is in agreement with the N₂ adsorption– desorption isotherms in Fig. 1a.

Fig. 2 shows the representative SEM and TEM images of the HS- β -AlF₃ sample fluorinated at 250 °C. As can be seen in Fig. 2a, the synthesized material is disordered and flocculated. Also, EDX analysis of the selected area (Fig. S2⁺) shows that the sample contains

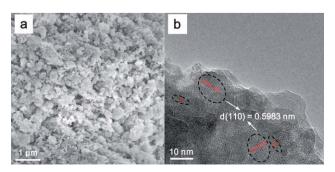
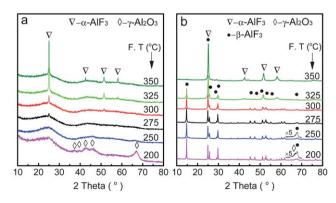


Fig. 2 a) SEM and b) TEM images of synthesized HS-β-AlF₃.

Since the fluorination process is crucial for the resulting AIF_3 , the effect of fluorination temperature on the final phase composition of the sample has been investigated. As can be seen in Fig. 3a, the C@Al2O3 cannot be completely fluorinated at 200 °C as the diffraction peaks of γ -Al₂O₃ are still present in the pattern. When the fluorination temperature is higher than 275 °C, however, diffraction peaks due to α -AlF₃ appear. Fig. 3b shows the XRD patterns of the template-removed samples with different fluorination temperatures. It can be seen that the C@Al₂O₃ cannot be completely fluorinated at 200 °C because the weak diffraction peaks of γ -Al₂O₃ remain. When fluorinated at 250 °C, only diffraction peaks due to β -AlF₃ are observed, implying the complete fluorination of γ -Al₂O₃ to β -AlF₃. When the fluorination temperature is higher than 250 °C, it is found that the peak intensity at 14.8° assigned to β -AlF₃ (110) plane decreases while that at 24.9° assigned to (002) plane of β -AlF₃ and (100) plane of α -AlF₃ significantly increases, suggesting the formation of α-AlF₃. Therefore, the fluorination temperature of 250 °C seems appropriate for the formation of β-AlF₃.

Table 1 summarizes the phase composition, average crystallite size, F/Al ratio and surface area of the samples fluorinated at different temperatures, determined by XRD, EDX and BET techniques, respectively. When the fluorination temperature is low (200 °C), the sample contains unfluorinated γ -Al₂O₃, which is also confirmed by EDX analysis which shows that the F/Al ratio is 1.92. At high fluorination temperature (\geq 250 °C), the sample is completely transformed to AlF₃, as the F/Al ratio is very close to 3 : 1. However, the content of α -AlF₃ in the sample increases with increasing temperature, and the sample fluorinated at 350 °C contains only α -AlF₃.

As for the surface area, it can be seen that it declines dramatically with increasing fluorination temperature. This is due to the fact that γ -Al₂O₃ could be readily fluorinated to form thermostable α -AlF₃ at high temperature because of their high lattice energies,^{5,9} and the crystallite size gradually increases with fluorination temperature, which results in the decline of surface area. On the other hand, the decline in surface area implies that some pore structure may be destroyed during high temperature fluorination.



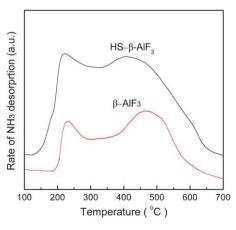

Fig. 3 XRD patterns of samples with different fluorination temperatures. a) fluorination process of $C@Al_2O_3$; b) samples after removal of carbon template. FT means the fluorination temperature.

