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Abstract

In this paper, we study the existence of multiple solutions for the nonlinear boundary value
problem

— div(|VulP~2Vu) + V(z)|[ulP~2u = h(z), = cRY,
9
|vu|P—28—“ = A (2)[ul T2 + hy(z)|u""2u, € IRY,

14

(0.1)

where Rf = {(«',zn) € RN-1 « R*} is an upper half space in RY and 1 < p < N,A >0
and 1 < g<p<r<p,= p(f\y—;}), v denotes the unit outward normal to boundary 8Rﬂ . The
functions V' (z), h(x), hi(x) and hg(z) satisfy some suitable conditions. Using the Mountain Pass
Theorem and Ekeland’s variational principle, we prove that there exist \g,mg > 0 such that
problem (0.1) admits at least two solutions provided A € (0, Ao) and ||A|,y < mg < e AP~1/(r=a),
where the constant ¢; > 0 is independent of A > 0. On the other hand, if hy = 0, we prove that
the problem (0.1) admits at least one solution for any A > 0 and h € L¥' (RY).

Keywords: p-Laplacian equation; Mountain Pass Theorem; Nonlinear boundary condition;
Ekeland’s variational principle; Multiple solutions.

AMS Subject Classifications: 35J20; 35J66; 35J92.

1 Introduction

Recently, by Nehari manifold and fibering maps method, T.F.Wu in [18] studied the existence
of multiple solutions for the nonlinear boundary value problem

—Au+u=0, J;ERf

O (@)l 2t ha(@)lul € ORY
1%

(1.1)

where 1 < ¢ <2 <r <2,(2, = 28{,\[:21) it N >22,=cif N=2), Rﬂ\_] is an upper half space

in RN and A > 0. The functions h; and hq satisfy the following conditions:

r

(D1) hy € L7 (ORY) \ {0} with (k1) (z) = max{£h ()} Z 0;
(D2) hy € C(ORY) and there is a positive number 79 < r such that

ha(x) > 14 coexp(—ro|z|) for some ¢y < 1 and for all x € IRY
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and hg(z) — 1 as|z| — oc.
In this paper, motivated by [18], we study the existence of multiple solutions for the nonlinear
boundary value problem

— div(|VulP72Vu) + V(2)|ufP~2u = h(z),  zcRY,

0

_,0u _ _ (1.2)
|VulP 25 = M (2)[u|??u + ho(z)|ul""2u, =€ IRY,

where 1 < p < N, A > 0 and v denotes the unit outward normal to the boundary 8Rf . The
parameters r,q satisfy 1 < ¢ <p <r <p, =L S{,V:pl ), where p, is the critical exponent for the
Sobolev trace embedding, see [8,16,18]. Problem (1.2) can be looked as a perturbation of (1.1).

We will use the Mountain Pass Theorem and Ekeland’s variational principle to study the
existence of multiple solutions for problem (1.2) under the appropriate assumptions on hq(x)
and hg(z) which are different from that in [18]. It seems difficult to study the multiplicity of
solutions for (1.2) by dint of Nehari manifold and fibering maps methods.

Since Rf is an unbounded domain, the loss of compactness of the Sobolev embedding
whp (]Rf ) — L4 (Rf ) renders variational technique more delicate. To preserve this compactness
in our problem, we need to impose some conditions on the weight functions hj(x) and ha(z).

Throughout this paper, we make the following assumptions.

(Hy) V(z) € L®(RY) and V(z) > vo > 0 in RY; h(z) € LP(RY) with p = 2.

(Hs) Let 1 < g <p<r<p,andhi(z) € L2ORY)NLY (IRY), ho(z) € L®°(ORY )N L2 (ORY)
with aq = ﬁ,ag = pfir.

(H3) For h=0in ]Rf , we suppose that there exist non-empty domain I'y = {x € GRf |hi(z) >
0} C ORY with meas(T'y) > 0,k = 1,2.

(Hy) For h # 0 in RY, we suppose meas(I'z) > 0.

(Hs) For hy = 0 in ORY, we suppose meas(I'y) > 0.

We note that the assumptions (Hs) — (Hy4) imply that the weight functions hq(x) and ho(x)
are allowed to be sign-changing in GRf .

