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We consider the regularity criterion for the incompressible Navier–Stokes equations. We
show that the weak solution is regular, provided

∂u

∂x3
∈ L

2
1−r (0, T ;

.
Xr(R3)) with 0 ≤ r ≤ 1

for some T > 0, where
.
Xr is the multiplier space. This extends a result of Kukavica and

Ziane [14].
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1. Introduction

Consider the Navier–Stokes equations in R
3

∂tu + u · ∇u − ∆u + ∇p = 0, (x, t) ∈ R
3 × (0,∞),

div u = 0, (x, t) ∈ R
3 × (0,∞),

u(x, 0) = u0(x), x = (x1, x2, x3) ∈ R
3,

(1.1)

where u = u(x, t) = (u1(x, t), u2(x, t), u3(x, t)) is the velocity field, p = p(x, t) is
the scalar pressure and u0(x) with div u0 = 0 in the sense of distribution is the
initial velocity field. For simplicity, we assume that the external force has a scalar
potential and is included into the pressure gradient.
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In the last century, Leray [16] and Hopf [12] constructed a weak solution u

of (1.1) for arbitrary u0 ∈ L2(R3) with ∇ · u0 = 0. The solution is called the
Leray–Hopf weak solution. From that time on, much effort has been devoted to
establish the global existence and uniqueness of smooth solutions to the Navier–
Stokes equations. Different criteria for regularity of the weak solutions have been
proposed. The Prodi–Serrin conditions (see [17–19]) states that any weak Leray–
Hopf solution belonging to the class Lα((0, T ); Lq(R3)) with 2/α + 3/q ≤ 1, 2 <

α < ∞, 3 < q < ∞ is regular on (0, T )×R
3, while the limit case q = 3 was covered

much later by Escauriaza, Seregin and Sverak [5]. In 1995, Beirão da Veiga [2]
established a Serrin’s type regularity criterion on the gradient of the velocity field:
∇u ∈ Lα((0, T ); Lq(R3)) with 2/α + 3/q = 2 and 3/2 ≤ q ≤ ∞. Note that the
case q = 3/2 is a consequence of the Sobolev embedding theorem and [6]. Very
recently, Zhou in [21] added a condition on the gradient of one velocity component
with, say, ∇u3 ∈ Lα,γ for 2/α + 3/γ = 3/2, and a new regularity criterion added
on any component of velocity was also established in [23]; see also [3, 13, 28].
Further criteria, concerning the gradient of one velocity component can be found
in [27]. There are also some regularity criteria in terms of pressure, the pressure
gradient and vorticity. We refer the readers who are interested in them to the
literature [11, 22, 24, 25] and [7] for regularity issues in critical space. The regularity
criteria with weighted form are exhibited in [26].

We note that, in [14], the authors proved that if the third derivative of the
velocity ∂u/∂x3 belongs to the space Ls0(0, T ; Lr0(R3)), where 2/s0 + 3/r0 ≤ 2
and 9/4 ≤ r0 ≤ 3, then the solution is regular. This extends a result of Beirão da
Veiga [2] by making a requirement only on one direction of the velocity instead of
on the full gradient. The derivative ∂u/∂x3 can be substituted with any directional
derivative of u. Our main purpose is to extend this criterion to the multiplier spaces
and we show that the weak solution is regular, provided

∂u

∂x3
∈ L

2
1−r (0, T ;

.

Xr(R3)) for some r with 0 ≤ r ≤ 1. (1.2)

2. Preliminaries and Main Result

In this section, we recall the definition of the multiplier space, which was introduced

in ([8, 9]). The space
.

Xr of pointwise multipliers which map L2 into
.

H
−r

is defined
in the following way:

Definition 2.1. For 0 ≤ r < 3/2, the space
.

Xr is defined as the space of f(x) ∈
L2

loc(R
3) such that

‖f‖ .

Xr
= sup

‖g‖ .
H

r≤1

‖fg‖L2 < ∞,

where we denote by
.

H
r
(R3) the completion of the space C∞

0 (R3) with respect to
the norm ‖u‖ .

H
r = ‖(−∆)

r
2 u‖L2.
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The norm of
.

Xr is given by the operator norm of pointwise multiplication

‖f‖ .

Xr
= sup

‖g‖ .
H

r≤1

‖fg‖L2.

