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Abstract

For the loop algebras in the form of non-square matrices, their commuting operations can be used to set up linear
isospectral problems. In order to look for the Hamiltonian structures of the corresponding integrable evolution hier-
archies of equations, an extended trace identity is obtained by means of commutators, which undoes the constraint
on the known trace identity proposed by Tu [Guizhang Tu. The trace identity, a powerful tool for constructing the
Hamiltonian structure of integrable systems. J Math Phys 1989;30(2):330–8], and has an obvious simplicity comparing
with the quadratic-form identity given by Guo and Zhang [Fukui Guo, Yufeng Zhang. The quadratic-form identity for
constructing the Hamiltonian structure of integrable systems. J Phys A 2005;38:8537–48] with the aspect of
applications.
� 2006 Elsevier Ltd. All rights reserved.
1. Introduction

In the section, we briefly recall the applications of the loop algebra eA1. The necessity of improving the trace identity
is proposed. Researching for integrable systems has been an important aspect in soliton theory [1]. Tu Guizhang [2]
constructed the 2 · 2 loop algebra eA1:
0960-0
doi:10.

* Co
E-m
eA1 ¼ fA ¼ ðaijðkÞÞ2�2; aijðkÞ ¼ aijk
m; m ¼ 0;�1;�2; . . . ; trðAÞ ¼ 0g
from which the isospectral Lax pairs could be established to further generate the zero curvature equation. It followed that
the hierarchies of soliton equations were obtained, such as the AKNS hierarchy, the TA hierarchy, the BPT hierarchy
and so on. Then their Hamiltonian structures were worked out by employing the trace identity [2,3]. In Refs. [4–6], a type
of loop algebra eG0 once was proposed which was used to get the expanding integrable systems, i.e., integrable couplings,
of the AKNS hierarchy, the KN hierarchy, etc. However, their Hamiltonian structures could not be obtained by using
the trace identity [2], it could not be reached that whether they were Liouville integrable or not. In another hand, a simple
method for obtaining multi-component Lax integrable systems was presented with the help of the loop algebra eG1 in the

vector form in Ref. [5]. Since eG1 is not presented in the square-matrix form, their Hamiltonian structures could not be
obtained by use of the trace identity as well.
779/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.
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In this paper, Section 2 presents two forms of the loop algebras and the trace identity as well as the quadratic-form
identity. In Section 3, a kind of loop algebra eG presented by the column vector form and a commutator are constructed,
respectively. In Section 4, an extended trace identity under the framework of the loop algebra eG is constructed. As its
application, the Hamiltonian structure of an integrable system is exhibited.
2. Two types of loop algebras

We present two forms of the loop algebras. One is the square-matrix form eAN�1, another is the s-dimensional column
vector form eG. First, we introduce the loop algebra eAN�1 and the resulting Lax pairs. eAN�1 refers to
eAN�1 ¼ fA ¼ ðaijðkÞÞN�N ; aijk

m; m ¼ 0;�1;�2; . . . ; trðAÞ ¼ 0g; ð1Þ
where the commuting operation is defined as ½A;B� ¼ AB� BA; A;B 2 eAN�1. The linear isospectral problem related toeAN�1 is given by
wx ¼ Uw; U ¼ e0 þ
Pp
i¼1

uiei; kt ¼ 0; w ¼ ðw1; . . . ;wN Þ
T
;

wt ¼ V w; fe0; . . . ; epg � eAN�1; u ¼ ðu1; . . . ; upÞT

8><>: ð2Þ
whose compatibility condition is the zero curvature equation
U t � V x þ ½U ; V � ¼ 0: ð3Þ
The corresponding stationary zero curvature equation is that
V x ¼ ½U ; V �: ð4Þ
If the rank numbers of k and ui(1 6 i 6 p) can be defined, denoted by rank(k), rank (ui), respectively, such that
ranke0 = rankuiei = a,1 6 i 6 p, then U is called the same-rank, noted by
rankðUÞ ¼ rankð@Þ ¼ a; ð5Þ
where @ ¼ @
@x. Take a solution of Eq. (4) to be V ¼

