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Multiscale characterization method for line edge roughness based
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We introduce a multiscale characterization method for line edge roughness (LER) based on
redundant second generation wavelet transform. This method involves decomposing LER
characteristics into independent bands with different spatial frequency components at different
scales, and analyzing the reconstructed signals to work out the roughness exponent, the spatial
frequency distribution characteristics, as well as the rms value. The effect of noise can be predicted
using detailed signals in the minimum space of scale. This method was applied to numerical profiles
for validation. Results show that according to the line edge profiles with similar amplitudes, the
roughness exponent R can effectively reflect the degree of irregularity of LER and intuitively
provide information on LER spatial frequency distribution. © 2010 American Institute of Physics.

[doi:10.1063/1.3492618]

I. INTRODUCTION

According to International Technology Roadmap for
Semiconductors standards for processes and measurements,
photoetching technology takes into account the entire fre-
quency spectrum containing spatial frequency components of
line edge roughness (LER)." A particular processing step
could make a difference in the distribution of LER spatial
frequency.z’3 Therefore, if the LER spatial frequency compo-
nents within a particular range can be measured and con-
trolled, more convincing measurement criteria can be ob-
tained for the study on the effect of processing steps and
conditions on LER formation. In addition, accurately and
effectively separating the spatial frequency components of
LER and adopting appropriate parameters to independently
quantize each part yields an efficient technique for examin-
ing the effect of different LER spatial frequency components
on the performance of integrated circuit (IC) devices.

The classical signal processing method based on station-
ary processes can produce only the statistical average results
of signals from the perspective of time or frequency domain
but cannot include the global and localized characteristics in
time and frequency domains. Localized characteristics usu-
ally contain negligible information on roughness. Moreover,
the analysis of power frequency density function based on
fast Fourier transform (FFT) fails to yield a comprehensive
scrutiny of the local frequency characteristics of time domain
signals, although it is able to establish a connection between
time and frequency domains. As a result, the FFT-based
method cannot effectively work out the high-frequency com-
ponents of LER, which pose a considerable effect on the
performance of IC devices.

Multiscale signal processing based on wavelet transform
not only recognizes important signal characteristics but also
generates descriptions of signals with different scales. The
second generation wavelet transform (SGWT) represents a
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breakthrough in wavelet studies in recent years in that it
accomplishes the configuration of biorthogonal wavelet in
the time domain without relying on FT, and eases the prob-
lem to be the design of predictors and updaters with different
characteristics via reasonable means. The LER characteristic
signals, therefore, can be regarded as the composition of ran-
dom noise and signals with different spatial frequencies and
amplitudes. With the multiscale analysis of SGWT, the char-
acteristic signals of LER can be decomposed into a series of
independent frequency bands with LER information on dif-
ferent spatial frequency components. By reprocessing infor-
mation extracted through performing statistical analysis in
the time domain (averages, variances, and relevance), for
example, or frequency analysis, such as power spectral den-
sity function, we can effectively prove the transient charac-
teristics inherited in the normal signals of LER and quantize
specific spatial frequency distribution by combining spatial
and frequency domain characteristics. As a result, SGWT
represents a powerful tool for performing multiscale repre-
sentation of LER characteristics with statistical, nonstation-
ary random, and multiscale natures.

Il. THEORY
A. Redundant SGWT

Frequency aliasing appears in SGWT during decompos-
ing and reconstructing. That is, the decomposed wavelet not
only results in aliasing of different frequency components in
the frequency bands but also generates new frequency com-
ponents that do not exist in the signals analyzed.4

There are two causes of the frequency aliasing. The non-
ideal cut-off frequency of the equivalent filter causes every
subband to obtain partial frequency components of its neigh-
boring subbands. Moreover, the equivalent up and down
samplings caused by splitting and composing generate fre-
quency aliasing components. For the first cause, given that
there is no filter for ideal frequency cut-off, these frequency

© 2010 American Institute of Physics
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aliasing components are unavoidable. Nevertheless because
the equivalent low performance filter (scale filter) and
equivalent high performance filter (wavelet filter) of the
SGWT have a bearing on the predictor and the updater, the
aliasing between the low performance filter and high perfor-
mance filter bands changes along with the predictor and the
updater. Elongating the predictor remarkably improves the
frequency characteristics of the wavelet filter, and reduces
the aliasing between the low-frequency and high-frequency
bands but has little effect on the improvement of frequency
domain characteristics of the scale filter. Although a longer
updater does not effectively affect the frequency characteris-
tics of the wavelet filter, it can apparently improve the fre-
quency characteristics of the scale filter and decrease the
aliasing between different frequency bands. Given the influ-
ence of boundary effect, arithmetic complexity, and compu-
tation efficiency, however, overly lengthy predictors and up-
daters should be avoided.

