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Let k be a positive integer and F be a family of meromorphic functions in a domain D ⊂ C

such that each f ∈ F has only zeros of multiplicity at least k + 1. If for each pair ( f , g)
in F , f f (k) and gg(k) share a non-zero complex number a ignoring multiplicity, then F
is normal in D .
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1. Introduction and main results

Let D be a domain in C and let F be meromorphic functions defined in the domain D . Then F is said to be normal
in D , in the sense of Montel, if any sequence { fn} ⊂ F contains a subsequence { fn j } such that fn j converges spherically
locally uniformly in D , to a meromorphic function or ∞.

Let F and G be two non-constant meromorphic functions, we say that F and G share a IM if F − a and G − a have the
same zeros (ignoring multiplicity). When a = ∞ the zeros of F − a mean the poles of F (see [8] and [30]).

In 1959, W.K. Hayman [10] proved that if F is a transcendental meromorphic function, then F n F ′ assumes every finite
non-zero complex number infinitely often for any positive integer n � 3. He conjectured [11] that this remains valid for
n = 1 and for n = 2. Further, the case of n = 2 was confirmed by E. Mues [17] in 1979. The case n = 1 was respectively
considered and settled by J. Clunie [7]; W. Bergweiler and A. Eremenko [3]; H.H. Chen and M.L. Fang [4].

Related to above problem on value distribution, Hayman [11] proposed a conjecture on normal family as follows: If each
f ∈ F satisfies f n f ′ �= a for a positive integer n and a non-zero complex number a, then F is normal. This conjecture has
been shown to be true by Yang and Zhang [32] (for n � 5 and for n � 2 in case that F is a family of holomorphic functions),
Gu [14] (for n = 3, 4), Oshkin [18] (for holomorphic functions, n = 1; cf. [15]), and Pang [20] (for n � 2 in general; cf. [9]).
As indicated by X.C. Pang [20] (or see [4,34]), the conjecture for n = 1 is a consequence of Chen–Fang’s theorem and his
theorem which is a generalization of Zalcman’s lemma (cf. [33]). Thus, the Hayman’s conjecture on normal family is also
verified completely.

From the view of shared values, Q.C. Zhang [36] proved that F is also normal when each pair ( f , g) of F is such
that f n f ′ and gn g′ share a finite non-zero complex number a IM for n � 2 (or see [35]). By definition, two meromorphic
functions F and G are said to share a IM (ignoring multiplicity) if F −1(a) = G−1(a) (see [8]). There are examples showing
that this result is not true if n = 1. Further, more results related to this problem have been obtained, see W. Hennekemper
[12], Y.F. Wang and M.L. Fang [26], W. Schwick [24], Y.T. Li, Y.X. Gu [16] respectively.

To understand above Hayman’s problem on value distribution well, many authors studied the functions of the form
F (F (k))n . In the case of n � 2, C.C. Yang, L. Yang and Y.F. Wang [29] obtained that if F is transcendental entire function, then
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the only possible Picard value of F (F (k))n is the value zero, further, Z.F. Zhang and G.D. Song [37], A. Alotaibi [1] proved
that F (F (k))n take every finite non-zero value infinitely ofen when F is transcendental meromorphic. According to Block’s
principle (cf. [2,23]), corresponding to above problem on value distribution, there are analogues in normal family theory.
Really, we confirmed it in [13], namely, if F is a family of meromorphic functions in a domain D of the plane C such that
each f ∈ F has only zeros of multiplicity at least k(� 2). If for each pair ( f , g) ∈ F , f ( f (k))n and g(g(k))n share a IM, then
F is normal in D , where n,k � 2.

In the case of F F (k) , L. Yang and C.C. Yang [31] proposed the conjecture: If F is transcendental, then F F (k) assumes
every finite non-zero complex number infinitely often for any positive integer k. C.C. Yang and P.C. Hu [28] obtained a part
of answer. In 2006, J.P. Wang [25, Theorem 3] proved that this conjecture holds when F has only zeros of multiplicity at
least k + 1 (k � 2). It is natural to study normality criteria corresponding to the case of F F (k) . In this paper, we discuss the
problem and prove the following main result:

Theorem 1.1. Take a positive integer k and a non-zero complex number a. Let F be a family of meromorphic functions in a domain
D ⊂ C such that each f ∈ F has only zeros of multiplicity at least k + 1. For each pair ( f , g) ∈ F , if f f (k) and gg(k) share a IM, then
F is normal in D.

