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In this paper, a kind of p-type multigrid (MG) method is applied to solve the large sparse linear systems
arising from the application of hierarchical tangential vector finite element method (TVFEM) for the
analysis of electromagnetic devices. Several waveguide problems are analyzed and our numerical results
show that the p-type MG method can greatly save iterations and CPU time when compared with the
preconditioned conjugate gradient iterative methods.
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1. Introduction

The finite element methods have been applied to the analysis of
problems in electromagnetics for more than 30 years. It can com-
bine geometrical adaptability and material generality for modeling
arbitrary geometry and materials of any composition. As a result, a
large number of research papers can be found in literature [1--3].
In recent years, the tangential vector finite element (TVFE) method
[1] has gained more and more importance in the analysis of elec-
tromagnetic problems. This is due to the TVFE method (TVFEM) has
many advantages compared with the traditional node-based finite
elements. With the TVFEM, enforce continuity of vector components
across element interfaces is automatically satisfied, Dirichlet bound-
ary conditions can be easily enforced and spurious modes can be
eliminated. Because of these special features, vector elements seem
to be ideally suited for the analysis of vector partial differential equa-
tions (PDEs) in electromagnetics.

Themost commonly used TVFEM is the H0(curl) TVFEM [4], which
provides a constant value along each edge. As a result, it is often
called the edge-based TVFEM. For electric-large and complex prob-
lems, the application of H0(curl) TVFEM will lead to a large sparse
linear system that is difficult to solve with iterative methods. The
slow convergence of iterative solvers is mainly caused from the ill-
conditioning of the stiff matrix due to the over-sampling of the low
frequency physical modes [5]. The ill-conditioning of the stiff matrix
makes any conventional iterative method unpredictable. Taking the
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most powerful incomplete Cholesky preconditioned conjugate gra-
dient method (ICCG) as an example, breakdown may occur during
the incomplete IC factorization process due to the ill-conditioning
[6]. Thus, more efficient iterative solvers should be developed in the
analysis of microwave problems with the TVFEM.

In recent years, the multigrid-type (MG) methods have gained
much attention in solving large sparse linear systems resulting from
the discretization of PDEs [7]. The basic idea of this kind of methods
is: slow convergence of iterative solvers is mainly caused by the low
frequency component of the solution. If the problem was discretized
by different levels of meshes with different densities, the low fre-
quency error can be eliminated through correcting the solution on
the much coarser grids. Originally, the MG algorithms were primar-
ily used to deal with scalar, second-order elliptic PDEs on structured
grids. With its development by many researchers, MG methods have
grown to solve more and more problems. Now they have been re-
garded as one of the most promising iterative methods for solving
systems of linear equations arising from the discretization of PDEs by
either the finite difference or the h-version finite element method.
Recently, some researchers developed the edge element-based geo-
metric MG methods and have proven to be very efficient for solv-
ing systems of equations resulting from the finite element analysis
of electromagnetic fields [8--10]. The MG methods have shown O(n)
complexity, and the convergence rate is mesh-independent for many
problems [7]. For comparison, the widely spread ICCG method re-
quires O(n2) operations for three-dimensional (3D) problems [11].
These properties make the MG method outperformed any other it-
erative methods in the 3D electromagnetic simulations.

Instead of using different levels of meshes, the MG method can
be implemented through using different order elements with the
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help of hierarchical basis [12,13]. The linear system resulted from
the application of hierarchical order finite element method has the
hierarchical property and can be solved with the MG method by cor-
recting the solution on different order spaces. To distinguish these
two methods, the former is usually called the h-version MG method,
while the latter is called the p-version MG method. In the p-version
MG, the high order spaces correspond to fine grids which are as in the
h-versionMGmethod. And the low order spaces correspond to coarse
grids. This means we can use less grid points in high order method.
Specifically, the p-versionMGmethod can avoid the complicated and
time-consuming mesh refinement process of the h-version method,
which always generates a very large linear system. In addition, the
solution of the prolongation and projection operators in the h-version
MG method is very sophisticated and may need much CPU time
and storage costs for many problems. Contrary, the p-version MG
method usually has very simple prolongation and projection opera-
tors and is very easy for application compared with the h-versionMG
method.

The p-version MG method is not only useful for high frequency
electromagnetic fields, but also efficient for low frequency eddy cur-
rent problems and complicated static fields as well. Otherwise, it
has been mentioned in [21,22] that MG method always results in a
computationally expensive algorithm in high dimensional problem.
In fact, the sparse matrix obtained by hierarchical basis has large
condition number. It makes the iterative solver more difficult. But
the efficient algorithm could be got according to the trait of the
high order basis. It needs much more research on this aspect. For-
tunately, some investigators have proved that the p-version method
can get much faster convergence rates than the h-version method
[14]. In [15], a kind of p-version multigrid method is suggested
for the hierarchical finite element method, which was called the
multi-p in the paper. In this paper, we extend this method to solve
the 3D time-harmonic electric-based vector Helmholtz equations in
electromagnetics.