In recent years, the existence of solutions for the quasilinear elliptic equation with nonlinear
boundary conditions on unbounded domain has received great attention, see [ 3,8,12,14-17] and
the references therein. In particular, Pfliiger [17] studied the elliptic boundary value problem

{ —div(d(z)|Vu|P~2Vu) = f(z,u), z €

d(2)[VulP~22% 4 b(x) ufp2u = g(z,u), x € 0 (1.3)

where € is an unbounded domain in RY with noncompact, smooth boundary 92, and 0 < dy <
d(x) € L*°(02) and b(zx) is a positive and continuous function which satisfies

0 <er(1+ 2P <b(z) < (1 + |z))17P, = e . (1.4)

Similar assumption on b(z) can be also found in [3,7,14,16].



For problem (1.3), Pfliiger used a weighted Sobolev space E. FE is defined as the completion
of C§°(9), which is the space of C§°(RY) -functions restricted on €2, and the norm is

Juls, = /Q 0(z) [ V()P + /8 (1t faP) (o) do (1.5)

Under this norm, the compact embeddings E — L%(Q) and E — L"(9f2) were established. By
the assumption (1.4), one can obtain the equivalent norm for F

|l = /Q d(2)|Vuldz + /a @)l (1.6)

For the smooth exterior domain © in RY, which the boundary 99 is compact, Filippucci et
al.[12] considered the existence and nonexistence of solutions to the elliptic exterior problem

— div(a(z)|VulP2Vu) + |u|"%u = Ar(x)u|""?u, =€ Q
(1.7)

a(a:)|Vu|p_2% + b(z) |uP2u = 0, x € 09,
where a(x) > ap > 0,h(x) > 0 in @ and b(z) > 0 in 9Q, and h(z) € L>(Q) N LPo(Q).

By the variational method, they obtained the following main results.

(1). Let p < r < g < p*. Then there exists A\g > 0 such that problem (1.7) has no nontrivial
weak solution if A < \g; and problem (1.7) has at least a nontrivial positive weak solution w if
A > Ao;

(2). Let p < ¢ < r < p*. Then problem (1.7) has no nontrivial weak solution if A < 0 and
has at least a nontrivial weak solution if A > 0.

When Q is a bounded domain in RY, the function b(x) in (1.7) is permitted to be zero and
the many results of existence for (1.7) have been established, see [1,5-7,13,19] and the references
therein.

Motivated by the results of the above works, we are interested in the existence of multiple
solutions for (1.2). We will use the Mountain pass theorem and Ekeland’s variational principle
to prove the existence of multiple solutions for (1.2).

Our main results in this paper read as follows.

Theorem 1 Assume (H;) — (Hys) hold. Then there exists \g,mo > 0, such that the
problem (1.2) admits at least two solutions in W1P(RY) provided A € (0, \g) and ||hl,y < mo <
cl)\(p_l)/(r_‘n, where the constant ¢; > 0 is independent of A > 0.

Remark 1. If h =0 in ]Rf, then we let mg = 0.

Theorem 2 Assume (H;) — (Hz) and (Hj) hold. Then, for any A > 0 and h € LP'(RY),
the problem (1.2) admits at least one solution in WHP(RY).

This paper is organized as follows. In Section 2, we set up the variational framework of
the problem (1.2) and verify the conditions in the Mountain pass theorem. By the lemmas in
Section 2, we give the proofs of our main results in Section 3.

2 Preliminaries

Let E=W?Lp (RJI ) denote the usual Sobolev space. In this space, we introduce the norm

Julle = ([ (FuP + V(a)up)da) . 2.1)

R



By the assumption (Hy), it is equlvalent to the standard one. It is well known that the embedding
E—LI=LIRY)(p<q<p'= p —) is continuous and there is constant S > 0 such that

Slullg < llulle, Yu € E. (2.2)

Here and in the sequel, we denote ||ull, = ([~ |u|%dz)"/? for g > 1.
+

As in [15, 18], we set S, as the best Sobolev trace constants for the embedding E — LI(ORY)

forp < q < p.= Y p) where E < L7(ORY) means by E C L4(0RY) with continuous injection
and

Jax (IVulP + V(2)|ulP)dz P
S,= inf Ry o = nf M. (2.3)
e (faM qua) < ||UHL"(@RI")

Then, we have for p < g < py,

lllzoomyy < S VP lulls, Vu € E. (2.4)

Lemma 1 (Boundary Trace embedding Theorem [9,10]) Let © be a domain in RY satisfying the
uniform C'-regularity condition. Suppose that there exists a simple (1, p)-extension operator T'
for Q,and l<p< Nandp <q<py = p(N 1) . Then we have E — L1(0Q). If p = N, then the
embedding still holds for p < ¢ < 0.

