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A projected discrete Gronwall’s inequality with sub-exponential
growth

Linfeng Zhou and Weinian Zhang*

Department of Mathematics, Sichuan University, Chengdu, Sichuan, P.R. China

(Received 1 September 2008; final version received 31 October 2008 )

Along with the increasing interest in (h, k)-dichotomy, more attentions are paid to
sub-exponential growth in research of asymptotic behaviours. In this paper, we
generalize a projected discrete Gronwall’s inequality given in [J. Differ. Equ. Appl. 10
(2004), 661–689] to a general one, which may include both terms of sub-exponential
growth inside the summation and non-monotonic terms outside the summation. We
demonstrate our results with concrete non-monotonic functions and sub-exponential
functions. We apply our results to estimating bounded solutions of a non-linear
difference equation with an (h, k)-dichotomy.

Keywords: Gronwall’s inequality; difference equation; sub-exponential growth; non-
monotonicity; (h, k)-dichotomy

AMS (2000) Classification: 34A40; 34D09; 39A11

1. Introduction

Discrete inequalities of Gronwall type and related sum-difference inequalities play a

fundamental role in the study of difference equations. Required in the discussion on

existence, uniqueness, boundedness, stability, invariant manifolds and other dynamical

behaviours of solutions for difference equations, in recent decades a great progress has

been made in the theory of discrete inequalities (see e.g. [1–3,5–9,12,13] and references

therein). A basic one of those known results is the discrete Gronwall’s inequality

uðnÞ # pðnÞ þ qðnÞ
Xn21

k¼k0

f ðkÞuðkÞ; n $ k0: ð1:1Þ

As shown in Ref. ([1], Theorem 4.1.1, p. 182), the unknown function u(n) in (1.1) is

estimated by uðnÞ # pðnÞ þ qðnÞ
Pn21

k¼k0
pðkÞf ðkÞ

Qn21
t¼kþ1ð1 þ qðtÞf ðtÞÞ for all n $ k0.

Recently, in order to investigate invariant manifolds for functional difference

equations, Matsunaga and Murakami [5] discussed in the Appendix the discrete inequality

uðnÞ # ebn þ p
Xn21

s¼0

bn2s21 uðsÞ þ q
X1
s¼n

c2nþsþ1 uðsÞ; n [ Zþ; ð1:2Þ

where e, b, c, p and q are non-negative constants and 0 , b , 1; 0 , c , 1: Being a

discrete analogue of the projected Gronwall’s inequality, considered in Ref. ([4],
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Lemma 6.2, p. 110), inequality (1.2) can be regarded as a discrete projected Gronwall’s

inequality.

Along with the increasing interest in (h, k)-dichotomy [6,10,11], more attentions are

paid to sub-exponential growth in research of asymptotic behaviours. On the basis of the

projected Gronwall’s inequality considered in Ref. ([4], Lemma 6.2, p. 110), efforts (see

Refs [14–16]) have been made to extend the known results to sub-exponential growth,

non-monotonicity and lower regularity of given functions. Obviously, such efforts to the

discrete inequality (1.2) are also interesting to difference equations.

In this paper, we generalize (1.2), a discrete inequality including functions of

exponential growth only, to the discrete inequality

uðnÞ # aðnÞ þ
Xn21

s¼s0

bðn; sÞuðsÞ þ
X1
s¼n

cðn; sÞuðsÞ; n $ s0; ð1:3Þ

where s0 is a fixed number in Zþ, a(n), b(n, s) and c(n, s) are non-negative functions, a(n)

may be non-monotonic and b(n, s) and c(n, s) may grow sub-exponentially. We first

estimate u in (1.3) in Theorem 1 under some basic hypotheses, which are much weaker

than the corresponding discrete analogies in Ref. [16] and relax b(n, s) and c(n, s) to be of

general form in two variables. Since these basic hypotheses do not restrict b(n, s) to the

form of variable separation, our result Theorem 1 is proved in a different idea from Ref.

[16]. If b(n, s) is additionally bounded by a function in the form of variable separation, we

can use the same idea as in Ref. [16] to give an estimate of u in Theorem 2, which is much

easier to calculate than the estimate given in Theorem 1. We demonstrate our results with

concrete non-monotonic functions and sub-exponential functions. Finally, we apply our

results to a non-linear difference equation with an (h, k)-dichotomy.