For the second cause, the fake frequency stemming from
the frequency aliasing can be avoided by omitting splitting
and composing during the transform action; thus, adopting a
redundant SGWT (RSGWT) inhibits frequency aliasing.
Without the splitting and composing of SGWT, the RSGWT
brings corresponding changes to its predictor and updatelr.s’6
Assuming the predictor and the updater of the RSGWT as
redundant predictor Py and redundant updater Uy, respec-
tively, the redundant predictor PIU and the redundant updater
U, at No. 2/ scale are obtained by inserting 2/~! zeros be-
tween the coefficient of the initial predictor P and the initial
updater U.

The decomposition process of RSGWT involves predict-
ing and updating as shown in Egs. (1) and (2).

dy,1(2) = a)(2) - P (2)ay(z), (1)

a1(2) = a)(z) + U (2)ds (2), (2)

where @; and d; are the approximation coefficient and detail
coefficient, respectively; and the subscript / denotes the de-
composing layer. With the abovementioned equations, the
reconstructed process of RSGWT can be directly developed
by restoring update and prediction as shown in Egs. (3) and
(4). However, because a reconstructed signal of ,(z) can be
obtained from every step, marked a;,(z) and a;,(z), the final
reconstructed signal a,(z) is the average output of the two.

a1(2) = a(2) = UG (2)dy (2), (3)
a1(2) = dpy(2) + P (2)ag(2), (4)
a)(z) = a;,(2)/2 + a;4(2)/2. (5)

Figure 1 shows the decomposition and reconstruction
process of RSGWT in the 2/ scale. Because there is no split-
ting and composition, the redundant transform can effec-
tively avoid the occurrence of frequency aliasing at each
scale in SGWT, therefore freeing every decomposed compo-
nent of the fake frequency.7

Moreover, RSGWT is translation invariant; thus, the
value of wavelet coefficients remains constant and causes
corresponding translation when the original signal is trans-
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FIG. 1. Decomposition and reconstruction steps of RSGWT.

lated. This translation invariant characteristic can prevent
amplitude vibration from occurring at the place of signal
mutation or at the edge of the image when adopting wavelet
transform. This is known as the fake Gibbs vibration.*’

B. Calculation of roughness exponent R

The dramatic variation in location and direction of local
points forming the line edges contain a number of detail
information. By applying the multi-scale analysis to break
the line edge into approximation and detail compounds, the
former can indicate the trend of the line edge profile,
whereas the latter components at different scales can be used
to evaluate LER.

The decomposing results of RSGWT at the Jth layer are
the detail coefficient d;(j=1,2,...,J) and approximation co-
efficient a;, in which the detail coefficient obtains the high-
frequency component of the original signal X, and the ap-
proximation  coefficient obtains the low-frequency
components of signals. By increasing the sampling density of
wavelet transform along the time axis, the redundant trans-
form equates the lengths of the detail coefficient and the
approximate coefficient at every scale with the length of the
original signal X so that there are adequate coefficients at
every scale to fully reflect the characteristics of signals to be
analyzed.

Reconstructing the detail coefficients and approximation
coefficients at every decomposing layer j <J can decompose
signal X into"’

J
X=2Dj+A,, (6)

J=1

where D; is the detail component of X at scale 2/~" and A} is
the approximation component of X at scale 27!

While decomposing the LER characteristics using RS-
GWT, attention should be paid on the issue of decomposition
layer. Scale is the inborn characteristic shared by many
physical phenomena, which causes the corresponding char-
acteristics to appear, disappear, and merge when the reso-
lution of signal analysis changes. Thus, the sensing of signals
at different resolutions brings about different results. When
the scale expands to a certain roughness component wave-
length, the roughness components with shorter wavelengths
do not affect the roughness, and the roughness amplitude
decreases; when the resolution becomes increasingly appar-
ent (decreased scale) the roughness components of shorter
wavelengths emerge. The relevance of changing the values
of line edge signals in the direction of line length is likely to
be evaluated through autocorrelation function of approxi-
mate components of decomposition layers. In particular, with
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FIG. 2. Correlation of LER at different scales.

the reduced resolutions (enlarged scale), the relevance de-
creases and even reaches zero when the scale equates a cer-
tain physical scale (L,) (Fig. 2).

