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IFPI control sums up changing nominal gains of the existing PI con-
troller by referring to fuzzy matrices, i.e. a skillfully designed look-up
table. The main advantage of the proposed technique is that it can be im-
plemented quite easily by adding a microprocessor component that car-
ries out the extra computation to the existing hardware PI controllers.

To obtain the optimal gains of controllers, the genetic algorithm, a
general optimization method, is used, and the resulting overshoot of
rotor speed and exhaust temperature under proposed fuzzy PI controller
are considerably decreased. As future work, we plan to investigate the
design of the fuzzy compensator to improve the performance of the
temperature controller.
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Application of Fast Haar Transform and Concurrent
Learning to Tool-Breakage Detection in Milling

H. K. Tönshoff, Xiaoli Li, and C. Lapp

Abstract—In this paper, an effective monitoring approach for manufac-
turing processing by combining the in-place fast Haar transform and the
concurrent learning is described and applied to detect tool flute breakage
during end milling by sensing the feed-motor current signatures. The ap-
plication procedure and the effectiveness of the proposed method have been
delineated by case studies; the results indicate that the proposed approach
possessed an excellent potential application to tool breakage detection in
milling.

Index Terms—Concurrent learning (CL), end milling, fast Haar trans-
form (FHT), finite-impulse response (FIR) median hybrid filters, recursive,
tool-flute breakage.

I. INTRODUCTION

Immediate response to tool failure during end milling may prevent
the workpiece and machine tools from excessive damage. The most
frequent approach taken to end the milling process monitoring is to at-
tach sensors to the machine or process and then monitor the signals
obtained from these sensors. Research to date has presented investiga-
tion on cutting force, acoustic emission (AE), vibration/acceleration,
and motor current/power [1] to detect tool failure during end milling.
In this paper, we proposed a new approach to monitor tool failure, es-
pecially focused on tool flute breakage monitoring during end milling.

Tool-flute-breakage detection based on cutting force has been done
in several research studies [2]. Cutting force is usually measured by
using a dynamometer mounted on machining worktable, or mounted
on the tool holder. However, the fixation of dynamometer and its cost
are two main problems for the application of the method. AE is an-
other important method. It was very successfully applied to tool condi-
tion monitoring in signal-point cutting, like turning operations [3]–[5].
More details can be found in [14]. Its application to end milling, how-
ever, involves some disadvantages, such as the sensitivity for cutting
conditions, the fixation of the AE sensor and the complexity of AE
signal processing. Vibration analysis is also a valuable method, which
was widely used for tool-condition monitoring, especially for tool-wear
monitoring and tool-failure prediction [6]. However, in the context of
tool-condition monitoring in end milling, its application is somewhat
limited by the nature of an end milling process as well as AE-based
method.

Spindle or feed-motor current-based tool-breakage monitoring sys-
tems have been presented in the end milling operations to overcome
the disadvantages of cutting force and AE/vibration-based methods,
described in [7]–[10]. To monitor tool failure successfully through the
motor current signals, an appropriate signal-processing algorithm is
very important because the motor current signals do not indicate more
obviously cutting tool condition than cutting force, AE and vibration
signals. To meet the need of tool breakage monitoring by using motor-
current, we apply recursive in-place growing FIR-median hybrid filters,
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in-place fast Haar transform (IP_FHT) and concurrent learning (CL) to
construct a new algorithm for detecting tool flute breakage during end
milling.

II. M ETHODS

A. IP_FHT

Haar basic transformation expresses the approximating functionf̂
with wavelets by replacing an adjacent pair of steps via one wider step
and one wavelet. The wider step measures the average of the initial pair
of steps, while the wavelet formed by two alternating steps, measures
the difference of the initial pair of steps. The shifted and dilated wavelet
 (u;w) is defined by the midpointv = (u + w)=2

 [u;w) =
1; if u � r < v

�1; if v � r < w:
(1)

Again, the sum and the difference of the narrower steps give a wider
step and a wavelet

'[u;w) = '[u;v) + '[v;w)

 [u;w) = '[u;v) � '[v;w)
(2)

yields

'[u;v) =
1
2
'[u;w) +  [u;w)

'[v;w) =
1
2
'[u;w) �  [u;w) :

(3)

The shifted and dilated basic transform described are applied to
all the consecutive pairs of signals. To analyze a signal in terms of
wavelets, the fast Haar wavelet transform begins with the initialization
of an array with2n entries, and then proceeds withn iterations of the
baxsic transform. The procedure of fast Haar wavelet transform is as
follows:

1) Initialization. Initialization consists of establishing a one-dimen-

sional array
*
a

(n)

*
a

(n)
= a

(n)
0 ; . . . ; a

(n)
j ; . . . ; a

(n)
2 �1 =(S0; . . . ; Sj ; . . . ; S2 �1)

with a total number of sample-value integral power of two2n, as
indicated by thesuperscript(n).