Throughout this paper, we use the following notations Zþ U {n [ Z : n $ 0} and

Rþ U {n [ R : n $ 0}. For a function F(k) defined on Zþ, it is a convention [1] to setPk2

s¼k1
FðsÞ ¼ 0 and

Qk2

s¼k1
FðsÞ ¼ 1 if k1; k2 [ Zþ and k1 . k2, i.e. empty sum takes the

value 0 and empty product takes the value 1. As usual, let D denotes the forward difference

operator, i.e. DFðnÞ ¼ Fðnþ 1Þ2 FðnÞ.

2. Main result

Consider inequality (1.3) and suppose that

(H1): a : Zþ ! Rþ is bounded and a* :¼ infn$s0
aðnÞ,

(H2): the functions b(n, s) and c(n, s) are defined for all integers 0 # s # n , 1 and for

all integers 0 # n # s , 1, respectively, and both are non-negative and

(H3): hðnÞ U
Pn21

s¼s0
bðn; sÞ þ

P1
s¼ncðn; sÞ is well defined for all n $ s0 and h U

supn$s0
hðnÞ , 1:

Our main result is the following:

Theorem 1. Suppose that (H1–H3) hold. Then any non-negative bounded function u

satisfying (1.3) is estimated by

uðnÞ #
~aðnÞ

1 2 h
þ

1

ð1 2 hÞ2

Xn21

s¼s0

Yn21

t¼sþ1

jðtÞ

 !
ð~aðsÞ2 a*Þ~bðsþ 1; sÞ; ;n $ s0;

L. Zhou and W. Zhang932
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where ~aðnÞ :¼ supt$naðtÞ, ~bðn; sÞ :¼ supt$nbðt; sÞ, jðnÞ U rðnÞ þ ~bðnþ 1; nÞ=ð1 2 hÞ,

rðnÞ :¼ maxs0#s#n Bðn; sÞ, and

Bðn; sÞ U

~bðnþ 1; sÞ=~bðn; sÞ; ~bðn; sÞ – 0;

0; ~bðn; sÞ ¼ 0:

(

Remark 1. When aðnÞ ¼ ern1, bðn; sÞ ¼ arn2s21
1 and cðn; sÞ ¼ br2nþsþ1

2 , inequality (1.3) is

just what Matsunaga and Murakami considered in Ref. [5]. In this case, it is obvious that

rðnÞ ¼ r1 for all n $ s0 when a – 0 and rðnÞ ¼ 0 for all n $ s0 when a ¼ 0. Hence their

result on inequality (1.2), where a(n), b(n, s) and c(n, s) all grow exponentially, is a special

case in our Theorem 1.

Before proving the theorem, we need the following lemma.

Lemma 1. Suppose that (H1–H3) hold. Then for an arbitrary bounded solution u of

inequality (1.3) there exists a non-negative bounded solution v of the inequality

vðnÞ # aðnÞ2 a* þ
Xn21

s¼s0

bðn; sÞvðsÞ þ
X1
s¼n

cðn; sÞvðsÞ; ;n $ s0; ð2:4Þ

such that uðnÞ2 vðnÞ # a*=ð1 2 hÞ for all n $ s0.

Proof. Let u be an arbitrary bounded solution of (1.3) on Zþðs0Þ U {n [ Zþ : n $ s0}. Let

S U {n [ Zþðs0Þ : uðnÞ $ a*=ð1 2 hÞ}, which is allowed to be empty in some cases.

Define

vðnÞ U
uðnÞ2 a*=ð1 2 hÞ; n [ S;

0; n [ Zþðs0ÞnS;

(
ð2:5Þ

which is bounded and non-negative. It follows that

uðnÞ2 vðnÞ #
a*

1 2 h
; ;n $ s0; ð2:6Þ

the same inequality as in the result of our lemma. In the sequel, we only need to prove that

v satisfies inequality (2.4). From (H3), we see that the infinite sums
Pn21

s¼s0
bðn; sÞvðsÞ andP1

s¼ncðn; sÞvðsÞ in (2.4) are both well defined for all n $ s0. Inequality (2.4) holds

naturally for n [ Zþðs0ÞnS because vðnÞ ; 0 by (2.5). For n [ S, substituting (2.6) into