Obviously, for the case of multiplicity at least k + 1, Theorem 1.2 answered the unsolved problem of [13] corresponding
to the case of n = 1, and partially solve Fang’s conjecture. The following example shows that the multiplicity restriction on
zeros of f is sharp in Theorem 1.1 when k = 1.

Example 1.2. Let D = {z ∈ C | |z| < 1} and take a non-zero complex number a with |a| < 1
2 . We consider the family

F =
{

fm(z) = m

(
z − 1

2

)
+ a

m

∣∣∣ m = 1,2, . . .

}
.

Obviously, each fm ∈ F has only a simple zero, and for distinct positive integers m, l, fm f ′
m and fl f ′

l share a IM. However,
the family F is not normal at z = 1

2 .

However, when k � 2, for a family of holomorphic functions, we can show the following result:

Theorem 1.3. Take a positive integer k � 2 and a non-zero complex number a. Let F be a family of holomorphic functions in the
domain D ⊂ C such that each f ∈ F has only zeros of multiplicity at least k. For each pair ( f , g) ∈ F , if f f (k) and gg(k) share a IM,
then F is normal in D.

In [22], X.C. Pang and L. Zalcman proved that if f is a transcendental entire function and has only zeros of multiplicity
at least k, then f n f (k) take every non-zero complex number infinitely often, where n,k are positive integers. Obviously,
according to the proof of Theorem 1.1, Theorem 1.3 follows from Pang–Zaclman’s result above. Moreover, the condition that
f has only zeros of multiplicity at least k in Theorem 1.3 is sharp, we show this claim by the following example:

Example 1.4. Take D = {z ∈ C | |z| < 1}, an integer k � 2, and a non-zero complex number a. We consider the family

F = {
fm(z) = mzk−1

∣∣ m = 1,2, . . .
}
.

Obviously, each fm ∈ F has only a zero of multiplicity k − 1, and for distinct positive integers m, l, we have fm f (k)
m and

fl f (k)

l share a IM. But, the family F is not normal at z = 0.

The condition a �= 0 in Theorem 1.1 and Theorem 1.3 is necessary. For example, we consider the following families:

Example 1.5. Define D as in Example 1.4, and write

F = {
fm(z) = mzk+1

∣∣ m = 1,2, . . .
}

or

F = {
fm(z) = emz

∣∣ m = 1,2, . . .
}
.

Obviously, any fm ∈ F has only zeros of multiplicity at least k + 1. For distinct positive integers m, l, fm f (k)
m and fl f (k)

l
share 0 IM. However, the families F are not normal at z = 0.
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Furthermore, according to the ideas of [4], we may obtain another result as following:

Theorem 1.6. Take a positive integer k and a non-zero complex number a. Let F be a family of meromorphic functions in a domain
D ⊂ C such that each f ∈ F has only zeros of multiplicity at least k and such that f (k) has no simple zeros. For each element f of F ,
if f (z) f (k)(z) = a implies | f (k)(z)| � A for a positive number A, then F is normal in D.

2. Preliminary lemmas

To prove Theorem 1.1, we will need the following Zalcman’s lemma (cf. [34]):

Lemma 2.1. Take a positive integer k. Let F be a family of meromorphic functions in the unit disc � with the property that zeros of each
f ∈ F are of multiplicity at least k. If F is not normal at a point z0 ∈ �, then for 0 � α < k, there exist a sequence {zn} ⊂ � of complex
numbers with zn → z0; a sequence { fn} of F ; and a sequence {ρn} of positive numbers with ρn → 0 such that gn(ξ) = ρ−α

n fn(zn +
ρnξ) locally uniformly (with respect to the spherical metric) to a non-constant meromorphic function g(ξ) on C. Moreover, the zeros
of g(ξ) are of multiplicity at least k, and the function g(ξ) may be taken to satisfy the normalization g�(ξ) � g�(0) = 1 for any ξ ∈ C.
In particular, g(ξ) has at most order 2.