2. A p-version multigrid method

In analyzing the high frequency electromagnetic problems,
the three-dimensional boundary value problems (BVP) in electro-
magnetics, described by the time-harmonic electric field-based
Helmholtz equation and the corresponding boundary conditions, is
often considered:
⎧⎪⎪⎨
⎪⎪⎩

∇ × (�−1
r ∇ × →

E (r)) − k20�r
→
E (r) = 0

n̂ × →
E (r) = 0 on CE ⊂ ��

n̂ × (∇ × →
E (r)) = 0 on CH ⊂ ��

(1)

where the notation k0 stands for the wave number of electromag-
netic wave, � and �� represent a bounded domain in C3 and its
boundary, n̂ denotes the normal external to � along �� and CE and
CH denotes the perfect electric conductor (PEC) and perfect mag-
netic conductor (PMC), respectively.

In this paper, we use the Galerkin method [1] to derive the fi-
nite element system. As tetrahedral elements have strong ability in
modeling arbitrary structures, in our FEM analysis the tetrahedral el-
ements are used for mesh discretization. Multiplying the Helmholtz

equation in (1) by a weighting function
→
W and integrating over each

finite element volumeXi, we can then obtain the weak form TVFEM
formulation, which is of the following form:

∫
Xi

(∇ × →
Wi) · �−1

r (∇ × →
E i) dv −

∫
Xi

→
Wi · �−1

r
→
E i dv = 0

The above equation can be obtained for all the meshes in the
volume of interest.

Setting the expansion functions equal to the weighting function
→
W, the electric field

→
E i within the ith mesh can be expanded as

→
E i =

∑
xj

→
Wij

Here
→
Wij is the jth expansion function in the ith mesh. To im-

plement the p-version MG method, the hierarchical high order basis
functions are used. The hierarchical basis is constructed in such a
way that low order FE spaces are included in high order FE spaces.
As a result, the hierarchical FE basis has the natural wavelet prop-
erty (it does not mean the basis is orthogonal). Most of the low fre-
quency components of the solution are contained in the unknowns
connected with the low order basis functions, while the high fre-
quency components are contained in the unknowns connected with
the high order basis functions. The H1(curl) TVFE tetrahedral ele-
ments we use here are the hierarchical basis functions proposed by
Webb [12], which provide linear tangential/quadratic normal vari-
ation along element edges and quadratic variation at element faces
and inside the element, and are characterized by 20 linearly inde-
pendent vector basis functions of the following form:

wij = fi∇fj − fj∇fi (1 per edge)
gij = fi∇fj + fj∇fi (2 per edge)
fijk = fk(fi∇fj − fj∇fi) (3 per edge)

(2)

In the above formulation, wij is the basis functions that span the
H0(curl) finite element space. We can see that this kind of basis can
be split into two groups---pure gradient basis functions and solenoid-
like vector basis functions and are most appropriate for finite ele-
ment implementations.

Combining each individual sub-linear system together, we can
obtain the resulting finite element system

[SEE] − k20[TEE] = 0 (3)

Here, [SEE] and [TEE] are defined as

[SEE]ij =
∫
X
(∇ × →

Wi) · �−1
r (∇ × →

Wj) dv

[TEE]ij =
∫
X

→
Wi · �−1

r
→
Wj dv

After eliminating the boundary elements on the PECs, we finally
obtain a large sparse algebraic linear system, which can be written
in the following form:

Apxp = bp (4)

where Ap ∈ Cn×n, bp ∈ Cn, p is the order of the basis functions. To
solve this linear system, the most powerful and promising method
is the multigrid method. As we have known, the basic idea of the
multigrid methods is to solve the problem on several level grids with
different densities. The high frequency error components are damped
on the fine grid after a few iterations, while the low frequency error
components can be corrected on the coarser grid. In the process of
MG method, for the projection of the unknown values from the high
order space to low order space, the restriction operator is needed.
On the contrary, to give an approximation to the high order space,
a prolongation operator should be defined. The efficiency of the MG
method strongly depends on the choice of the transfer operators. In
the geometric MG method, the definition of the transfer operators
is a difficult task. However, with the help of hierarchical basis, the
transfer operators of the p-versionMGmethod can be easily deduced
and has very simple form. In order to explain the procedure that
leads to the construction of these operators, here we consider a two
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Fig. 1. (a) The geometry and dimensions of a short-circuited E-plane slot-coupled
T-junction. (b) Magnitude of S11, S12 versus frequency for the short-circuited E-plane
slot-coupled T-junction problem.