P
mP0V mk�m, if rank(Vm) can be defined such that

rank(Vmk�m) = g = const., m P 0, then we call V the same-rank, denoted by rank(V) = g. Let two same-rank solutions
V1 and V2 of Eq. (4) be linear dependent, i.e.
V 1 ¼ cV 2; c ¼ const:; ð6Þ
then we have

Theorem 1 ([1–3]). If the relations (5) and (6) all hold, then
d
dui
hV ;U ki ¼ k�c o

ok
kc V ;

oU
oui

� �� �
; ð7Þ
where V is a same-rank solution to Eq. (4), c ¼ const:; hA;Bi ¼ trðABÞ; A;B 2 eAN�1, the identity (7) is called the trace

identity, which has been proved in Ref. [1].

Although we call the power series V ¼
P

mP0V mk�m the solution to Eq. (4), it is only required that the series makes
the coefficients of the same-order powers of k equal. Only part sum can be used in the integrable systems derived from
Eq. (3) and some of the terms in V are required when using Eq. (7) to produce Hamiltonian structures. These facts are
independent of the convergence or dispersion of V. That is why we do not discuss the convergence of V. The loop alge-
bra eA1 is often used for convenience, that is, take eAN�1 ¼ eA1 in Eqs. (2) and (7).

Let G be a s-dimensional Lie algebra with basis e1, e2, . . ., es. Take a ¼
Ps

k¼1akek ; b ¼
Ps

k¼1bkek 2 G. The commutator
in G is given by c ¼ ½a; b� ¼

Ps
k¼1ckek . The loop algebra eG generated by G has the basis ek(m) = ekk

m, 1 6 k 6 s,m 2 Z(a
integer set), the commuting operations read [ek(m), ej(n)] = [ek,ej]k

m+n. The column vector form of eG is given by
eG ¼ fa ¼ ða1; . . . ; asÞT; ak ¼
X

m

ak;mkm; ½a; b� ¼ c ¼ ðc1; . . . ; csÞTg: ð8Þ
The linear isospectral Lax pairs by using eG can be taken as
w@ ¼ ½U ;w�; U ; V ;w 2 eG;
wt ¼ ½V ;w�; kt ¼ 0

(
ð9Þ
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where @ ¼
Pn

k¼1ak
o

oxk
, ak are arbitrary constants, wo denotes the derivative sum of w with aspect to xk (k = 1,2, . . .,n).

The compatibility condition of Eq. (9) is the zero curvature equation
U t � V o þ ½U ; V � ¼ 0 ð10Þ
whose resulting stationary auxiliary equation reads
V o ¼ ½U ; V �: ð11Þ
Take U ¼ Uðk; uÞ ¼ U 0 þ
Pp

i¼1uiU i;U i 2 eG; u ¼ ðu1; . . . ; upÞT, assume rankU0 = rank(uiUi) = a,1 6 i 6 p, then U is
called the same-rank, denoted by
rankðUÞ ¼ rankð@Þ ¼ rank
o

oxk

� �
¼ a; 1 6 k 6 n: ð12Þ
Let two same-rank solutions V1 and V2 satisfy the relation (6), then we see that

Theorem 2 [7] the quadratic-form identity. Let Eq. (12) hold. Two same-rank solutions of Eq. (11) possess Eq. (6). Set

½a; b�T ¼ aTRðbÞ; a; b 2 eG, the constant matrix F = (fij)s·s meets
F ¼ F T;RðbÞF ¼ �ðRðbÞF ÞT: ð13Þ
Define a quadratic functional as follows:
fa; bg ¼ aTFb; 8a; b 2 eG; ð14Þ
then the following identity holds
d
dui
fV ;U kg ¼ k�c o

ok
kc V ;

oU
oui

� �� �
; i ¼ 1; . . . ; p ð15Þ
where c is a constant to be determined, V is a same-rank solution of Eq. (11). Eq. (15) is called the quadratic-form identity.