Definition 1. we say that u € E is a solution to problem (1.2) if for any ¢ € E, there holds

/ (IVulP2VuVe + V(z)|uP?up)dx —/ hdx +/ (Mg |u|72u + holu|""?u)pdo (2.5)
RY RY ORY

+

Let J(u) : E — R be the energy functional of problem (1.2), defined by
(I A e 1 .
Jw) = =llully — [ W@)ude —= [ hi(z)|ul?do —— [ ha(x)lu|"do (2.6)
p RY q JorY " Jory

Then, we see that the functional J(u) € C'(E,R) under the assumptions (H;) — (H3) and
for any ¢ € F,

(' (), 0) = / (VP2 VuV + V(@) [uP~>up)dz — / hode
R " 2.7)
—/ N()\h1|u|r_2u—|—h2|u|q_2u)<,0d0
OR

+

We will make use of the Mountain pass theorem in [2].
Lemma 2.(Mountain Pass Theorem) Let E be a real Banach space. Suppose J € C!(E,R)
satisfies (PS) condition with J(0) = 0. In addition,
(A1) there are p,« > 0 such that J(u) > o when ||u|lg = p,
(A2) thereis e € E, |le]|g > p such that J(e) <0
Define

= {y e C'([0,1], B)[v(0) = 0,7(1) = e}. (2.8)

4



Then

= inf J(v(t)) > 2.9
¢=Inf max J(7(t) = @ (2.9)

is a critical value of J(u).
Lemma 3. Let 1 < g <p <r < p = pg{,\’—:;). Assume (H;) — (Hy). Then there exist

Ao, mo > 0 such that J(u) satisfies (A1) — (A2) in Lemma 2 provided A € (0, ) and ||h[[,y <
mgy < cl)\(p_l)/(r_‘ﬁ, , where the constant ¢; > 0 is independent of A.

Proof. Without loss of generality, we assume h # 0. It follows from Holder inequality and
(2.4) that

/8RN|h1||u|qu < th||L(,1(8M)||u||‘ip(8w) < sp—q/pnhl||Lu1(@M)||u||qE (2.10)
+

with ap = p%q. Similarly, we have

[ mallelde <l oy [l gy < 5577 il sl (2.11)
+

Moreover, it follows from Young’s inequality with ¢ > 0 and (2.2) that
/RN|h||“|diU < [Ihlly lully < S8 [ hllyllulle < ellully + Celnll; (2.12)
+
Thus,

1 - ’
J(u) > EHUH% = Aillullg = Bellully — ellully — Cellhll?,
1 / (2.13)
> %HUH% = ABullullfy = Bollully — Cellnll,

with 0 < € < 1/2p and 5 = Sp_q/thlHLal(aRf), By = S,«_T/p||h2||Loo(8Rf). We now denote

9(2) = ABL29P 4+ Bp2" P, 2> 0. (2.14)

To verify (A;) in Lemma 2, it suffices to show that g(z1) < 1/2p for some z; = [ju|g > 0.
Note that g(z) — +o0o whenever z — 0" or z — 4o00. Then ¢(z) has a minimum at z; > 0. In
order to find z1, we have

g'(z) = M1(q — p)z P71 + Bo(r — p) 2" P71,

so that

A&(p—q))” ) e al/—a)
(1) =0, andz:<7 = \/(=9) 9> 0.
g( 1) 1 52(7" _p) ﬁo

where (3 is independent of A. Moreover, g(z1) < 1/2p implies that

W) = g(21) = Bi(r — q)(r — p) AR/ G0 o, (2.15)



Then, we take Ao such that ¥(X\g) < 1/2p and ¥(\) < ¥(Ng) < 1/2p for A € (0,\). Thus,
it follows from (2.13) and (2.15) that there exist mg,a > 0 such that J(u) > a with X\ €
(0, 2),Jullz = 21 = p and [|h]ly < mo < ctAP~V/0=9) for each h € LP(RY), where the
constant ¢; > 0 is independent of A\. Thus (A4;) in Lemma 2 is true.