(1.3), we obtain

vðnÞ þ
a*

1 2 h
# aðnÞ þ

Xn21

s¼s0

bðn; sÞ vðsÞ þ
a*

1 2 h

� �
þ
X1
s¼n

cðn; sÞ vðsÞ þ
a*

1 2 h

� �

# aðnÞ þ
Xn21

s¼s0

bðn; sÞvðsÞ þ
X1
s¼n

cðn; sÞvðsÞ þ
a*h

1 2 h
; ;n $ s0;

from which we obtain the same as in (2.4). The proof is completed. A
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Proof of Theorem 1. Since (H1–H3) hold, by Lemma 1 we see that there is a non-negative

bounded solution v of inequality (2.4) such that

uðnÞ #
a*

1 2 h
þ vðnÞ; ;n $ s0: ð2:7Þ

Thus the estimation of u is reduced to the estimation of v. Let

wðnÞ U sup
s$n

vðsÞ: ð2:8Þ

Then w is non-increasing and wðnÞ $ vðnÞ. On the other hand, let 1 . 0 be given. Then for

every n $ s0 there exists an integer n1 $ n such that wðnÞ2 1 , vðn1Þ. Thus, from (2.4)

we get

wðnÞ2 1 , vðn1Þ # aðn1Þ2 a* þ
Xn121

s¼s0

bðn1; sÞwðsÞ þ
X1
s¼n1

cðn1; sÞwðsÞ

# aðn1Þ2 a* þ
Xn121

s¼s0

bðn1; sÞwðsÞ þ wðnÞ
Xn121

s¼n

bðn1; sÞ þ
X1
s¼n1

cðn1; sÞ

 !

# aðn1Þ2 a* þ
Xn121

s¼s0

bðn1; sÞwðsÞ þ hðn1ÞwðnÞ

# ~aðnÞ2 a* þ
Xn121

s¼s0

~bðn; sÞwðsÞ þ hwðnÞ;

ð2:9Þ

where we note that ~bðn; sÞ is well defined for all integers s0 # s # n , 1 because the

assumption (H3) implies that supn$s bðn; sÞ , 1 for s [ Zþ. Clearly, it follows from (2.9)

that

wðnÞ #
~aðnÞ2 a*

1 2 h
þ

1

1 2 h

Xn21

s¼s0

~bðn; sÞwðsÞ; ð2:10Þ

since 1 . 0 is arbitrary and 0 # h , 1.

In order to estimatew(n) from (2.10), we cannot use the idea as for (2.16) and (2.17) in Ref.

[16] because ~bðn; sÞ may not be separable. Let

zðnÞ ¼
1

1 2 h

Xn21

s¼s0

~bðn; sÞwðsÞ: ð2:11Þ

Inequality (2.10) can be rewritten as

wðnÞ #
~aðnÞ2 a*

1 2 h
þ zðnÞ: ð2:12Þ

L. Zhou and W. Zhang934
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From (2.11) we can calculate

DzðnÞ ¼ zðnþ 1Þ2 zðnÞ ¼
1

1 2 h

Xn21

s¼s0

ð~bðnþ 1; sÞ2 ~bðn; sÞÞwðsÞ þ
~bðnþ 1; nÞ

1 2 h
wðnÞ

#
rðnÞ2 1

1 2 h

Xn21

s¼s0

~bðn; sÞwðsÞ þ
~bðnþ 1; nÞ

1 2 h
wðnÞ

# ðrðnÞ2 1ÞzðnÞ þ
~bðnþ 1; nÞ

1 2 h

~aðnÞ2 a*

1 2 h
þ zðnÞ

� �
; (2:13Þ

where we note the definition of r(n) given in the theorem and we apply inequality (2.12).

Re-arranging terms in (2.13), we get

zðnþ 1Þ2 jðnÞzðnÞ #
ð~aðnÞ2 a*Þ~bðnþ 1; nÞ

ð1 2 hÞ2
: ð2:14Þ

where jðnÞ U rðnÞ þ ~bðnþ 1; nÞ=ð1 2 hÞ. Define

~j11
ðnÞ ¼ jðnÞ þ 11;

where 11 . 0 is an arbitrary constant. Since z(n) is non-negative, from inequality (2.14) we

get

zðnþ 1Þ2 ~j11
ðnÞzðnÞ #

ð~aðnÞ2 a*Þ
~bðnþ 1; nÞ

ð1 2 hÞ2
: ð2:15Þ

Note that ~j11
ðnÞ . 0 for all n $ s0 because j(n) is non-negative and 11 is positive. It is

reasonable to multiply (2.15) by
Qn

s¼s0

~j11
ðsÞ21 to get

D
Yn21

s¼s0

~j11
ðsÞ21zðnÞ

 !
#

Yn
s¼s0

~j11
ðsÞ21

 !
ð~aðnÞ2 a*Þ~bðnþ 1; nÞ

ð1 2 hÞ2
:

Summing up the above inequality from n ¼ s0 to n ¼ N 2 1 and noting that zðs0Þ ¼ 0, which

is observed from (2.11) and the conventions shown in the end of the Introduction, we get

zðNÞ #
1

ð1 2 hÞ2

XN21

n¼s0

YN21

t¼nþ1

~j11
ðtÞ

 !
ð~aðnÞ2 a*Þ~bðnþ 1; nÞ: ð2:16Þ

Passing to the limit as 11 !þ0 in (2.16), by the definition of ~j11
ðnÞ, we get

zðNÞ #
1

ð1 2 hÞ2

XN21

n¼s0

YN21

t¼nþ1

jðtÞ

 !
ð~aðnÞ2 a*Þ~bðnþ 1; nÞ: ð2:17Þ

Thus, we obtain an estimate of w(n) from (2.12) and (2.17) directly. Since vðnÞ # wðnÞ, we

finally obtain the result of the theorem from (2.7). This completes the proof. A

If b(n, s) satisfies an additional condition

(A): bðn; sÞ # p1ðnÞp2ðsÞ for all integers 0 # s # n , 1, where p1(n) and p2(n) are

both non-negative functions defined on Zþ and p1(n) is non-increasing,

the estimation will be much easier.

Journal of Difference Equations and Applications 935
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Theorem 2. Suppose that (H1–H3) hold and b(n, s) satisfies (A). Then any non-negative

bounded function u satisfying (1.3) is estimated by

uðnÞ #
~aðnÞ

1 2 h
þ

p1ðnÞ

ð1 2 hÞ2

Xn21

s¼s0

ð~aðsÞ2 a*Þp2ðsÞ
Yn21

t¼sþ1

1 þ
p1ðtÞp2ðtÞ

1 2 h

� �" #

for all n $ s0, where ~aðnÞ :¼ sups$naðsÞ.

Proof. Since (H1–H3) hold, by Lemma 1, there is a non-negative bounded solution v of

inequality (2.4) such that

uðnÞ #
a*

1 2 h
þ vðnÞ; ;n $ s0: ð2:18Þ

In order to estimate v in (2.18), let wðnÞ :¼ sups$nvðsÞ and ~bðn; sÞ :¼ supt$nbðt; sÞ.
Similarly to the proof of Theorem 1, we can deduce that w(n) satisfies inequality (2.10). By

the assumption (A),

~bðn; sÞ # sup
t$n

p1ðtÞ

� �
p2ðsÞ ¼ p1ðnÞp2ðsÞ

since p1 is non-increasing. It follows from (2.10) that

wðnÞ #
~aðnÞ2 a*

1 2 h
þ

p1ðnÞ

1 2 h

Xn21

s¼s0

p2ðsÞwðsÞ: ð2:19Þ

Thus, we can apply the discrete version of the well-known Gronwall’s inequality, shown

in Ref. ([1], Theorem 4.1.1, p. 182) and usually called the discrete Gronwall’s inequality,

to inequality (2.19) and obtain

wðnÞ #
~aðnÞ2 a*

1 2 h
þ

p1ðnÞ

ð1 2 hÞ2

Xn21

s¼s0

ð~aðsÞ2 a*Þp2ðsÞ
Yn21

t¼sþ1

1 þ
p1ðtÞp2ðtÞ

1 2 h

� �" #
:

This gives the result by the definition of w(n) and the relation (2.18) between u(n) and v(n).

This completes the proof. A

Remark 2. When functions b(n, s) and c(n, s) in (1.3) is of the special forms bðn2 s2 1Þ

and cð2nþ sþ 1Þ, respectively and

bðnÞ # bð0Þrn; ;n $ 0;

with r [ (0, 1), the conditions (H1–H3) and (A) are satisfied, where p1(n) ¼ b(0)p n and

p2(n) ¼ r2n 2 1. By our Theorem 2, we obtain a discrete result in a similar form to the

result in Ref. [16] for integral inequalities. Actually, using the same idea, one can

generalize [16] to a case with real functions of two variables inside the integrals, where

bðt2 sÞ is replaced with b(t, s) in variable separation but of sub-exponential growth and

cðs2 tÞ is replaced with the general c(t, s) of two variables.
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3. Sub-exponential examples

In this section, we demonstrate our theorems with non-monotonic functions and sub-

exponential functions.