Table 1 Properties of samples with different fluorination temperatures

Fluorination <i>T</i> /°C	Phase composition (wt%)	Average crystallite size/nm	F/Al molar ratio	Surface area/m ² g^{-1}
200	β-AlF ₃	77.2	1.92 : 1	136
	γ -Al ₂ O ₃	n.d		
250	β -AlF ₃ (100)	48.5	2.98:1	114
275	β -AlF ₃ (96.3)	41.0	2.99:1	85
	α -AlF ₃ (3.7)	10.0		
300	β -AlF ₃ (85.2)	33.5	3.02:1	72
	α -AlF ₃ (14.8)	15.1		
325	β -AlF ₃ (58.1)	18.4	3.01:1	65
	α -AlF ₃ (41.9)	22.3		
350	α -AlF ₃ (100)	31.2	2.99:1	22

It was reported that amorphous AlF₃ could be transformed to β-AlF₃ at 350–475 °C, while the transformation of β-AlF₃ to α-AlF₃ will take place in the temperature range of 475–650 °C.¹³ Therefore, the choice of the temperature for removal of carbon template in the present synthesis is essential to obtain the desired β-AlF₃. It should be noted that the complete combustion of carbon requires a temperature of 500 °C confirmed in our experiment, at which the resulting sample is α-AlF₃. By the addition of KNO₃ in the C@AlF₃, the carbon template could be efficiently combusted at 425 °C. The promoting effect of KNO₃ in soot combustion has been widely reported.¹⁴ Also, our TG-DTA experiment shows that the addition of KNO₃ has lowered the carbon combustion temperature by 50 °C (Fig. S3†) compared to that without KNO₃. The lowered combustion temperature could effectively inhibit the phase transformation of β-AlF₃, which is also a key factor in obtaining the HS-β-AlF₃.

The acidic properties of the prepared HS- β -AlF₃ have been characterized by FTIR spectroscopy of pyridine adsorption and NH₃temperature programmed desorption (NH₃-TPD), and more importantly by its catalytic properties. After pyridine adsorption, the FTIR spectrum (Fig. S4†) of the HS- β -AlF₃ shows intense bands at 1454 and 1632 cm⁻¹, which indicates Lewis acid sites.¹⁵ The NH₃-TPD profile of HS- β -AlF₃ is shown in Fig. 4. It shows two distinct desorption peaks at about 220 and 460 °C. The amount of surface acidic sites of the HS- β -AlF₃ is calculated to be 876 µmol g⁻¹_{cat}. This is among the highest values reported in the literature (Table S1†). For comparison, a conventional β -AlF₃ prepared by thermal treating

Fig. 4 NH₃-TPD profiles of β -AlF₃ samples.

Table 2Dismutation of CF2Cl2 over AlF3 catalysts

Sample	Surface area/m ² g ⁻¹	CF ₂ Cl ₂ conversion (%)				
		300 °C	250 °C	200 °C	150 °C	
α-AlF ₃	15	54	16	10	2	
β -AlF ₃	41	89	78	25	11	
HS-β-AlF ₃	114	95	85	52	31	

 $AlF_3 \cdot 3H_2O$ according to ref. 16 resulted in a surface area of 41 m² g⁻¹ and surface acidic sites of 421 µmol g⁻¹_{cat}.

The HS- β -AlF₃ has also been tested for catalytic CCl₂F₂ dismutation [eqn (4)].

$$5CCl_2F_2 \rightarrow 3CClF_3 + CCl_3F + CCl_4$$
 (4)

Table 2 lists the catalytic activity of various AlF₃ samples for the reaction. It can be seen that the HS- β -AlF₃ is much more active than the α -AlF₃ and low surface area β -AlF₃ at low reaction temperature, which is due to the higher amount of surface acidic sites. In addition, the synthesized HS- β -AlF₃ shows good stability during the reaction, with 95% conversion of CF₂Cl₂ in a reaction period of 10 h at 300 °C (Fig. S5†). A comparison of the fresh and the used samples by XRD revealed that there is no phase transition during the reaction (Fig. S6†). Also, the used catalyst has a surface area of 108 m² g⁻¹, suggesting that the catalyst structure remains unchanged.