When the decomposed layer is J, similar components
contain enough information of large fluctuating quantities.
That is, similar components have dominant spatial frequency
components of LER characteristics, while the detail compo-
nents at scale j (j=1,2.../—1) demonstrate the distribution
of high-frequency components crucial to LER characteriza-
tion. Theoretically, if the dominant spatial frequency of LER
is figr and the high-frequency restriction of measurement
resolution is f,x (=1/2 fs) (where f, is the spatial sampling
frequency), then the decomposed layer J can be established
by the formula as follows:

J= int(longmax - 1). (7)
JiER

Defining the physical scale 2/~'A(nm) at the decom-
posed level J as the characteristic length, which determines
the correlation range of LER characteristic in any position
and reflects how long the scan length should be used in LER
measurement. Therefore, the similar signal A ;=X —EJJEIDJ« at
the decomposed level J is approximate enough to represent
the original signal without higher frequency components,
which then becomes of little concern.

Defining the repeated times of quantized changes in de-
tail characteristics (such as sinusoidal structure) in unit
length as spatial frequency (per nanometer), the LER char-
acteristic signal can be considered a composition between
the periodical components of different frequencies and am-
plitudes, and random noise.’

When the main information of signals is characterized
by one or a group of characteristic quantities, it is likely to
carry out information acquisition and characteristic discrimi-
nation on signals in a more intuitive, effective, and conve-
nient manner, and provide a quantized means for evaluating
and measuring the signal state. The power of detail signals at
each scale can be applied to describe the high-frequency
components of signals. However, for the LER characteristic
signal attained from the atomic force microscopy (AFM)-
measured image of different measure samples or AFM-
measured images of the same source but of different scan
ranges, it is impossible to describe LER objectively by de-
pending on the detail signal power. This is because the fun-
damental power of the line edges attained from different
measurement conditions may differ. Because the approxi-
mate signal is the average trend of the original signals after
smoothness process at scale 2/~!, the energy of the approxi-
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mate signals are used to demonstrate the fundamental energy
of line edge, whereas the irregular degree of LER character-
istics is evaluated by comprehensive comparison taking the
power of detail and approximate signals into consideration.

As far as the reconstructed signals at different scales are
concerned, the power of detail signals and approximate sig-
nals can be calculated with Egs. (8) and (9):

Ey=2 2 ID][n], (8)
J n

% )

E,= > |A,[n]

where j=1,2...J-1 and n=0,1,...,N, N is the number of
sampling points. The ratio of the power of detail signals and
approximate signals is defined as the roughness exponent R,
expressed as

R=E/E,. (10)

Therefore, R value represents the power distribution of
detail signals versus approximate signals in the LER charac-
teristics. The bigger the R value, the more important the
high-frequency of LER is.

Considering this from another point of view, according
to the number of deconstructed layers and the spatial sam-
pling frequency, the original signal X is decomposed into
detail components at different scales and approximate com-
ponents at scale J. With the multiscale analysis based on
RSGWT, the different spatial frequency components of sig-
nals can be accurately decomposed into corresponding
scales. That is, the reconstructed detail signals and approxi-
mate signals at different scales carry different LER spatial
frequency components. By performing frequency analysis on
the reconstructed signals at each scale, the advantages of
wavelet transformation and FT are integrated, making the
LER spatial frequency analysis more comprehensive without
hiding the LER high-frequency components that are neces-
sary for IC manufacture.

The spatial frequency information of signal characteris-
tics is embodied in signals A; and D,_,, ...,D,, D, (from low
to high) that are reconstructed with wavelet coefficients. The
PSD function of every reconstructed signal is calculated at
the scale of 2/-!(j=1,2,...,J-1) to obtain the spatial fre-
quency distribution of reconstructed signals at all scales.
Compared with the direct PSD analysis of original signals,
the high-frequency information of signals is not covered and
the detail signal at all scales can clearly describe the distri-
bution characteristics of high-frequency components of sig-
nals at different scales.