level MG method. The H0(curl) and H1(curl) TVFEM equations are
given by

A0x0 = b0

A1x1 = b1 (5)

Here we regard each finite-dimensional vector space as a level,
the H0(curl) equations in (5) can be seen as an approximation of
TVFE space on the coarser grid. While the H1(curl) equations can be
seen as an approximation on the finer grid. The linear system of the
H1(curl) TVFEM can be written into block form as
[
A11 A12
A21 A22

] [
x(0)
x(1)

]
=

[
b(0)
b(1)

]
(6)

From the construction process of TVFEM, we can see that A11 is
totally identical with the H0(curl) TVFE stiff matrix A0. Denoting I0
an n0 × n0 identity matrix, where n0 is the order of A0, we have

A0 = [I0,0]A1[I0,0]
T

Then the restriction operator I10 and the projection operator I01
can be deduced:

I10 = [I0,0]
T, I01 = [I0,0] (7)

The algorithm of the two-level V-cycle p-version multigrid
method can be described as follows:

1. Solve the equation A0x0 = b0 to find an initial solution [x(0),0].
2. Perform k iterations of the linear system A1x1 = b1 using

Gauss--Seidel smoother, and compute the residual vector
r1 = b1 − A1x.
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Fig. 2. (a) Convergence curves of the p-version MG method for the short-circuited
E-plane slot-coupled T-junction when the operating frequency is 12GHz. (b) Com-
parison of different iterative solvers for the short-circuited E-plane slot-coupled
T-junction problem when the operating frequency is 12GHz.

3. Compute the residual error e = ‖r1‖/‖b1‖, if the residual error is
within the tolerance, stop; else continue.

4. Solve equation A0e0 = I01r1 on the coarser grid.

5. Correct solution vector on the fine level x(k)1 = x(k)1 + I10e0 and go

back to step 2 with the initial vector x(k)1 .

As the linear systems on the low order space are of very small
size compared with that on the high order space, the cost of solv-
ing them is comparatively much smaller. In this paper, we use the
multifrontal solver [16] to solve the linear system in step (4) of the
above algorithm.

The convergence of this algorithm is very good when it is
used to solve positive definite linear system. But the discretization
of Helmholtz equation with vector finite element is not positive
definite linear system. So the above algorithm cannot ensure the
stability of the solving. This mainly because of the coarse grids
rectification by using of multigrid method could introduce the new
residual error component of high frequency. On the other hand, the
coarse grids rectification would not dispel the residual error com-
ponent of low frequency very well if the grids are too coarse. So
it has been indicated by many research that the algorithm cannot
converge well when the scale of the grid is too large. But if the scale
of the grid is fine enough this algorithm has excellent equality.



Y.J. Sheng et al. / Finite Elements in Analysis and Design 44 (2008) 732 -- 737 735

0

200

400

600

800

1000

0

Unknowns

It
er

at
io

ns

MG
SSORCG

0

1000

2000

3000

T
im

e 
(s

)

MG
SSORCG

20000 40000 60000 80000 100000

0

Unknowns

20000 40000 60000 80000 100000

Fig. 3. (a) Iterations of the SSORCG and p-version MG method versus unknowns
for the short-circuited E-plane slot-coupled T-junction problem when the operating
frequency is 12GHz. (b) CPU time used by the SSORCG and p-version MG method
versus unknowns for the short-circuited E-plane slot-coupled T-junction problem
when the operating frequency is 12GHz (the lowest time of MG is 28 s).

In the next section, the p-version MG method is applied to solve
the hierarchical TVFEM equations in electromagnetics. Two waveg-
uide discontinuity problems are investigated.

3. Numerical results

To verify the efficiency of the p-version MG method, we applied
the proposed p-version MGmethod, the SSOR preconditioned conju-
gate gradient iterative solver (SSORCG) [17] and the ICCG [6] solver to
the following test examples: (A) an E-plane slot-coupled T-junction
and (B) a rectangular waveguide filled with a partial-height dielec-
tric. The norm of the relative residual in the PCG termination crite-
rion was set to −40dB.