We have the homogeneity properties: ∀x0 ∈ R
3

‖f(. + x0)‖ .
Xr

= ‖f‖ .
Xr

‖f(λ.)‖ .

Xr
≤ 1

λr
‖f‖ .

Xr
, λ > 0.

Lemma 2.2. Let 0 ≤ r < 3/2. Then,

L
3
r (R3) ⊂

.

Xr(R3)

holds.

Proof. Let f ∈ L
3
r (R3). By using the following well-known Sobolev embedding

.

H
r
(R3) ⊂ Lq(R3)

with 1/q = 1/2 − r/3, we have

‖fg‖L2 ≤ ‖f‖
L

3
r
‖g‖Lq ≤ ‖f‖

L
3
r
‖g‖ .

H
r .

Then, it follows that

‖f‖ .

Xr
= sup

‖g‖ .
H

r≤1

‖fg‖L2 ≤ C‖f‖
L

3
r
.

Example 2.3. Due to the well-known inequality∥∥∥∥ g

|x|
∥∥∥∥

L2

≤ 2‖∇g‖L2,

we see that |x|−1 ∈
.

X1(R3).

Our main result can be stated as follows:

Theorem 2.4. Suppose that u0 ∈ H1(R3) with div u0 = 0 in the sense of distribu-
tion. Let u be a weak solution to the Navier–Stokes equations corresponding to u0

which satisfies the energy inequality. Let T > 0 and suppose that

∂u

∂x3
∈ L

2
1−r (0, T ;

.

Xr(R3)) for some r with 0 ≤ r ≤ 1. (2.1)

Then, u(t, x) is as smooth as the data allow. Thus, in our case u(t, x) ∈ C∞((0, T )×
R

3) and u is unique in the class of all weak solutions satisfying the energy inequality.
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3. Proofs

The proof of Theorem 2.4 is based on two major parts. The first part establishes
bounds for ‖ ∂u

∂x3
‖2

L2 and the time integral of ‖∇ ∂u
∂x3

‖2
L2 , while the second controls

‖∇u‖2
L2 in terms of time integrals of ‖∇ ∂u

∂x3
‖2

L2 .

Lemma 3.1. Suppose that u0 ∈ H1(R3) with div u0 = 0 in the sense of distribu-
tion. Let u be a weak solution to the Navier–Stokes equations corresponding to u0

which satisfies the energy inequality. Suppose (2.1) holds. Then, for any t ≤ T, we
have ∥∥∥∥ ∂u

∂x3
(t, ·)

∥∥∥∥2

L2

≤
∥∥∥∥ ∂u

∂x3
(0, ·)

∥∥∥∥2

L2

e‖u0‖2
L2 exp

(
C

∫ t

0

∥∥∥∥ ∂u

∂x3
(s, ·)

∥∥∥∥ 2
1−r

.
Xr

ds

)
(3.1)

and ∫ t

0

∥∥∥∥∇ ∂u

∂x3
(s, ·)

∥∥∥∥2

L2

ds ≤ C,

for some C > 0.

Proof. First, we differentiate the first equation of (1.1) about x3, and then multiply
the resulting equation by ∂u/∂x3 to get

1
2

d

dt

∥∥∥∥ ∂u

∂x3
(t, ·)

∥∥∥∥2

L2

+
∥∥∥∥∇ ∂u

∂x3
(t, ·)

∥∥∥∥2

L2

= −
∫

R3

(
∂u

∂x3
· ∇u

)
· ∂u

∂x3
dx

≤
∥∥∥∥ ∂u

∂x3
· ∂u

∂x3

∥∥∥∥
L2

‖∇u‖L2.

Due to Hölder’s inequality and the following ones (0 ≤ r ≤ 1)

‖w‖ .
H

r =
1

(2π)
d
2
‖|ξ|rŵ‖L2 ≤ ‖w‖1−r

L2 ‖∇w‖r
L2 , (3.2)

it is easy to see that

1
2

d

dt

∥∥∥∥ ∂u

∂x3
(t, ·)

∥∥∥∥2

L2

+
∥∥∥∥∇ ∂u

∂x3
(t, ·)

∥∥∥∥2

L2

≤
∥∥∥∥ ∂u

∂x3

∥∥∥∥ .
Xr

∥∥∥∥ ∂u

∂x3

∥∥∥∥ .
H

r
‖∇u‖L2

≤ C

∥∥∥∥ ∂u

∂x3

∥∥∥∥ .
Xr

∥∥∥∥ ∂u

∂x3

∥∥∥∥1−r

L2

∥∥∥∥∇ ∂u

∂x3

∥∥∥∥r

L2

‖∇u‖L2

≤ C

(∥∥∥∥ ∂u

∂x3

∥∥∥∥ 2
2−r

.