We now verify (As) in Lemma 2. Let Ty = {z € ORY|ho(z) > 0}. By the assumptions
(H3) — (Hy), I'y is a non-empty domain. Take a bounded surface I') € 'y C ORY and a ball
domain B, in RY with the center in RY and the radius a > 0 such that I') € 9(B, NRY).
Choose @1 € C2(B,),¢1 > 0 and ¢; > 0 in T C d(suppyr N Rﬂ)c Iy. Let p1(x) = 0,
z € BS =RY \ (B, NRY). Then, faRﬁ hale1["do = [, halpr|"do > ng halp1|"do > 0 and

oA e ,
J(to1) = =1l — — hilp1|?do — — halp1|"do —t | hoide (2.16)
p ORY T JorY RY

q + +

and J(tp1) — —oo0 as t — +oo since ¢ < p < r. Therefore, there exists ¢; large enough, such
that J(t101) < 0. Then, we take e = t1¢1 € E and J(e) < 0 and (Asg) in Lemma 2 is true. This
completes the proof of Lemma 3. a

Lemma 4. Let (Hy) — (H3) hold. If {u,} is a bounded sequence in E. Then there exists a
subsequence ( still denoted by {u,} ) and v € WP(RY) such that as n — oo,

/ hi|uy|?do —>/ hi|v|?do, / ho|u,|"do —>/ ho|v|"do. (2.17)
ORY ORY ORY ORY

Proof. Let 8Rf =RY-1 and

Q= {z = (2, zy) e RN x RY| |z] < K},
OV = By = {z = («/,0), 2’ e RN |2/| <k}, B{=RN"NB,

with k=1,2,--- .
Since {u,} is bounded in W1P(RY), then {u,} is bounded in W1P(Q) for Vk > 1. By the
Sobolev compact embedding theorem in the bounded domain €4, {u,} has a subsequence {u.}

which converges vy in L*(Q1) N L7(9) with 1 <o <p* = {=; and 1 <r <p, = p(N m

(2.18)

ul — vy strongly in L%(Qy) and L"(991).

Likewise, the subsequence {ul} is bounded in W!P(Q5) so that it has a subsequence {u2} which
converges vo in L¥(Qo) N L"(0Ns). Let

u? — vy strongly in L%(Qg) N L"(09Qy).

Since {u2} is a subsequence of {ul}. thus, vy = vy in Q. Continuing this line of reasoning, we
obtain a sequence vy with the following properties:

vk € Lo(Q) N LT (), k=1,2,--

vp(z) = vi(x), ae. in

vp(z) = vp_1(z), a.e. in Qp_y

6



It is clear that vy — v a.e. in Rﬁ, where
v(r) =vi(z), €, fork=12---.
By a diagonal process, we take {u"} which is a subsequence of {u,}. Thus, we have
umw — v strongly in LY(Qg) N L"(0Q), k=1,2,---.
Without loss of generality, we assume that the subsequence {u]'} is {uy,} itself. So,
up, — v, strongly in L%(Qy) N L"(0Q), k=1,2,---.
This implies that for n — oo,
Up — v, a.e. ndd, k=1,2---
Now, we claim

||U||Lr(Bg,|h2\) .

lim sup = 0.

k—oouemqoy  llulle

Indeed, it follows Holder inequality that

[l Zr B¢ na)) :/ |hal|u|"do < (/ |hoMdo) 2 ( [ Jul2do) A
Bg B B

k

(2.19)

(2.20)

with \j =g+ -, A =1+ I <2 27 =p, —r >0 and ay = 2. By the assumption (Hy)

Dx—T"

and (2.4), we have
27\ -
Il iy < el 2y Vel .2l
k

The fact ho(z) € Lo2(ORY) gives that
i [[hz| ez gg) = 0.
Then, (2.21) implies that

l[ull L (B, hal)

Tulls saﬂ%wwmlgéﬁwM@WMHQ ke
k

Lo (9RY)
This gives (2.20). Similarly, if 1 < ¢ < p, we have

Il g o = [l < S5l s
k

p

704 The assumption (Hz) implies

with a1 =
khigo 7]l pea (Bg) = O

7

(2.21)