The theorem has been proved in Ref. [7]. Eqs. (9) and (15) eliminate the constraint on Eqs. (2) and (7). When eG ¼ eA1, Eq.
(15) is completely consistent to Eq. (7).
3. Commutator

In this section, a new commutator is defined such that Vs (below) becomes a Lie algebra. Let eG be the loop algebra
(8),
½a; b� ¼ QðaÞb; 8a; b 2 eG; ð16Þ
since [a, b] is known, Q(a) is a determined s · s matrix. In terms of the bi-linearity of [a, b], Q is a linear operator in a.
From [a, b] = �[b, a], we see that
QðaÞb ¼ �QðbÞa; a; b 2 eG: ð17Þ
It is easy to find that Q has the relation with R(a) presented in Theorem 2
QðaÞ ¼ �RTðaÞ; a 2 eG: ð18Þ
Definition. Let Vs be a s-dimensional linear space, Ms be a matrix set. Q is an operator from Vs to Ms, and Q(a) 2Ms,
a 2 Vs. If Q is linear and meets
QðQðaÞbÞ ¼ ½QðaÞ;QðbÞ� ¼ QðaÞQðbÞ � QðbÞQðaÞ; 8a; b 2 V s; ð19Þ
then Q is called the commutator in Vs. All the Q’s in Vs are regarded as a set, denoted by K(Vs, Ms).

Theorem 3. Let Vs be a s-dimensional linear space, a,b 2 Vs, then Vs is a Lie algebra with the commuting operation if and

only if there exists Q 2 K(Vs, Ms) to satisfy
½a; b� ¼ QðaÞb: ð20Þ
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Proof. Let Vs be a Lie algebra together with the commutative operation [a, b] = Q(a)b, then Q is a linear operator from
Vs to Ms and satisfies Eq. (17). Consider the Jacobi identity
½a; ½b; c�� þ ½b; ½c; a�½c; ½a; b�� ¼ QðaÞQðbÞc� QðbÞQðaÞc� Qð½a; b�Þc ¼ 0; a; b; c 2 V s:
Since c is arbitrary, then Q([a,b]) = Q(a)Q(b) � Q(b)Q(a) = [Q(a),Q(b)], a,b 2 Vs. In terms of Q([a,b]) = Q(Q(a)b), (4)
indeed holds, Q 2 K(Vs, Ms).

On the contrary, let Q 2 K(Vs, Ms), "a,b 2 Vs. Regard [a, b] = Q(a)b as a commutator in Vs. Due to c being linear,
[a, b] is bilinear. From (19), Q(Q(a)b) = �Q(Q(b)a), thus, Q(a)b = �Q(b)a due to Q being a linear operator, which
implies that [a, b] is anti-symmetric. Again by using (19), [a, b] = Q(a)b satisfies the Jacobi identity, i.e., the
commutative operation [a, b] = Q(a)b makes Vs become a Lie algebra.

The proof is completed. h

Corollary. Let
QðaÞ ¼

a1a2 þ a2a3 �a1a1 þ a3a3 �a2a1 � a3a2

b1a2 þ b2a3 �b1a1 þ b3a3 �b2a1 � b3a2

c1a2 þ c2a3 �c1a1 þ c3a3 �c2a1 � c3a2

0BB@
1CCA; ð21Þ
where a = (a1, a2, it a3)T, ai,bi,ci are all constants, then Q 2 K(Vs,Ms) if and only if
a3b1 � a1b3 ¼ a2c3 � a3c2;

a1b2 � a2b1 ¼ b2c3 � b3c2;

a1c2 � a2c1 ¼ b3c1 � b1c3:

8>><>>: ð22Þ
Example. Vs = R3 = {a = a1i + a2j + a3k = (a1, a2, a3)T}, the vector product of a and b in R3 presents
a� b ¼ det

i j k

a1 a2 a3

b1 b2 b3

0BB@
1CCA ¼ ða2b3 � a3b2; a3b1 � a1b3; a1b2 � a2b1ÞT ¼

0 �a3 a2

a3 0 �a1

�a2 a1 0

0BB@
1CCA

b1

b2

b3

0BB@
1CCA ¼ QðaÞb:

ð23Þ
Since Q meets Eq. (22), R3 is a Lie algebra along with the commutative operation [a, b] = a · b.
4. Extended trace identity

In the section, the major result, i.e. the extended trace identity is presented. Then an application example is given.
Take the linear isospectral problem to be (9), which can be written as by means of Q in eG
wo ¼ QðUÞw;
wt ¼ QðV Þw;

�
ð24Þ
whose corresponding zero curvature equation is
QðU tÞ � QðV oÞ þ ½QðUÞ;QðV Þ� ¼ 0: ð25Þ
The stationary zero curvature equation reads
QðV oÞ ¼ ½QðUÞ;QðV Þ�: ð26Þ
According to the linearity of Q and Eq. (19), Eq. (25) is equivalent to Eq. (10), and Eq. (26) equivalent to Eq. (11). In
terms of the linearity of Q, we have rank(Q(U)) = rank(U), rank(Q(V)) = rank(V). V1 = cV2 is equivalent to
QðV 1Þ ¼ cQðV 2Þ: ð27Þ
Since Eqs. (24) and (2) have the common structure, according to the Theorem 1, we conclude that
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Theorem 4. Let the relations (5) and (6) hold, then the identity holds as follows:
d
dui
hQðV Þ;QðU kÞi ¼ k�c o

ok
kc QðV Þ;Q oU

oui

� �� �� �
; i ¼ 1; . . . ; p ð28Þ
where c is a constant to be determined, V is a same-rank solution to Eq. (11), Q is a commutator in eG. We call Eq. (28) the

extended trace identity. The proof of the theorem is similar to Theorem 1. Here we omit it. Theorem 1 only suits for the

loop algebra eAN�1 in the square-matrix forms, while Theorem 4 eliminates the constraint.

From the above discussions, the steps to generate the Hamiltonian integrable hierarchies of equations are as follows:

(1) Solving Eq. (11), the part sum of V, i.e. V can be expressed as the form V ¼
Pn

m¼0ðam1; am2; . . . ; amsÞTkn�m, consists
of the polynomial V(n) in k. The zero curvature equation
U t � V ðnÞo þ ½U ; V ðnÞ� ¼ 0
determines the integrable hierarchy
utn ¼ KnðuÞ:
(2) By making use of Theorem 4 to obtain J and the Hamiltonian functions Hn, the Hamiltonian structure of the
obtained integrable hierarchy is given by
utn ¼ KnðuÞ ¼ J
dH n

du
:

Comparing Theorem 4 and Theorem 2, we find that Theorem 4 promotes computational simplicity. But there are some
examples to imply that Theorem 4 cannot be applied instead of Theorem 2. That is to say, the two theorems play their
own roles in generating Hamiltonian structures. Applying Theorem 4 or Theorem 2 can give rise to the Hamiltonian
structures of the integrable hierarchies presented in [4–7]:

For eA1 ¼ A ¼ a1 a2

a3 �a1

� �
¼ a1hþ a2eþ a3f ¼ ða1; a2; a3ÞT

� �
,0 1
QðaÞ ¼
0 �a3 a2

�2a2 2a1 0

2a3 0 �2a1

B@ CA: ð29Þ
If let
A ¼
a1 a2

a3 �a1

� �
$ a ¼ ða1; a2; a3ÞT;

B ¼
b1 b2

b3 �b1

� �
$ b ¼ ðb1; b2; b3ÞT;

hQðaÞ;QðbÞi ¼ 4hA;Bi;

8>>>>><>>>>>:
ð30Þ
then Theorem 4 and Theorem 2 play the same roles when using eA1.
In the following, we take an example to illustrate the applications of the extended trace identity.