Xr

∥∥∥∥ ∂u

∂x3

∥∥∥∥2( 1−r
2−r )

L2

‖∇u‖
2

2−r

L2

)1− r
2
(∥∥∥∥∇ ∂u

∂x3

∥∥∥∥2

L2

) r
2

.
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By Young’s inequality a few times, we get

1
2

d

dt

∥∥∥∥ ∂u

∂x3
(t, ·)

∥∥∥∥2

L2

+
∥∥∥∥∇ ∂u

∂x3
(t, ·)

∥∥∥∥2

L2

≤ C

∥∥∥∥ ∂u

∂x3

∥∥∥∥ 2
2−r

.

Xr

∥∥∥∥ ∂u

∂x3

∥∥∥∥2( 1−r
2−r )

L2

‖∇u‖
2

2−r

L2 +
1
2

∥∥∥∥∇ ∂u

∂x3

∥∥∥∥2

L2

= C

∥∥∥∥ ∂u

∂x3

∥∥∥∥2( 1−r
2−r )

L2

(∥∥∥∥ ∂u

∂x3

∥∥∥∥ 2
1−r

.
Xr

) 1−r
2−r

(‖∇u‖2
L2)

1
2−r

+
1
2

∥∥∥∥∇ ∂u

∂x3

∥∥∥∥2

L2

≤ C

∥∥∥∥ ∂u

∂x3

∥∥∥∥2( 1−r
2−r )

L2

[∥∥∥∥ ∂u

∂x3

∥∥∥∥ 2
1−r

.
Xr

+ ‖∇u‖2
L2

]
+

1
2

∥∥∥∥∇ ∂u

∂x3

∥∥∥∥2

L2

.

Hence,

d

dt

∥∥∥∥ ∂u

∂x3
(t, ·)

∥∥∥∥2

L2

+
∥∥∥∥∇ ∂u

∂x3
(t, ·)

∥∥∥∥2

L2

≤ C

∥∥∥∥ ∂u

∂x3

∥∥∥∥2

L2

[∥∥∥∥ ∂u

∂x3

∥∥∥∥ 2
1−r

.

Xr

+ ‖∇u‖2
L2

]

since (1 − r)/(2 − r) < 1. Thanks to Gronwall’s inequality, we obtain∥∥∥∥ ∂u

∂x3
(t, ·)

∥∥∥∥2

L2

≤
∥∥∥∥ ∂u

∂x3
(0, ·)

∥∥∥∥2

L2

× exp

(
C

∫ t

0

(∥∥∥∥ ∂u

∂x3
(s, ·)

∥∥∥∥ 2
1−r

.
Xr

+ ‖∇u(s, ·)‖2
L2

)
ds

)

≤
∥∥∥∥ ∂u

∂x3
(0, ·)

∥∥∥∥2

L2

exp

(
C

∫ t

0

∥∥∥∥ ∂u

∂x3
(s, ·)

∥∥∥∥ 2
1−r

.
Xr

ds + ‖u0‖2
L2

)

≤
∥∥∥∥ ∂u

∂x3
(0, ·)

∥∥∥∥2

L2

e‖u0‖2
L2 exp

(
C

∫ t

0

∥∥∥∥ ∂u

∂x3
(s, ·)

∥∥∥∥ 2
1−r

.
Xr

ds

)

and ∫ t

0

∥∥∥∥∇ ∂u

∂x3
(s, ·)

∥∥∥∥2

L2

ds ≤ C,

where C depends on ‖u0‖L2 , ‖ ∂u
∂x3

(s, ·)‖
L

2
1−r (0,t;

.

Xr(R3))
.