(2.22)

(2.23)



and then

||U||L4(Bg,|h1\) .

lim sup =0. (2.24)
k—ooyempfoy  ullE
In the following, we show that
/ ho|uy|"do — / halv|"do  as n — oo. (2.25)
oRY oRY

Since the sequence {u,} is bounded in W1P(RY) | we can assume(up to a subsequence) that
Uy — v weakly in WHP(RY) and ||v|| g, ||un||z < Co for some constant Cy > 0 and all n > 1..
+
By (2.20), we know that for any ¢ > 0, there exists k. > 0 so large that

||un||LT(Bzi’|h2D < C()_18||unHE < g, for n = 1, 2, e

and
HU||LT(B,§8,|h2|) <e
Since the embedding WP(€y,. ) < L"(By,) is compact (see [6,7]) and he € L®(ORY), we

have

Jim fjuy, =0l pr(p,,) = i flun =0l Lr(B,, h)) = 0

Thus, there exists Ny > 0, when n > Ny,

||un = UHLT(BkS) <e.

So,
||Un—UHLr(aM,\h2\) < ||h2HLoo(aM)Hun - UHLT(aM) (2.26)
< Nlhall oo areyy Ulunllzr s ) + 0llLr s ) + llun = vllLr(By,) < 3ellh2lloo-
This shows that u, — v in L"(ORY, |ha|) as n — oo.
Similarly, we can prove
/ hi|uy,|?do H/ hilv|fdo  as n — oo. (2.27)
ORY oRY
This completes the proof of Lemma 4. O
Remark 2. By Brezis-Lieb’s Lemma in [4], it follows from (2.17) that
/ |1 ||wpn, — v]|%do — 0, / |ho||un —v|"do — 0, asn — oo. (2.28)
ORY ORY

+ +

Lemma 5. Assume (H;) — (Hs). Then J(u) defined by (2.6) satisfies (P.S) condition on E.
Proof. Let {u,} be a (PS). sequence of J(u) in E, that is ,

J(up) — ¢, J'(up) —0 in E* as n — oo. (2.29)



We first claim that {u,} is bounded in E. Using (2.10), it follows that for n large enough

c+1+|[unlle > J(un) =171 (un), un)

11, 1 1/ 1

= (= — w5 + (= — = )\hlunqd:c—i———l/hundx
G~ Pl = [ bl =) [ 20)
1 1 1 1. 1

> (2 = Dlltally + 7 = 289l o Nl + (= Dbl

Since 1 < ¢ < p < r, we conclude that {u,} is bounded in E. We now show that {u,} has a
convergent subsequence in F. Denote

Py = (J (up)uy —v) = / (IVn P2V un V(g — v) + V|, [P~ 2, (uy — v))da
RN
* (2.31)
— / ()\h1|un|q_2un + h2|un|r_2un)(un —v)dx — / h(u, — v))dz.
ORY RY
Then the fact J'(u,) — 0 in E* implies that P,, — 0 as n — oo. Moreover, The fact u, — v in

E implies that Q,, — 0, where

Qn = / (IVu|P2V oV (uy — v) + V]uP20(u, —v))dz (2.32)
RN

+

Let ||lun||p < Cp for all n > 1. Then it follows from (2.4) that { [;p~ |h1||us|?do} is bounded.
+
Moreover, we get from Holder inequality and (2.28) that

/ [t e, — v]da < (/ (b [t — u|qu>1/q</ (b [un|2do)@D/7 0 (2.33)
ORY ORY ORY
as n — oo. Similarly, we have

/ y |ho||twn "ty — v]dz — 0, as n — oo. (2.34)
N

We now prove that

h(z)(up, —v)dr — 0 as n — oo. (2.35)

N
R+

Since h € LP (RY), then for any ¢ > 0, there exists ko > 1 such that k > ko

/ym@ﬁmgs (2.36)
QL

with Qf = RY \ Q and € is given in (2.18). The compact embedding W1P(Qy) — LP(Q)
implies that

/ |up, —v|Pde — 0 as n — oo. (2.37)
Qp

9



Note that

/ B, — v |d:c<(/ luy, — v[Pda) s ( / B dz) + ( /|un—v|pda:) /|h|pd:c)p (2.38)