As a significant parameter of LER amplitude character-
ization, rms roughness reflects the amplitude vibration of
LER characteristics against zero. The rms e of reconstructed
signals at different scales is defined as

N
ej= Ni 1% (D)) =D, ey
1 N
=/ ——> (A,()—A)>% (11)

N-135
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FIG. 3. Random line profiles with different roughness generated by numerical simulation.

From the rms value e; of reconstructed signals at each
scale, we can obtain the quantlzed amplitude values of indi-
vidual spatial frequency components at different scales.
From the deconstructed scales with larger rms value, the
physical scale of spatial frequency compounds can be ob-
tained with relatively high power. Considering the greater
effect of noise on detail signal power, the detail signals of
more noise at minimum scales have a relatively larger rms
value.

lll. RESULTS AND DISCUSSION

Two groups of line edge profiles (16/group, 32 target
lines of edge profiles in total) that meet the requirements of
the Gaussian height distribution of zero means and self simi-
larity has been generated through a numerical simulation
method,7 in which the rms roughness o, relevant length ¢,
and roughness coefficient @ (a=2-D) were chosen as the
fractal characterization parameters of line edge proﬁle.“_14
The profile value o of group 1 is invariably 5 nm, & is 20, 50,
80, and 100 nm, and « is 0.2, 0.4, 0.6, and 0.8; in group 2,
profile « is 0.4, & is 20, 50, 80, and 100 nm, and « is 2, 5, 8§,
and 10 nm. To demonstrate the significance of «, & and o,
we drew eight of the 32 profile curves (Fig. 3). As the figure
illustrates, the high-frequency distribution of LER increases
as « decreases; the waveform structural width of LER in-
creases with & and the spectrum value increases in propor-
tion to o.

Suppose the line edge profile length L=3000 nm; be-
cause the sampling point N=512, the scan interval A is 5.87
nm and the spatial sampling frequency f, is 0.2 nm~'. Cal-

culating the roughness exponent R, of the above-mentioned
two groups of profiles, the results are shown in Fig. 4.

From the figures above, parameter a shows the measure-
ment of high-frequency components of roughness; hence, the
lower the value of «, the more important the high-frequency
components of roughness are. With low-frequency compo-
nents being relatively consistent as « increases, the power of
detail signals in the multiscale analysis gradually decreases
along with the decrease in approximation signals and the
roughness exponent R; the low-frequency change in the line
edge width along with the relatively larger relevant length &
becomes more apparent, that is, as the power of approximate
signals becomes bigger, the roughness exponent R becomes
relatively smaller. As parameter o (the change degree of line
edge amplitude) increases, the power of detail signals and
approximate signal both increase; hence, roughness exponent
R does not demonstrate an obvious change trend. These two
parameters are therefore independent of each other, i.e., o is
the quantized description of general LER amplitude change,
whereas R denotes the quantized characterization of the high
frequency of LER characteristics against the power of low-
frequency components. Therefore, as far as the line edges
with similar amplitudes are concerned, roughness exponent
R effectively reflects the irregular degree of line edges, and
provides the distribution information of LER spatial frequen-
cies.

IV. SUMMARY

We introduced a multiscale characterization method for
LER based on RSGWT. This method involves decomposing
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FIG. 4. Roughness exponent R of random line edge with different roughness
generated by numerical simulation.

LER characteristics into independent bands with different
spatial frequency components at different scales, and analyz-
ing the reconstructed signals to work out the roughness ex-
ponent, the spatial frequency distribution characteristic of re-

J. Appl. Phys. 108, 084904 (2010)

constructed signals, and rms value at each scale. The effect
of noise can be predicted using detail signals in the minimum
space of scale and the LER multiscale characterization
method is applied to numerical data of random profiles. Re-
sults show that this method can directly provide the distribu-
tion information of LER spatial frequencies, effectively ana-
lyzing the LER high-frequency components that obviously
influence the performance of IC instruments, and can provide
quantized characterization of LER amplitude within the
range of specific spatial frequency. Ultimately, this method
furnishes a more comprehensive measurement basis for pro-
cess supervision and optimized design of semiconductor
manufacturing.
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