Now, we establish bounds for H1 estimates. For convenience, we recall the fol-
lowing version of the three-dimensional Sobolev and Ladyzhenskaya inequalities in
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the whole space R
3 (see e.g. [1, 4, 10, 15]). There exits a constant Cα > 0 such that

‖f‖2α
Lα ≤ Cα‖f‖6−α

L2 ‖∂x1f‖α−2
L2 ‖∂x2f‖α−2

L2 ‖∂x3f‖α−2
L2

≤ Cα‖f‖6−α
L2 ‖f‖3(α−2)

H1 , (3.3)

for all f ∈ H1(R3) and every α ∈ [2, 6].

Lemma 3.2. Suppose that u0 ∈ H1(R3) with div u0 = 0 in the sense of distribu-
tion. Let u be a weak solution to the Navier–Stokes equations corresponding to u0

which satisfies the energy inequality. Suppose (2.1) holds. Then, for any t ≤ T, we
have

‖∇u(t, ·)‖2
L2 +

∫ t

0

‖∆u(s, ·)‖2
L2 ds ≤ C, (3.4)

where C depends on T, ‖∇u0‖L2 and ‖ ∂u
∂x3

‖
L

2
1−r (0,T ;

.
Xr(R3))

.

Proof. Taking the inner product of the equation (1.1) with −∆u in L2 and inte-
grating by parts, we obtain

1
2

d

dt
‖∇u(t, ·)‖2

L2 + ‖∆u(t, ·)‖2
L2 =

∫
R3

u · ∇u · ∆u dx ≤ ‖∇u‖3
L3.

By (3.3), we have

‖∇u‖3
L3 ≤ C

(
‖∇u‖ 1

2
L2‖∇h∇u‖ 1

3
L2

∥∥∥∥∇ ∂u

∂x3

∥∥∥∥ 1
6

L2

)3

= C

[
(‖∇h∇u‖2

L2)
1
6

(
‖∇u‖3

L2

∥∥∥∥∇ ∂u

∂x3

∥∥∥∥
L2

) 1
6
]3

= C(‖∇h∇u‖2
L2)

1
2

(
‖∇u‖3

L2

∥∥∥∥∇ ∂u

∂x3

∥∥∥∥
L2

) 1
2

,

where ∇h = ( ∂
∂x1

, ∂
∂x2

). Hence, by Young’s inequality and the Cauchy inequality,
we obtain

‖∇u‖3
L3 ≤ 1

4
‖∇h∇u‖2

L2 + C‖∇u‖3
L2

∥∥∥∥∇ ∂u

∂x3

∥∥∥∥
L2

≤ 1
4
‖∇h∇u‖2

L2 + C‖∇u‖2
L2

(∥∥∥∥∇ ∂u

∂x3

∥∥∥∥2

L2

+ ‖∇u‖2
L2

)
.

As a result we get

d

dt
‖∇u(t, ·)‖2

L2 + ‖∆u(t, ·)‖2
L2 ≤ C‖∇u‖2

L2

(∥∥∥∥∇ ∂u

∂x3

∥∥∥∥2

L2

+ ‖∇u‖2
L2

)
.

Then, Gronwall’s inequality coupled with Lemma 3.1 yields

‖∇u(t, ·)‖2
L2 +

∫ t

0

‖∆u(s, ·)‖2
L2 ds ≤ C.
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We are now in a position to prove our main result.

Proof. First note that since the initial velocity field u0 ∈ L2(R3) ∩ H1(R3), then
it is well known that there is a T0 > 0 such that there is a unique strong solution

u ∈ L∞(0, T0; H1(R3)) ∩ L2(0, T0; H2(R3))

to the Navier–Stokes equations (1.1) (see [20]). According to the result about
uniqueness [20], our weak solution identifies with the strong solution in (0, T0). If

∂u

∂x3
∈ L

2
1−r (0, T ;

.

Xr(R3)),

then Lemmas 3.1 and 3.2 imply

sup
0≤t≤T

‖u(t, ·)‖H1 +
∫ T

0

‖∇u(t, ·)‖2
L2 +

∫ T

0

‖∆u(s, ·)‖2
L2ds ≤ C(‖u0‖H1).

Thus, the local strong solution u can be extended to time T , and also identifies
with the weak solution. Moreover the classical regularity criteria [20] implies that
u is a regular solution on [0, T ]. This completes the proof of Theorem 2.4.
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