This is Pang’s generalization (cf. [19,21,27]) of the Main Lemma in [33] (where α is taken to be 0), with improvements
due to Schwick [24] and Chen and Gu [5]. In Lemma 2.1, the order of g is defined by using the Nevanlinna’s characteristic
function T (r, g):

ord(g) = lim sup
r→∞

log T (r, g)

log r
.

Here g� denotes the spherical derivative

g�(ξ) = |g′(ξ)|
1 + |g(ξ)|2 .

Lemma 2.2. Let k be a positive integer and a �= 0 be a finite complex number. If f is a rational function but not a polynomial and f
has only zeros of multiplicity at least k + 1, then f f (k) − a has at least two distinct zeros.

Proof. First of all, assume, to the contrary, that f f (k) − a has exactly one zero. We set

f = A(z − α1)
m1(z − α2)

m2 · · · (z − αs)
ms

(z − β1)n1(z − β2)n2 · · · (z − βt)nt
, (2.1)

where A is a non-zero constant. Since all zeros of f have at least multiplicity k + 1, we have mi � k + 1 (i = 1,2, . . . , s),
n j � 1 ( j = 1,2, . . . , t). For simplicity, we denote

m1 + m2 + · · · + ms = M � (k + 1)s, (2.2)

n1 + n2 + · · · + nt = N � t. (2.3)

By (2.1), we obtain

f (k) = A(z − α1)
m1−k(z − α2)

m2−k · · · (z − αs)
ms−k g(z)

(z − β1)n1+k(z − β2)n2+k · · · (z − βt)nt+k
, (2.4)

in which g is a polynomial of degree at most k(s + t − 1). Thus (2.1) together with (2.4) imply

f f (k) = A2(z − α1)
2m1−k(z − α2)

2m2−k · · · (z − αs)
2ms−k g(z)

(z − β1)2n1+k(z − β2)2n2+k · · · (z − βt)2nt+k
= P (z)

Q (z)
, (2.5)

where P and Q are polynomials which have no common factor. Since f f (k) − a = 0 has only a zero z0, then from (2.5) we
deduce that

f f (k) = a + B(z − z0)
l

(z − β1)2n1+k(z − β2)2n2+k · · · (z − βt)2nt+k
= P (z)

Q (z)
, (2.6)

where l is a positive integer, B is a non-zero constant. Obviously, we find z0 �= αi (i = 1, . . . , s) due to a �= 0.
Differentiating (2.5), we have

[
f f (k)

]′ = (z − α1)
2m1−k−1(z − α2)

2m2−k−1 · · · (z − αs)
2ms−k−1 g1(z)

2n1+k+1 2nt+k+1
, (2.7)
(z − β1) · · · (z − βt)
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in which g1(z) is a polynomial satisfying

s + t − 1 � deg(g1) � (k + 1)(s + t − 1).

Subsequently, (2.6) yields

[
f f (k)

]′ = (z − z0)
l−1 g2(z)

(z − β1)2n1+k+1 + · · · + (z − βt)2nt+k+1
, (2.8)

where g2(z) = B(l − 2N − kt)zt + B1zt−1 + · · · + Bt is a polynomial.
Now we distinguish two cases.

Case 1. l �= 2N + kt . By using (2.6), we have deg(P ) � deg(Q ). Thus (2.5) implies

s∑
i=1

(2mi − k) + deg(g) �
t∑

j=1

(2n j + k),

and hence M � N + k
2 , that is, M > N . From (2.7) and (2.8), noting that z0 �= αi , we find

s∑
i=1

(2mi − k − 1) � deg(g2) = t.

It follows that 2M − (k + 1)s � t , or equivalently, 2M � (k + 1)s + t . Combining this inequality with (2.2) and (2.3), we obtain

2M � (k + 1)s + t � (k + 1)

(
M

k + 1

)
+ N < 2M,

which is impossible.