2) Sweep. Thelth sweep of the basic transform begins with an array
of 2n�(l�1) values
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and applies the basic transform to each pair (a
(n�[l�1])
2k ,

a
(n�[l�1])
2k+1 ), which gives two new wavelet coefficients
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These2(n�l) pairs of new coefficients represent the result of thelth
sweep, a result can be reassembled into two arrays

*
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(n�l)
= a

(n�l)
0 ; . . . ; a

(n�l)

2 �1
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Therefore, the presentation of all the steps of the fast Haar wavelet
transform requires additional arrays at each sweep, and it assumes that
the whole sample is known at the start of the algorithm. However, some
applications require real-time processing as the signal proceeds, and

do not allow sufficient space for additional arrays at each sweep. The
IP_FHT [11] is able to solve the two problems, lack of space, or time.
For each pair [a(n�[l�1])2k anda(n�[l�1])2k+1 ] in the in-place fast wavelet
transform, instead of placing its results in two additional arrays, thelth
sweep of the in-place transform merely replaces the pair [a

(n�[l�1])
2k

anda(n�[l�1])2k+1 ] by the new entries [a(n�l)k andc(n�l)k ].
Clearly, the IP_FHT differs from the FHT only in its indexing

scheme, but it does not require additional arrays at each sweep; so,
the lack of space and time problems have a solution in the in-place
algorithm.

B. CL

The CL approach is useful for data processing because it can continu-
ously learn without interruption, and it can calculate input-output func-
tions at the same time [12]. If a fixed numbern of samples values is con-
sidered, which are represented as an arrayX,X = [x1; x2; . . . ; xn]. A
standard statistical approach is used to compute the mean and variance
of the samples as follows:

� =
1

wi

n

i=1

wixi and v =
1

wi

n

i=1

wi(xi � �)2 (4)

wherewi is weight value for each set of measurement. CL formulas
are based on recursive updates of mean and variables of the previous
samples for one univariate case. The CL mean and variance are updated
at each pointn(n = 1; 2; . . .) as follows:

�(n) =
(l(n)x(n) + �(n� 1))

(1 + l(n))
(5)

and

�(n) =
l(n) (x(n)� x(n))2 + v(n� 1)

(1 + l(n))
(6)

wherel(n) andx(n) are called the current learning weight and pre-
dicted value, respectively

l(n) =
w(n)
n�1
i=1 w(i)

and x(n) = �(n� 1): (7)

Therefore, the tolerance band function is computed by

(x(n); x(n)) = x(n)� c �(n); x(n) + c
p
�(n) (8)

The tolerance band will be used as the threshold for detecting the tool
breakage during end milling. Once the monitoring feature is outside of
the tolerance band, the system is considered to enter an abnormal state.
Advantages of CL methods are: 1) the CL can adjust their prediction
and monitoring equations in real time. Therefore, they can be adapted
to changing conditions much more quickly than off-line methods, and
they require much less data effort than off-line analysis; 2) CL can as-
sign differential learning weights in order to alter the impact of recently
gathered data on learning and monitoring in comparison to the older
data; 3) CL does not require specialized preprogramming and keeps up
with data arriving at very high rates.

III. T OOL-BREAKAGE MONITORING DURING END MILLING

An experiment was performed on a CNC Vertical Machining Centre
(Mazak AJV 25/405) with the ac permanent magnet synchronous mo-
tors. The experimental set up can be found in [13]. The test was per-
formed under dry conditions in down milling mode, the sampling fre-
quency was set to 1KHz. Additionally, the maximum tooth frequency
used in the tests should be less than 67 Hz, and is determined by the
bandwidth of the servo system.
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Fig. 1. (a) Feed-motor current signals from normal tool condition to tool flute
breakage in end milling. (b) Preprocessed signal. (c) Signal-attenuated noise. (d)
Coefficienta of wavelet transform. (e) Final monitoring features and the float
thresholds. Tool/workpiece material: HSS/45# steel; spindle speed: 600 r/m,
radial depth of cut: 2 mm, axial depth of cut: 4 mm, feed speed: 120 mm/min;
cutter diameter: 8 mm, cutter flute: 4.