To summarize, well crystallized HS- β -AlF₃ is prepared by a solidtemplate method, derived from the fluorination of carbon filled γ -Al₂O₃ and thermal removal of the carbon template. The resulting HS- β -AlF₃ has large amount of surface acidic sites due to its high surface area, which is beneficial for halogen exchange reaction such as dismutation of CF₂Cl₂ or CHFCl₂. The synthesized HS- β -AlF₃ is thermally stable, which could be applied to high temperature reactions. More importantly, other metal fluorides with high surface area such as MgF₂ may also be prepared in a similar way.

Acknowledgements

This work is financially supported by the National Science Foundation of China (Grant No. 20873125) and the Natural Science Foundation of Zhejiang Province (Grant No. 2009C31050). And also we thank Prof. Dr Fengshou Xiao (Zhejiang University, China) for the valuable discussion.

Notes and references

- O. Boese, E. S. Wolfgang and E. Kemnitz, *et al.*, *Phys. Chem. Chem. Phys.*, 2002, **4**, 2824; H. D. Quan, H. Yang and A. Sekiya, *J. Fluorine Chem.*, 2004, **125**, 1169.
- 2 T. Skapin, G. Tavčar and A. Benčan, *et al.*, *J. Fluorine Chem.*, 2009, **130**, 1086.
- 3 A. Hess and E. Kemnitz, J. Catal., 1994, 149, 449; R. I. Hedge and M. A. Barteau, J. Catal., 1989, 120, 387; P. J. Chupas, M. F. Ciraolo and C. P. Grey, et al., J. Am. Chem. Soc., 2001, 123, 1694.
- 4 J. L. Delattre, P. J. Chupas and A. M. Stacy, et al., J. Am. Chem. Soc., 2001, **123**, 5364.
- 5 E. Kemnitz, U. Groβ and S. Rüdiger, et al., Angew. Chem., Int. Ed., 2003, 42, 4251; S. K. Ruediger, U. Groβ and E. Kemnitz, et al., J. Mater. Chem., 2005, 15, 588.
- 6 K. Wolfgang, C. Haesner and K. Köhler, et al., Inorg. Chim. Acta, 2006, **359**, 4851.
- 7 E. Ünveren, E. Kemnitz and W. E. S. Unger, *et al.*, *J. Phys. Chem. B*, 2005, **109**, 1903; J. He, G. Q. Xie and M. F. Luo, *et al.*, *J. Catal.*, 2008, **253**, 1.

- 8 R. König, W. E. S. Unger and E. Kemnitz, et al., J. Fluorine Chem., 2010, **131**, 91.
- 9 H. Bozorgzadeh, E. Kemnitz and J. M. Winfield, et al., J. Fluorine Chem., 2001, 107, 45.
- 10 C. G. Krespan and D. A. Dixon, J. Fluorine Chem., 1996, 77, 117.
- 11 A. La Bail, C. Jacobni and J. L. Fourquet, *et al.*, *J. Solid State Chem.*, 1988, **77**, 96; A. Pawlik, R. König and E. Kemnitz, *et al.*, *J. Phys. Chem. C*, 2009, **113**, 16674.
- 12 R. Escribano, J. J. Sloan and T. Dudev, *et al.*, *Vib. Spectrosc.*, 2001, **26**, 179.
- 13 C. Alonso, A. Morato and J. E. Sueiras, et al., Chem. Mater., 2000, **12**, 1148.
- 14 P. Fang, J. Q. Lu and M. F. Luo, et al., Acta Phys. Chim, Sin., 2007, 23, 1275.
- 15 G. Eltanany, S. Rüdiger and E. Kemnitz, et al., J. Mater. Chem., 2008, 18, 2268; G. Busca, Catal. Today, 1996, 27, 323; J. M. Winfield, J. Fluorine Chem., 2009, 130, 1069.
- 16 T. Krahl, R. Stösser and E. Kemnitz, et al., Inorg. Chem., 2003, 42, 6474.