In our 3D TVFE simulation, the TE10 mode is imposed at the
waveguide input port. The scatter parameters are extracted with an
efficient method proposed in [18]. The first example we analyzed
here with the H1(curl) TVFEM is a E-plane slot-coupled T-junction.
The configuration and dimensions are drawn in Fig. 1(a). At first, we
discretize the domain into 9234 tetrahedrons. As a result, a large,
sparse complex linear system with a total of 52472 unknowns can
be obtained, with about 38 elements per row on average. The size of
the local matrix corresponding to the H0(curl) TVFE space is 8985,
and the nonzero elements per row is about 14. We can see that the
H0(curl) TVFE system is very small compared with the H1(curl) TVFE
system. Our calculations of the amplitude of scatter parameters with
the H1(curl) hierarchical TVFEM is shown in Fig. 1(b). Compared
with the measured results in Ref. [19], we can find that our results
meet well with the measured data. The efficiency of the p-version
MG method at f = 12GHz is tested atfirst. In step 2 of the above p-
version algorithm, we take k=1, 2, 3 for the Gauss--Seidel smoother.
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Fig. 4. (a) Configuration of the rectangular waveguide filled with partial-height
dielectric. (b) Reflection and transmission characteristics of the dielectric-loaded
waveguide problem.

In the MG method, as the operation is complex, so only the number
of Gauss--Seidel iteration is counted for simplicity. The convergence
curves are drawn in Fig. 2(a). We can see from the figure that with
the increase of k, the iteration number increases gradually. However,
as the correction on the low order space take much time, the CPU
time used for k = 1, 2, 3 is, respectively, 157, 91, 80 s. The compar-
ison of the p-version MG method with the SSORCG, ICCG solver is
drawn in Fig. 2(b), from which we can draw the conclusion that the
p-version multigrid method can reach convergence much faster than
the preconditioned conjugate gradient method. The CPU time used
by these three methods is respectively: 1066 s by SSORCG, 1720 s by
ILU0CG and 91 s by the p-version multigrid method. Compared with
the ICCG and SSORCG iteration, about 11.7 and 18.9 times of CPU
time can be saved by the p-version multigrid method.

Furthermore, to investigate the convergence property of the
p-version MG method for different sizes of linear systems, we dis-
cretize the problem with different meshes, and obtained a sequence
of linear systems with unknowns varying from nearly 10000 to
nearly 100000. The number of iterations and CPU time are shown in
Fig. 3(a) and (b). We can see that the number of iterations of the p-
version MG method decrease slowly along with the increased num-
ber of unknowns. This is because on the finer meshes the low order
TVFE space correction may provide a more exact approximation to
the low frequency eigenvalues. Contrarily, the number of iterations
of the SSORCG method increased with the increasing of unknowns.
The CPU time needed for both methods escalated with the increas-
ing of the size of the linear system. However, the CPU time needed
by the p-version method escalated much more slowly than SSORCG.
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Fig. 5. (a) Convergence history of the p-version MG method for the rectangular
waveguide filled with partial-height dielectric when the operating frequency is
90MHz. (b) Comparison of different iterative solvers for the rectangular waveguide
filled with partial-height dielectric when the operating frequency is 90MHz.

This shows the great advantage of the p-version MG method when
compared with the preconditioned conjugate gradient methods.

Another example is a rectangular waveguide filled with a partial-
height dielectric [20], as is shown in Fig. 4(a). Some parameters of the
waveguide are a=2, b=1, c=0. 888, d=0. 399,w=0. 8 (mm), �r=6. 0.
With H1(curl) hierarchical TVFEM, a total of 20894 unknowns can
be obtained. Our calculations of the amplitude of |S11| and |S12|
parameters by the H1(curl) hierarchical TVFEM are showed by the
dashed curve line in Fig. 4(b). The comparison with results from Ref.
[20] is made and excellent agreement is found.

Fig. 5(a) shows the iterative curves for different k of the p-version
iterative method for the rectangular waveguide with operating fre-
quency f = 90MHz. In Fig. 5(b), the convergence characteristics of
residual error versus iterations are given for the various iterative
methods. In this example, the p-version MG method again showed
great superiority over the PCG method. The CPU time used is: 435 s
by SSORCG, 609 s by ILU0CG and 21 s by the p-version multigrid
method. Compared with the ICCG and SSORCG iteration, about 29.0
and 20.7 times of CPU time can be saved by the p-version multigrid
method.

The comparison of iteration numbers and CPU time of the
p-version MG method and the SSORCG method for different meshes
are shown in Fig. 6(a) and (b). In this example, a quite similar result
can be obtained with the E-plane slot-coupled T-junction problem,
which again shows the great superiority of the p-versionMGmethod.
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4. Conclusions

In this paper, the p-version multigrid method is applied for the
full-wave finite element analysis of microwave devices. For this sug-
gested method, the linear system is derived from the application of
the hierarchical TVFE method and the advantage of the hierarchical
property of the stiff matrix is taken. The prolongation and projec-
tion operators are derived to be very simple. Our numerical results
show that the proposed method is very efficient for the solution of
hierarchical TVFEM for waveguide discontinuity problems.
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