Case 2. l = 2N + kt . Next we distinguish two subcases: M > N and M � N .
When M > N , similar to the Case 1, it follows that 2M < 2M from (2.7) and (2.8). This is a contradiction.
If M � N , by comparing (2.7) with (2.8), we may give the following inequality

l − 1 � deg(g1) � (k + 1)(s + t − 1),

and hence

2N = l − kt � deg(g1) + 1 � (k + 1)s + t − k < (k + 1)s + t < (k + 1)

(
M

k + 1

)
+ N � 2N.

Obviously this is a contradiction.
Finally, assume, to the contrary, that f f (k) − a has no zero, then l = 0 for (2.6). Proceeding as in the proof for Case 1, we

also obtain a contradiction.
Hence, Lemma 2.2 is proved complectly. �

Lemma 2.3. Take a positive integers k and a non-zero complex number a. If f is a non-constant meromorphic function such that f has
only zeros of multiplicity at least k + 1, then f f (k) − a has at least two distinct zeros.

Proof. If f is a polynomial, we find immediately that f f (k) has multiple zeros since f has only zeros of multiplicity at least
k + 1, and hence f f (k) − a has at least one zero. Suppose, to the contrary, that f f (k) − a has only a zero z0, then there exist
a non-zero constant A and an integer l � 2 such that

f (z) f (k)(z) = a + A(z − z0)
l,

which, however, has only simple zeros since a �= 0. This is a contradiction. Hence f f (k) − a must has at least two zeros.
When f is a rational but not a polynomial function, it follows from Lemma 2.1.
If f is transcendental, we obtain directly that f f (k) − a has infinitely many zeros due to [4] and [25].
The proof of Lemma 2.3 is completed. �

Lemma 2.4. Take a positive integer k and a non-zero complex number a. Let f be a non-constant rational function such that all zeros
of f have multiplicity at least k. Then f f (k) − a has at least one zero.



728 D.-W. Meng, P.-C. Hu / J. Math. Anal. Appl. 381 (2011) 724–731
Proof. We first consider the case for f is a non-constant polynomial, since all zeros of f have multiplicity at least k, f f (k)

is also a non-constant polynomial. Therefore, f f (k) − a has at least one zero.
Secondly, we study the case that f is a non-constant rational function but not a polynomial. We suppose, to the contrary,

that f f (k) − a has no zero. As in the proof of Lemma 2.2, we can also obtain (2.1), (2.3), (2.4), (2.5) and (2.7) respectively.
Moreover, we also get analogues of (2.2) and (2,6), in which the condition M � (k + 1)s in (2.2) is replaced by M � ks, and
l in (2.6) takes 0. Consequently, it follows that

[
f f (k)

]′ = g3(z)

(z − β1)2n1+k+1 + · · · + (z − βt)2nt+k+1
, (2.9)

in which g3(z) = −BNzt−1 + · · · is a polynomial. Compare (2.7) with (2.9). As a result, we obtain

2M − (k + 1)s + deg(g1) = deg(g3) = t − 1.

Noting that deg(g1) � s + t − 1 in (2.7), we find consequently

M � 1

2
ks,

but on the other hand M � ks, hence s = 0. Therefore, from (2.4) and (2.5) we obtain

f f (k) = A2 g(z)

(z − b1)2n1+k(z − b2)2n2+k · · · (z − bt)2nt+k
= P (z)

Q (z)
,

where g is a polynomial of degree at most k(t − 1). Since l in (2.6) takes 0, it follows that deg(P ) = deg(Q ), which implies

2N + kt = deg(g) � k(t − 1),

and hence 2N � −k. This is impossible.
Thus f f (k) − a has at least one zero. This proves Lemma 2.4. �

Lemma 2.5. (See [6].) Let f a transcendental meromorphic function, and let P f (z), Q f (z) be two differential polynomials of f . If
f n P f = Q f holds and the degree of Q f is at most n, then m(r, P f ) = S(r, f ).