Then (2.36)-(2.38) yield (2.35) as n — oo. Therefore, it follows from (2.31)-(2.35) that
T, = / (IVun|P~2Vu, — |Vo[P2Vo)V (u, — v)dx —|—/ V(up —v)dx — 0 (2.39)
RY REY

Using the standard inequality in RY given by

(I€P726 — I[P, & —n) > Cplé — P, p>2 (2.40)

and

(€P2€ — [nfP~2n,& —m) = Cplé —nf (1€ + [)P~2, 1<p<2, (2.41)

we have from (2.39) that ||u, —v|[g — 0 as n — co. Thus J(u) satisfies (PS) condition on E
and we finish the proof of Lemma 5. |

3 Proofs of main results

Proof of Theorem 1. By Lemmas 3 and 5, J(u) satisfies all assumptions in Lemma 2. Then
there exists u; € F such that uy is a solution of (1.1) by Lemma 2. Furthermore, J(u1) > a > 0.

We now seek a second solution us. If h = 0 in RY, we have from (Hs) that I'y = {z €
OR¥|hi(x) > 0} is a non-empty domain . Take a bounded domain I') C T'y and a ball domain
By, in RY with then center in ORY and the radius b > 0 such that 'Y ¢ 9(B, NRY) C I'y and
meas(B, NRY) > 0. Choose @3 € C3(By), p2 > 0 and ¢ > 0 in I'Y Ca(suppgog DRN) C I'y. Let

pa(x) =0,z € Bf = RN\(Bbﬂ]RN) Then faRN hi|p2|tdo = fFl hi|p2|tdo > fFO hi|p2|%do > 0
and

t Y tr
J(tps) = —Hﬁ““—/ mwme—/ halial”do
p q Jory T Jory -
tP p ALY g tr . (3.1)
< —llp2lllp —— | hilpa|'do—— ha|pa|"dx < 0
p q Jr9 T JoRryY

for small ¢ > 0. If h # 0, we choose @3 € E such that [, hgsde > 0 and then

YA tr
JW@-%MW—/ Mme—/ wwat/h%m<o (3.2)
q JorY T JoRrYN RN

+ + +

for small ¢ > 0. Then, for any open ball B, C E, it follows from (3.1) and (3.2) that,

—00 < ¢; = inf J(u) < 0. (3.3)
B.

10



where B; is a open ball in F centered at the origin with radius 7 > 0. Thus,

¢, = inf J(u) <0 and inf J(u)>0, (3.4)
ueB, u€oB,

where p > 0 is given in Lemma 3. Letting €, | 0 such that

inf — inf . .
0<en<ué%BpJ(u) uleanJ(u) (3.5)

Then, by Ekeland’s variational principle in [11], there exists {u, } C B, such that
cp < J(un) <cp,+en (3.6)
and
J(up) < J(u) + epllun, —ullg, Vu € By, u# uy. (3.7)
Then it follows from (3.4)-(3.6) that

< i i .
J(un) < cp+en _ulenép J(u) +ep <ué%pr J(u), (3.8)

so that u, € B,. We now consider the functional F' : B, — R given by
F(u) = J(u) + enllu = unlle, u€ B, (3.9)

Then (3.7) shows that F(u,) < F(u),u € B, u # u, and thus u, is a strict local minimum of
F(u). Moreover,

tY(F(uy 4 tv) — F(uy,)) >0, forsmall t > 0and Vv € By. (3.10)
Hence,
t (T (uy + tv) — J(up)) + enllv]|z > 0. (3.11)
Passing to the limit as t — 07, it follows that
(J (up),v) +en|lvl|lg >0, VYveE By. (3.12)
Replacing v in (3.12) by —v, we get
—(J (up),v) + enl|v|]|g >0, Vo e By. (3.13)

So that [|J'(uy)|| < epn. Therefore, there is a sequence {u,} C B, such that J(u,) — ¢, < 0,
and J'(u,) — 0 in E* as n — co. By Lemma 5, {u,} has a convergent subsequence in E, still
denoted by {uy}, such that u,, — ug in E. Thus us is a solution of (1.1) with J(ug2) < 0. Then
the proof of Theorem 1 is complete. a

Proof of Theorem 2. We use the Ekeland’s variation principle to prove Theorem 2. When
he = 0, we have from (2.13) that