Example 1. Consider inequality (1.3) with functions

aðnÞ ¼
1 þ cos np

nþ 1
þ l; bðn; sÞ ¼

mð4sþ 1 þ cosðnþ 1ÞpÞ

4n2
;

and cðn; sÞ ¼ c2nþsþ1ð1 2 cos 2ð2nþ sþ 1ÞaÞ; where l, m, a and c are positive

constants such that 0 , c , 1 and

m

2
þ

c

1 2 c
2

c cos 2a2 c2

1 þ c2 2 2c cos 2a
, 1: ð3:20Þ

Obviously, a(n) and b(n, s) are both sub-exponential, b(n, s) is not of variable separation,

and none of a(n), b(n, s) and c(n,s) is monotone. Note that conditions (H1) and (H2) are

satisfied because aðnÞ # lþ 2=3 for n $ 1, a* :¼ infn$1aðnÞ ¼ l and the non-negative

functions b(n, s) and c(n, s) are well defined for all integers 1 # s # n , 1 and for all

integers 1 # n # s , 1, respectively.

In order to verify (H3), we first note that

sup
n$0

Xn21

s¼1

bðn; sÞ ¼
m

2
: ð3:21Þ

In fact, by the assumption of b(n, s),

Xn21

s¼1

bðn; sÞ ¼
mðn2 1Þ=ð2nÞ; as n ¼ 2k and k [ Zþ;

mðn2 2 1Þ=ð2n2Þ; as n ¼ 2k þ 1 and k [ Zþ:

(
ð3:22Þ

On the other hand,

X1
s¼n

cðn; sÞ ¼
X1
s¼n

c2nþsþ1 2 lim
m!1

Sðn;mÞ; ð3:23Þ

where Sðn;mÞ U
Pm

s¼nc
2nþsþ1cos 2ð2nþ sþ 1Þa. Since

2ccosð2aÞSðn;mÞ ¼
Xm
s¼n

2c2nþsþ2cos 2a cos 2ð2nþ sþ 1Þa

¼
Xm
s¼n

c2nþsþ2½cos 2ð2nþ sþ 2Þaþ cos 2ð2nþ sÞa�

¼ ½c2nþmþ2cos 2ð2nþmþ 2Þaþ Sðn;mÞ2 c cos 2a� þ ½c 2 þ c2Sðn;mÞ

2 c2nþmþ3cos 2ð2nþmþ 1Þa�;
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we have

Sðn;mÞ ¼
c2nþmþ2½ccos 2ð2nþmþ 1Þa2 cos 2ð2nþmþ 2Þa� þ c cos 2a2 c 2

1þ c2 2 2ccos 2a
:

It follows from (3.23) that

X1
s¼n

cðn; sÞ ¼
c

12 c
2

ccos 2a2 c 2

1þ c2 2 2c cos 2a
: ð3:24Þ

Thus, by (3.22), (3.24) and (3.20) we get

hU sup
n$0

Xn21

s¼1

bðn; sÞ þ
X1
s¼n

cðn; sÞ

( )
¼

m

2
þ

c

12 c
2

c cos 2a2 c 2

1þ c2 2 2ccos 2a
, 1;

which verifies (H3). Furthermore, bðn; sÞ# p1ðnÞp2ðsÞ, where p1ðnÞ ¼ 1=n2;p2ðsÞ ¼

mðsþ 1=2Þ i.e., condition (A) is satisfied. Thus we can apply Theorem 2 to obtain

uðnÞ#
ðnþ 1Þlþ 2

ðnþ 1Þð12hÞ
þ

m

n2ð12hÞ2

Xðn22Þ=2

s¼1

4sþ 1

2sþ 1

� � Yn21

t¼2sþ1

1þ
ð2tþ 1Þm

2t2ð12hÞ

� �(

þ
Xðn22Þ=2

s¼0

4sþ 3

2sþ 3

� � Yn21

t¼2sþ2

1þ
ð2tþ 1Þm

2t2ð12hÞ

� �)
; for evenn; ð3:25Þ

uðnÞ#
ðnþ 2Þlþ 2

ðnþ 2Þð12hÞ
þ

m

n2ð12hÞ2

Xðn21Þ=2

s¼1

4sþ 1

2sþ 1

� � Yn21

t¼2sþ1

1þ
ð2tþ 1Þm

2t2ð12hÞ

� �(

þ
Xðn23Þ=2

s¼0

4sþ 3

2sþ 3

� � Yn21

t¼2sþ2

1þ
ð2tþ 1Þm

2t2ð12hÞ

� �)
; for oddn; ð3:26Þ

since

~aðnÞU sup
t$n

aðtÞ ¼
lþ 2=ðnþ 1Þ; n is even;

lþ 2=ðnþ 2Þ; n is odd:

(

Although Theorem 2 requires an additional condition (A), the resulted inequality is

easier to be calculated and the proof is simpler than that of Theorem 1. For a precise

estimate we usually enlarge b(n, s) with p1(n), p2(s) in (A) as exact as possible. In our

Example 1,

lim supn!1bðn; sÞ=p1ðnÞp2ðsÞ ¼ lim supn!1ð4sþ 1 þ cos ðnþ 1ÞpÞ=ð4sþ 2Þ ¼ 1.

Example 2. Consider inequality (1.3) with functions

aðnÞ ¼
1

22n
þ l; bðn; sÞ ¼

s1b
2nþ2n2s22s

1 2 b2n2sþ1 ; cðn; sÞ ¼
s2c

2s2n

1 2 c2s2nþ1 ;
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where 0 , b , 1, 0 , c , 1 and l, s1, s2 are positive constants such that

max
0#n#K

bðn; sÞ þ
s2c

1 2 c
, 1 ð3:27Þ

with K :¼ max{0; 1 þ ðln ln 2 2 lnjln bjÞ=ln 2}. Obviously, neither b(n, s) nor c(n, s) is of

variable separation. Note that our this case includes stronger growth than exponential

growth, because limn!1bðnþ 1; sÞ=bðn; sÞ ¼ 0, i.e., the growth rate of b(n, s) is stronger

than exponential one. Thus those functions with stronger growth can be enlarged by

functions of exponential growth and the known result in Ref. [5] can be applied to this

example for an estimate of u(n). However, if applying our Theorem 1, we can obtain a

better estimate for u(n) because our theorems are not restricted to the case of exponential

growth and the stronger growth can be considered in the estimate.

In order to apply our Theorem 1, we note that aðnÞ # lþ 1=2 for n $ 0 and

a* :¼ infn$0aðnÞ ¼ l, i.e. (H1) holds. Moreover, b(n, s) and c(n,s) are both non-negative

and are well defined for all integers 0 # s # n , 1 and for all integers 0 # n # s , 1,

respectively, i.e. (H2) holds. In order to verify (H3), we first note that

Xn
k¼0

c2k

1 2 c2kþ1 ¼
Xn
k¼0

1

1 2 c2k
2

1

1 2 c 2kþ1

� �
¼

1

1 2 c
2

1

1 2 c2nþ1 ;

implying that
P1

s¼ncðn; sÞ ¼ s2c=ð1 2 cÞ. On the other hand, although it is hard to

calculate the sum 6ðnÞ U
Pn21

s¼0 bðn; sÞ directly, we know

6ðnþ 1Þ ¼ s1

Xn21

s¼0

b2nþ1þ2nþ12s22s

1 2 b2n2sþ2 þ s1

b2nþ1þ222n

1 2 b22

#
b2nþ2

1 þ b4
þ b2n21

� �
6ðnÞ # 2b2n21

6ðnÞ; ð3:28Þ

implying that 6ðnþ 1Þ , 6ðnÞ for n . K, the number defined just after (3.27). Therefore,

supn$06ðnÞ ¼ max0#n#K6ðnÞ and, from the assumption (3.27),

h U sup
n$0

Xn21

s¼0

bðn; sÞ þ
X1
s¼n

cðn; sÞ

( )
¼ max

0#n#K
6ðnÞ þ

s2c

1 2 c
, 1;

i.e. (H3) is also satisfied. By Theorem 1 we conclude that

uðnÞ #
1 þ 22nl

22nð1 2 hÞ
þ

s1b
2nþ2

ð1 2 hÞ2ð1 2 b4Þ

b

1 þ b2
þ

s1b
2

ð1 2 hÞð1 2 b4Þ

� �n21

�
Xn21

s¼0

ð2bÞ22s b

1 þ b2
þ

s1b
2

ð1 2 hÞð1 2 b4Þ

� �2s
( )