Let F be a non-constant meromorphic function in the whole plane and k a positive integer. We denote by N(k)(r,
1
F )

the Nevanlinna’s counting function for zeros of F with multiplicity k, and by N(k)(r,
1
F ) the corresponding one ignoring

multipilicity. Then we show the following lemma:

Lemma 2.6. Take a positive integer k and a non-zero complex number a. Let f be a transcendental meromorphic function such that all
zeros of f have multiplicity at least k and such that f (k) has no simple zeros. Then f f (k) − a has infinitely many zeros.

Proof. Obviously, Lemma 2.6 for the case k = 1 is a direct consequence of [3] and [4], thus it is sufficient to discuss the
case k � 2. Denote

F = f f (k) − a, (2.10)

and

A = f ′

f
f (k) + f (k+1) − f (k) F ′

F
. (2.11)

We suppose, to the contrary, that F = f f (k) − a has only finitely many zeros, since f is transcendental, then

N

(
r,

1

F

)
= S(r, f ). (2.12)

By using (2.10), we obtain

T (r, F ) = O
(
T (r, f )

)
. (2.13)

Furthermore, (2.11) implies

f A = − F ′

F
. (2.14)

Notice that the zeros of f with multiplicity � k + 1 must be the zeros of f (k) . Thus by the second fundamental theorem,
we have
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N
(
r, f f (k)

)
� T

(
r, f f (k)

)

� N(r, f ) + N

(
r,

1

f f (k)

)
+ N

(
r,

1

F

)
+ s(r, f )

� N(r, f ) + N(k)

(
r,

1

f

)
+ N

(
r,

1

f (k)

)
+ S(r, f ). (2.15)

Since f (k) has no simple zeros and the multiple zeros of f (k) must be the zeros of A, from (2.15) we deduce that

N
(
r, f f (k)

) − N(r, f ) � N(k)

(
r,

1

f

)
+ N

(
r,

1

A

)
+ S(r, f ).

Moreover, note that 2N(r, f ) � N(r, f f (k)) − N(r, f ). Thus from above we get

N(r, f ) � 1

2
N(k)

(
r,

1

f

)
+ 1

2
N

(
r,

1

A

)
+ S(r, f ). (2.16)

It is clear that F �≡ 0 since f is transcendental, and then by (2.14) we have A �≡ 0. Therefore, by applying Lemma 2.5 to
(2.11), we obtain

m(r, A) = S(r, f ). (2.17)

Suppose that z0 is a zero of f with multiplicity p (� k + 1), then F (z0) = −1 and z0 must be a zero of F ′ = f f (k+1) + f ′ f (k)

with multiplicity at least 2p − (k + 1) � p. This together with (2.14) implies that z0 must not be a pole of A, so the poles
of A only come from the zeros of F and the zeros of f with multiplicity k. Hence from (2.11), we have

N(r, A) � N(k)

(
r,

1

f

)
+ N

(
r,

1

F

)
= N(k)

(
r,

1

f

)
+ S(r, f ). (2.18)

Therefore, based in (2.17) and (2.18), we obtain consequently

T (r, A) = N(k)

(
r,

1

f

)
+ N

(
r,

1

F

)
+ S(r, f ). (2.19)

Moreover, (2.18) implies that f = − 1
A

F ′
F , then by (2.11), (2.12), (2.19) and the first fundamental theorem, we have

m(r, f ) � m

(
r,

1

A

)
+ S(r, f ) = T (r, A) − N

(
r,

1

A

)
+ S(r, f ) � N(k)

(
r,

1

f

)
− N

(
r,

1

A

)
+ S(r, f ). (2.20)

By combining (2.16) with (2.20), we deduce that

T (r, f ) � 3

2
N(k)

(
r,

1

f

)
+ S(r, f ) � 3

2k
N

(
r,

1

f

)
+ S(r, f ),

or equivalently(
1 − 3

2k

)
T (r, f ) = S(r, f ). (2.21)

Since k � 2, (2.21) implies that T (r, f ) = S(r, f ). This contradicts the fact that f is transcendental, and hence f f (k) − a has
infinitely many zeros. �
3. Proof of Theorem 1.1