Fig. 1(a) displays a segmentation of a feed-motor current signal that
contains a tool flute breakage during end milling, noted that the tool
breakage occurred without artificial action. This breakage appears at
about 3 s in Fig. 1(a). To eliminate the effects of unexpected noise, a
recursive in place growing finite impulse response (FIR) median hy-
brid (RIPG_FMH) filter [14] is used to process the motor current sig-
nals before it is applied to detect the tool flute breakage during end
milling. The (RIPG_FMH) filter with three-level median operation and
increasing averaging substructures of lengths 1, 2, and 3 is designed.
The filter is applied to the signals in Fig. 1(a), the result is shown in
Fig. 1(b). The noise attenuated is shown in Fig. 1(c). Fig. 1 shows that
the filter can preserve the shape of the original motor current signal
and attenuate the noise involved in the original signal in real time, the
mean of signal-to-noise (S/N) ratio is 24.8 dB. As a result, the prepro-

Fig. 2. Illustration of a complete test. Tool/workpiece material: HSS/45# steel;
spindle speed: 900 r/m, radial depth of cut: 2 mm, axial depth of cut: 4 mm, feed
speed: 100 mm/min; cutter diameter: 6 mm, cutter flute: 4.

cessed signal is very useful for further extraction the monitoring fea-
tures form the motor current signal. In addition, the in-place growing
algorithm provides a much shorter signal delay than the other filters
[14]. Then, the Haar transform decomposes the feed-motor current sig-
nals provided in Fig. 1(b). We found that the wavelet coefficientsa33

was much better to indicate the changes of the system, and it is shown
in Fig. 1(d) It can be seen that the amplitude of the coefficient alternates
at a higher range when tool flute breakage occurs after 3 seconds.

For further extracting the monitoring features from the wavelet co-
efficienta33, a simple high-pass and rms filter are designed to further
treat with the signals. The high-pass filter used is a simple discrete
second derivative approximation, and the outputz(n) is given by

z(n) = x(n� 1)� 2x(n) + x(n+ 1) (9)

rms filter is used to envelop thez(n) signal, and output isw(n). This
can be achieved by a local rms operator applied onz(n) over a sliding
window of length2N + 1, i.e,

w(n) =
1

2N + 1

N

i=�N

z(n+ i)2 (10)

where the length2N + 1 of the averaging window is not very critical,
but it should be large enough to include at least one cycle of the im-
pulsive oscillations (such asN = 5 � 7). For the mentioned example,
N = 5 is selected. The resulting signal extracted from feed-motor cur-
rent under application of the described filters is shown in Fig. 1(e). The
change due to tool flute breakage is remarkable between second 3 and
4, clearly.

An appropriate threshold to detect the tool-flute breakage based on
the monitored feature in real time has to be set. Considering the ef-
fects of changes of cutting conditions, a float threshold based on CL
is developed. This is made in order to detect the flute breakage based
on the monitoring feature series during end milling. According to the
description of CL, the tolerance band can be computed in real time
without off-line data analysis. The upper limit of tolerance band can
be taken as a float threshold for detecting the tool condition in real
time during end milling. In this paper, the sample-based fact weights
arewn = [1 1 1 2 2 2 4 4 4] the learning weight can be computed by
(18). The float threshold based on CL is shown in Fig. 1(e). As a re-
sult, the tool flute breakage can be effectively detected by comparing
the monitoring feeatures with the thresholds in real time. Since many
changes occur over the life of the tool, a complete test and how the
monitoring worked over the entire test is shown Fig. 2. Fig. 2(a) plots
the feed motor current, including motor run, cutting without load, entry
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Fig. 3. Cut test in end milling. Entry and exit cut: tool/workpiece material:
HSS=45 steel; spindle speed: 900 r/m, radial depth of cut: 2 mm, axial depth
of cut: 4 mm, feed speed: 120 mm/min; cutter diameter: 8 mm, cutter flute: (a)
Processed result of entry cut. (b) Processed result of exit cut. Flute breakage on
entry cut /exit cut: spindle speed: 600 r/m, radial depth of cut: 4 mm, axial depth
of cut: 4 mm, feed speed: 90 mm/min; cutter diameter: 6 mm, cutter flute: 4. (c)
Processed results of one flute breakage during entry cut.(d) Processed results of
two flutes breakage during exit cut.

cut, cutting, tool breakage (41.5 s), exit cut, and finish cutting. Fig. 2(b)
shows the feature values and threshold values, the tool breakage can
successfully be detected at the second 41–42, and the method does not
provide false indications of failure.