; ;n $ 0; ð3:29Þ
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where we notice that rðnÞ ¼ b2nþ1=ð1 þ b2Þ because ~bðn; sÞ ¼ bðn; sÞ and

bðnþ 1; sÞ ¼ s1

b2nþ1þ2nþ12s22s

1 2 b2nþ22s ¼
b2nb2n2s

1 þ b2nþ12s s1

b2nþ2n2s22s

1 2 b2nþ12s

� �
¼

b2n

1=b2n2s
þ b2n2s bðn; sÞ:

4. Application to difference equations

In this section, we apply our result to estimate solutions for the non-linear difference

system

xðnþ 1Þ ¼ AðnÞxðnÞ þ f ðn; xðnÞÞ; ð4:30Þ

where A(n) is a d £ d matrix valued function on Zþ and f(n, x) is an Rd valued function on

Zþ £ Rd. For x [ Rd and a d £ d matrix A denote by jxj and jAj its Euclidean norm and the

corresponding norm, respectively. Suppose that

(S1): The linear system

xðnþ 1Þ ¼ AðnÞxðnÞ ð4:31Þ

admits an (h, k)-dichotomy for n $ 0, i.e. as defined in Ref. [10], there exist a

projection P and a positive constant c such that

jUðnÞPU21ðmÞj # chðnÞhðmÞ21; n $ m $ 0;

jUðnÞðI 2 PÞU21ðmÞj # ckðnÞ21kðmÞ; m $ n $ 0;

(
ð4:32Þ

where U(n) is a fundamental matrix of Equation (4.31) and h, k are two positive

non-increasing functions defined on Zþ such that limn!1hðnÞ ¼ 0 and

limn!1kðnÞ ¼ 0.

(S2): f : Zþ £ Rd ! Rd satisfies j f ðn; xÞj # zðnÞjxj for all n $ 0 and x [ Rd, where

z(n) is a non-negative function.

(S3): The function hðnÞ U c{hðnÞ
Pn21

s¼0 hðsþ 1Þ21zðsÞ þ kðnÞ21
P1

s¼nkðsþ 1ÞzðsÞ} is

well defined for all n $ 0 such that h U supn$0hðnÞ , 1:

Corollary 1. Suppose that (S1–S3) hold. Then every bounded solution x(n) of system

(4.32) satisfies

jxðnÞj #
chðnÞjxðn1Þj

ð1 2 hÞhðn1Þ
þ

c2hðnÞjxðn1Þj

ð1 2 hÞ2hðn1Þ

Xn21

s¼n1

4ðsÞ
Yn21

t¼sþ1

1 þ
c4ðtÞ

1 2 h

� �( )
ð4:33Þ

for all n $ n1, where n1 [ Zþ is given and 4ðnÞ U hðnÞhðnþ 1Þ21zðnÞ. Furthermore,

jxðnÞj! 0 as n!1 in the convergence rate of h if
P1

n¼04ðnÞ , 1.

Before proving this Corollary, we need the following lemma.
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Lemma 2. Suppose that (S1–S3) hold. Then for every solution x(n) of (4.30) which is

bounded on Zþ there is an xP [ PRd such that

xðnÞ ¼ UðnÞU21ð0ÞxP þ
Xn21

s¼0

UðnÞPU21ðsþ 1Þf ðs; xðsÞÞ

2
X1
s¼n

UðnÞðI 2 PÞU21ðsþ 1Þf ðs; xðsÞÞ:

The proof of this lemma can be referred to Ref. ([1], Theorems 5.6.8 and 5.8.6).

Although the result given in Ref. [1] was obtained under the assumption of exponential

dichotomies, there are no difference between exponential dichotomy cases and (h,k)-

dichotomy cases because the equality in Lemma 2 is guaranteed by the summability ofP1
s¼nUðnÞðI 2 PÞU21ðsþ 1Þf ðs; xðsÞÞ, which follows from the assumption of Lemma 2

immediately.

Proof of Corollary 1. By Lemma 2, every bounded solution x(n) of system (4.32) satisfies

xðnÞ ¼ UðnÞPU21ðn1Þxðn1Þ þ
Xn21

s¼n1

UðnÞPU21ðsþ 1Þf ðs; xðsÞÞ

2
X1
s¼n

UðnÞðI 2 PÞU21ðsþ 1Þf ðs; xðsÞÞ; ;n $ n1;

where n1 [ Zþ is given arbitrarily. It follows that

jxðnÞj # chðnÞhðn1Þ
21jxðn1Þj þ c

Xn21

s¼n1

hðnÞhðsþ 1Þ21zðsÞjxðsÞj

þ c
X1
s¼n

kðnÞ21kðsþ 1ÞzðsÞjxðsÞj; ;n $ n1: ð4:34Þ

Then Theorem 2 is applicable to the inequality (4.34) and the estimate (4.33) can be

obtained.