Without loss of generality, we may assume that D = {z ∈ C | |z| < 1}. Suppose, to the contrary, that F is not normal
in D . Without loss of generality, we assume that F is not normal at z0 = 0. Then, by Lemma 2.1, there exist a sequence {z j}
of complex numbers with z j → 0 ( j → ∞); a sequence { f j} of F ; and a sequence {ρ j} of positive numbers with ρ j → 0
such that

g j(ξ) = ρ
− k

2
j f j(z j + ρ jξ)

converges uniformly to a non-constant meromorphic function g(ξ) in C with respect to the spherical metric. Moreover, g(ξ)

is of order at most 2. By Hurwitz’s theorem, the zeros of g(ξ) have at least multiplicity k + 1.
On every compact subset of C which contains no poles of g , we have uniformly

f j(z j + ρ jξ) f (k)
(z j + ρ jξ) − a = g j(ξ)g(k)

(ξ) − a → g(ξ)g(k)(ξ) − a (3.1)
j j
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with respect to the spherical metric. If gg(k) ≡ a, then g has no zeros. Of course, g also has no poles. Since g is a non-
constant meromorphic function of order at most 2, then there exist constants ci such that (c1, c2) �= (0,0), and

g(ξ) = ec0+c1ξ+c2ξ2
.

Obviously, this is contrary to the case gg(k) ≡ a. Hence gg(k) �≡ a.
By Lemma 2.3, the function gg(k) − a has at least two distinct zeros. Let ξ0 and ξ∗

0 be two distinct zeros of gg(k) − a.
We choose a positive number δ small enough such that D1 ∩ D2 = ∅ and such that gg(k) − a has no other zeros in D1 ∪ D2
except for ξ0 and ξ∗

0 , where

D1 = {
ξ ∈ C

∣∣ |ξ − ξ0| < δ
}
, D2 = {

ξ ∈ C
∣∣ ∣∣ξ − ξ∗

0

∣∣ < δ
}
.

By (3.1) and Hurwitz’s theorem, for sufficiently large j there exist points ξ j ∈ D1, ξ∗
j ∈ D2 such that

f j(z j + ρ jξ j) f (k)
j (z j + ρ jξ j) − a = 0,

f j
(
z j + ρ jξ

∗
j

)
f (k)

j

(
z j + ρ jξ

∗
j

) − a = 0.

Since, by the assumption in Theorem 1.1, f1 f (k)
1 and f j f (k)

j share a IM for each j, it follows that

f1(z j + ρ jξ j) f (k)
1 (z j + ρ jξ j) − a = 0,

f1
(
z j + ρ jξ

∗
j

)
f (k)

1

(
z j + ρ jξ

∗
j

) − a = 0.

By letting j → ∞, and noting z j + ρ jξ j → 0, z j + ρ jξ
∗
j → 0, we obtain

f1(0) f (k)
1 (0) − a = 0.

Since the zeros of f1 f (k)
1 − a has no accumulation points, in fact we have

z j + ρ jξ j = 0, z j + ρ jξ
∗
j = 0,

or equivalently

ξ j = − z j

ρ j
, ξ∗

j = − z j

ρ j
.

This contradicts with the facts that ξ j ∈ D1, ξ∗
j ∈ D2, D1 ∩ D2 = ∅. Theorem 1.1 is proved completely.

4. Proof of Theorem 1.6

By using the notations in the proof of Theorem 1.1, and now noting that, by Hurwitz’s theorem, the zeros of g(ξ) have
at least multiplicity k and g(k)(ξ) has no simple zeros, so the function gg(k) − a has at least one zero ξ0 based on Lemmas
2.4 and 2.6. Thus we have

∣∣g(k)
j (ξ j)

∣∣ = ρ
k
2
j

∣∣ f (k)
j (z j + ρ jξ j)

∣∣ � Aρ
k
2
j .

Since Hurwitz’s theorem implies ξ j → ξ0 as j → ∞, we obtain consequently

g(k)(ξ0) = lim
j→∞

g(k)
j (ξ j) = 0.

This contradicts g(ξ0)g(k)(ξ0) = a �= 0. Theorem 1.6 is proved.
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