1 _ /
J(u) = %IIUH% = AS, Y|t o ol — CellBlf. (3.14)
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Since 1 < g < p, then for any A > 0 and h € Lp/(]Rﬁ), it follows that there exist p > 0, > 0
such that J(u) > «a with ||u||g = p. On the other hand, we get from (3.1)-(3.2) that J(te3) <0
for small ¢ > 0. Then we have
¢, = inf J(u) <0 and inf J(u) > 0. 3.15
o= int I Jnt I (3.15)
Using the Ekeland’s variational principle as in the proof of Theorem 1, we obtain that there
admits a solution for problem (1.2). This completes the proof of Theorem 2. a
Acknowledgments
The authors wish to express their gratitude to the referees for valuable comments and sug-
gestions.

References

[1] G.A.Afrouzi and S.H.Rasouli, A variational approach to a quasilinear elliptic problem in-
volving the p-laplacian and nonlinear boundary condition. Nonlinear Anal. 71(2009)2447-
2455.

[2] A.Ambrosetti, P.H.Rabinowitz, Dual variational methods in critical point theorey and ap-
plications, J. Funct. Anal. 14(1973)349-381.

[3] S.Benmouloud, R.Echarghaoui, S.M.Sbai, Existence result for quasilinear elliptic problem
on unbounded domains. Nonlinear Anal. 71(2009)1552-1561.

[4] H. Brezis, E.H.Lieb, A relation between pointwise convergence of functions and convergence
of functionals, Proc. Amer. Math. Soc. 88 (1983)486-490.

[5] K.J.Brown, T.F.Wu, A semilinear elliptic system involving nonlinear boundary condition
and sign-changing weight function. J. Math. Anal. Appl. 337(2008)1326-1336.

[6] K.J.Brown, Y.Zhang, The Nehari manifold for a semilinear elliptic equation with a sign-
changing weight function, J. Diff. Equ. 193(2003)481-499.

[7] K.J.Brown, T.F.Wu, A fibering map approach to a potential operator equation and its
applications, Differential and Integral Equations, 22(11-12)(2009)1097-1114.

[8] F.C%rstea, D.Motreanu, V.Radulescu, Weak solutions of quasilinear problems with nonlin-
ear boundary condition. Nonlinear Anal. 43(2001)623-636.

[9] J.I.Diaz, Nonlinear partial differential equations and free boundaries, Elliptic Equations.
John Wiley and Sons Inc. Boston (1986).

[10] E.DiBenedetto, Degenerate Parabolic Equations. Springer-Verlag, New York (1993).
[11] I.LEkeland, On the variational principle, J. Math. Anal. Appl. 47(1974)324-353.

[12] R.Filippucci, P.Pucci, V.Radulescu, Existence and nonexistence results for quasilinear el-
liptic exterior problems with nonlinear boundary conditions, Comm. in Partial Differential
Equations. 33(2008)706-717.

12



[13]

[14]

[15]

[16]

[17]

18]

J.Garcia-Azorero, I.Peral, J.D.Rossi, A convex-concave problem with a nonlinear boundary
condition. J. Differ. Equ. 198(2004)91-128.

D.A.Kandilakis, A.N.Lyberopoulos, Indefinite quasilinear elliptic problems with subcritical
and supercritical nonlinearities on unbounded domains. J. Differ. Equ. 230(2006)337-361.

D.A.Kandilakis, M.Magiropoulos, Existence results for a p-Laplacian problem with com-
peting nonlinearities and nonlinear boundary conditions, Electronic Journal of Differential
Equations, 95(2011)1-6.

E.Montefusco, V.Radulescu, Nonlinear eigenvalue problems for quasilinear operators on
unbounded domains. Nonlinear Differ. Equ. and Appl. 8(2001)481-497.

K.Pfliiger, Existence and multiplicity of solutions to a p-Laplacian equation with nonlinear
boundary condition. Electronic Journal of Differential Equations 10(1998) 1-13.

T.F.Wu, Multiple positive solutions of a nonlinear boundary value problem involving a
sign-changing weight, Nonlinear Anal. 74(2011)4223-4233.

7Z.D.Yang, J. Mo, S.B.Li, Positive solutions of p-Laplacian equations with nonlinear bound-
ary condition, Discrete and Continuous Dynamical Systems, Ser.B. 16(2)(2011)623-636.

13