Example. Take V3 = R3, U and V in Eq. (9) are presented:
U ¼ ðk; q; rÞT; V ¼
X
mP0

V mk�m ¼
X
mP0

ðV 1m; V 2m; V 3mÞTk�m:
Solving Eq. (11) yields
V 1mo ¼ qV 3m � rV 2m;

V 2;mþ1 ¼ qV 1m þ V 3mo;

V 3;mþ1 ¼ rV 1m � V 2mo;

V 2;0 ¼ V 3;0 ¼ 0; V 1;0 ¼ b ¼ const:;

rankðkÞ ¼ rankðqÞ ¼ rankðrÞ ¼ rankðUÞ ¼ rankðoÞ ¼ 1;

rankðVmÞ ¼ m; rankðVÞ ¼ 0:

8>>>>>>>>><>>>>>>>>>:
ð31Þ
Denote V ðnÞ ¼
Pn

m¼0V mkn�m; V ðnÞ� ¼ knV � V ðnÞ, then
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U t � V ðnÞo þ ½U ; V ðnÞ� ¼ 0
determines the integrable hierarchy
ut ¼
q

r

� �
t

¼
�V 3;nþ1

V 2;nþ1

� �
: ð32Þ
Comparing the coefficients of k�n�1 in Eq. (28) gives
d
dui
hQðV nþ1Þ;QðU kÞi ¼ ð�nþ cÞ QðV nÞ;Q

oU
oui

� �� �
;

where u1 = q, u2 = r. Thus,
d
du
ð�2V 1;nþ1Þ ¼ ð�nþ cÞ

�2V 2n

2V 3n

� �
:

Taking n = 1 gives c = 0. Thus, the system (32) can be written as:
ut ¼
0 �1

1 0

� �
V 2;nþ1

V 3;nþ1

� �
¼ J

V 2;nþ1

V 3;nþ1

� �
¼ J dHnþ1

du ;

H nþ1 ¼ � V 1;nþ2

nþ1
; n P 0:

8><>: ð33Þ
From Eq. (31), the recurrence operator L satisfies that
V 2;nþ1

V 3;nþ1

� �
¼ L

V 2n

V 3n

� �
; L ¼ �q@�1r @ þ q@�1q

�@ � r@�1r r@�1q

 !
:

Therefore, the hierarchy (33) can be written as:
ut ¼ JLn bq

br

� �
¼ J

dH nþ1

du
; n P 0: ð34Þ
It is easy to verify that JL = L*J. Hence, the Hamiltonian functions of the hierarchy (34) are involutive to each other,
and each Hamiltonian function is its common conserved density. Thus, the hierarchy (34) is a (1 + n)-dimensional Liou-
ville integrable hierarchy of equations. Because the AKNS hierarchy was derived from the loop algebra eA1, while the
hierarchy (34) is obtained by using the loop algebra eG presented in the paper, they have various commuting operations.
Hence, they have various recurrence operators. In terms of Ref. [2], the recurrence operator of the AKNS hierarchy is

presented as L ¼
o
2
� ro�1q ro�1r
�qo�1q � o

2
þ qo�1r

 !
, which is different from that in the hierarchy (34).

In this paper, we defined a commutator and constructed the extended trace identity, which is a powerful tool for
generating Hamiltonian structures of the soliton equations. As its application, we obtained the Hamiltonian structure
of the system (34) by using the Lie algebra V3. We can construct various higher-dimensional Lie algebras G to generate
more interesting integrable hierarchies and the resulting Hamiltonian structures by using the extended trace identity.
Therefore, the method proposed in this paper has extensive applications.
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