Furthermore, under the assumption
P1

n¼04ðnÞ , 1, it is well-known that
Q1

n¼0ð1 þ

u4ðnÞÞ , 1 for an arbitrarily given constant u . 0. It follows from (4.36) that jxðnÞj #

LhðnÞ for all n $ n1, where L . 0 is a constant. Hence jxðnÞj! 0 as n!1 in the

convergence rate of h. The proof is completed. A

By Corollary 1, a weaker condition for bounded solutions x(n) of system (4.30) to

approach 0 as n!1 is that

lim
n!1

hðnÞ
Xn21

s¼0

4ðsÞ
Yn21

t¼sþ1

1 þ
c4ðtÞ

1 2 h

� �
¼ 0: ð4:35Þ

Furthermore, Corollary 1 covers the situation of exponential convergence rate, discussed

in Ref. ([1], Theorem 5.8.6, pp. 273–274). In fact, consider the class

H U f : Zþ ! RþjfðnÞ . 0;fðnÞ
Xn21

s¼0

fðsþ 1Þ21 is bounded

( )
:

Journal of Difference Equations and Applications 941

D
ow

nl
oa

de
d 

by
 [

E
as

te
rn

 M
ic

hi
ga

n 
U

ni
ve

rs
ity

] 
at

 0
4:

39
 1

0 
D

ec
em

be
r 

20
13

 



If z(n) is identical to a positive constant, then the assumption (S3) in our Corollary 1

implies that

gðnÞ U
Xn21

s¼0

hðsþ 1Þ21 # KhðnÞ21; ;n [ Zþ; ð4:36Þ

where K is a positive constant and K . 1. This means that h [ H. This further implies that

DgðnÞ ¼ hðnþ 1Þ21 $ ð1=KÞgðnþ 1Þ, i.e. ð1 2 1=KÞgðnþ 1Þ2 gðnÞ $ 0. Hence,

D 1 2
1

K

� �n

gðnÞ

� �
$ 0; ;n [ Zþ: ð4:37Þ

Summing up (4.37) from n1 $ 0 to n, we get gðnÞ $ gðn1Þð1 2 1=KÞn12n. By (4.36) we

obtain KhðnÞ21 $ gðn1Þð1 2 1=KÞn12n, i.e.

hðnÞ #
K

gðn1Þ
1 2

1

K

� �n2n1

:

It means that h(n) tends to 0 as n!1 in the exponential convergence rate. On the other

hand, it is also easy to give an example of slower convergence rate. Consider system (4.30)

with AðnÞ :¼ diag{l1ðnÞ; . . . ; ldðnÞ}, where

ljðnÞ #
n2

ðnþ 1Þ2
; ;n $ 0; j ¼ 1; . . . ; ‘; ljðnÞ $

ðnþ 2Þ2ð2nþ 1Þ

ðnþ 1Þ2ð2nþ 3Þ
;

;n $ 0; j ¼ ‘þ 1; . . . ; d:

and suppose j f ðn; xÞj # ð1=ðnþ 2Þ2Þjxj. One can check that the linear system (4.31)

admits an (h,k)-dichotomy, where hðnÞ ¼ 1=ðnþ 1Þ2 and kðnÞ ¼ ð2nþ 3Þ=ðnþ 2Þ2.

Obviously, h tends to 0 in a slower convergence rate than exponential one and h � H.

Moreover, (S2) and (S3) are satisfied with zðnÞ U 1=ðnþ 2Þ2. Note the fact that c ¼ 1,

hðnÞ ¼ n=ðnþ 1Þ2 þ 1=ð2nþ 3Þ and hence h ¼ 9=20. By Corollary 1,

jxðnÞj #
20jxð0Þj

11ð1 þ n2Þ
þ

400jxð0Þj

121ð1 þ n2Þ

Xn21

s¼0

1

ðsþ 1Þ2

Yn21

t¼sþ1

1 þ
20

11ðtþ 1Þ2

� �( )
:

As defined in Corollary 1, 4ðnÞ ¼ 1=ðnþ 1Þ2. It is clear that
P1

n¼04ðnÞ , 1. Thus,

Corollary 1 implies that jx(n)j approaches 0 in the convergence rate of h.
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