To validate this approach, we implemented the detection algorithm
to some special experiments as well. These examples include the
entry/exit cuts, flute breakage on entry/exit cut and the effects of
cutting parameters. The details of these experiments can be found in
[13].

For the entry/exit cut test, Fig. 3(a) and (b) shows a plot of the pro-
cessed feed-motor current signals corresponding to the float thresh-
olds, respectively. As can be seen from the figures, all of the processed
feed-motor current signals are well under the detection limits, thus
demonstrating therobustnessof the algorithm to entry, exit, and runout
in milling. The flute breakage of some cutters in end milling usually
occours on entry / exit cut. Fig. 3(c) is a plot of the detection results
when cutter entries in the workpeice. Fig. 3(d) is a plot of the dection
of cutter broken upon exit from the workpeice, two flutes of the cutting
tools are broken for the event. For the two cases, the flute breakge can
been sucsessfully detected by the detection algorithm through the com-

Fig. 4. Feed-motor current signals when cutting irregular workpiece.
Tool/workpiece material:HSS=45 steel; spindle speed: 900 r/m, radial depth
of cut: 4 mm, axial depth of cut: 0–4 mm, feed speed of cut: 120 mm/min;
cutter diameter: 6 mm, cutter flute: 4. (a) Workpiece. (b) Feed-motor current
signal. (c) Processed results of the feed-motor current.

parision between the processed current signals and the float threshold.
The final tests are to verify the insensitivity of the algorithm of flute
breakage detection to the changes of cutting parameters for end milli
ng. The typical workpieces, which results in changes of axial depth of
cut, are shown in Fig. 4(a). The processed result of the feed-motor cur-
rent is shown in Fig. 4(b) correspondingly. From the result, the moni-
toring feature of the feed-motor current is insensitive to the change of
cutting parameters during end milling.

The results of these examples showed that the detection algorithm
could be effective to these different cases. Additionally, although all
experiments were limited on end milling operations, we believe that
the approach can be applied to other operation. Especially, the IP_FHT
and the threshold settings based on the CL can be implemented for
other monitoring systems.

IV. CONCLUSIONS

In this paper, a method is presented, which integrates the
RIPG-FMH, the IP_FHT, and the CL to form a new algorithm for
detection of the tool flute breakage during end milling by using
the feed-motor current signals. The effectiveness of the proposed
monitoring approach has been demonstrated in case studies during
end milling.
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Nonlinear Coupling Control Laws for an Underactuated
Overhead Crane System

Y. Fang, W. E. Dixon, D. M. Dawson, and E. Zergeroglu

Abstract—In this paper, we consider the regulation control problem for
an underactuated overhead crane system. Motivated by recent passivity-
based controllers for underactuated systems, we design several controllers
that asymptotically regulate the planar gantry position and the payload
angle. Specifically, utilizing LaSalle’s invariant set theorem, we first illus-
trate how a simple proportional–derivative (PD) controller can be utilized
to asymptotically regulate the overhead crane system. Motivated by the de-
sire to achieve improved transient performance, we then present two non-
linear controllers that increase the coupling between the planar gantry po-
sition and the payload angle. Experimental results are provided to illustrate
the improved performance of the nonlinear controllers over the simple PD
controller.

Index Terms—Energy damping, Lyapunov methods, nonlinear control,
overhead crane.

I. INTRODUCTION

Precise payload positioning by an overhead crane (especially when
performed by an operator using only visual feedback to position the
payload) is difficult due to the fact that the payload can exhibit a
pendulum-like swinging motion. Motivated by the desire to achieve
fast and precise payload positioning while mitigating performance
and safety concerns associated with the swinging motion, several
researchers have developed various controllers for overhead crane
systems. For example, Yuet al. [29] utilized a time-scale separation
approach to control an overhead crane system; however, an approx-
imate linearized model of the crane was utilized to facilitate the
construction of the error systems. In [27], Yashidaet al. proposed
a saturating control law based on a guaranteed cost control method
for a linearized version of the crane system dynamics. Martindaleet
al. [18] utilized an approximate crane model to develop exact model
knowledge and adaptive controllers while Butleret al. [2] exploited a
modal decomposition technique to develop an adaptive controller. In
[3], Chung and Hauser designed a nonlinear controller for regulating
the swinging energy of the payload.

Several researchers have also examined the control problem for over-
head crane systems with additional degree of freedom (DOF). Specif-
ically, Moustafa and Ebeid [19] derived the nonlinear dynamic model
for an overhead crane and then utilized a standard linear feedback con-
troller based on a linearized state space model. In [20], Noakes and
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