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a b s t r a c t

Few papers look at the asymptotic boundedness of numerical solutions of stochastic differ-
ential equations (SDEs). One of the open questions is whether numerical approximations
can reproduce the boundedness property of the underlying SDEs. In this paper, we give
positive answer to this question. Firstly we discuss the asymptotic moment upper bound
of the Itô type SDEs and show that the Euler–Maruyama (EM) method is capable to pre-
serve the boundedness property for SDEs with the linear growth condition on both drift
and diffusion coefficients. But under the weaker assumption, the one-sided Lipschitz, on
the drift coefficient, the EM method fails to work. We then show that the backward EM
method can work in this situation.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Asymptotic properties of the solutions of SDEs have been widely studied in the past decades, particularly the stability
theory has been attracting lots of attention (see for example, [1] and the references therein).

Due to the difficulty to find the explicit solutions to SDEs, different types of numerical methods have been introduced to
approximate the underlying solutions (see, for example, [2–4]). Thus the study of the stability of the numerical methods has
naturally boomed in recent years. We mention [5–7] here, as they are among those papers with original ideas. More recent
works investigate the stability for different types of SDEs and different sorts of numerical methods, such as [8–16] and the
references therein. We also mention some works on stochastic difference equations [17,18] as they are naturally related to
discrete numerical solutions.

Another important asymptotic property of the SDE solutions, the asymptotic boundedness, has its own right. Unlike
the stability property that requires the solutions be attracted by an equilibrium state, the boundedness property only
requires the solutions stay within certain regime as time tends to infinity [19]. Works on the boundedness of the underlying
SDE solutions can be found, such as [20,19,21,22] and their references therein. But there are few papers investigating the
asymptotic boundedness of the numerical solutions.

Themain purpose of this paper is to investigate the asymptoticmoment boundedness of two classical numericalmethods.
We focus on two types of moment, small moment (i.e. pth moment with p much smaller than 1) and second moment. For
the case of small moment, they do have some applications. For instance the stochastic permanence studied in the stochastic
population model, see for example [23], in which the probability of the solution larger than some constant can be estimated
by the small moment together with Markov’s inequality. The case of second moment is widely studied for many different
asymptotic properties. In this paper, we find that compared with the case of small moment stronger conditions are required
in second moment but better results could be obtained (see Section 5 for details). In addition, thanks to Hölder’s inequality
the asymptotic pth moment boundedness for 1 < p < 2 could be implied by the second moment boundedness.
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Our key aim in this paper is to answer the question: given that the solution of the underlying Itô type SDE is asymptotically
bounded in moment, is there any numerical method that could preserve the boundedness property?

Due to the techniques used to dealwith the smallmoment aremuchmore complicated than those for the secondmoment,
the majority of the paper is devoted to the case of small moment. This paper is constructed as follows. We briefly introduce
the two classical numerical methods in Section 2. The main results of the small moment are developed in Sections 3 and
4. In each of these two sections we first present the results for the underlying true solution, the relative results for the
numerical solution then follow. Section 3 is devoted to the asymptotic boundedness of the EM method under the linear
growth condition, and Section 4 discusses the backward EM method applied to a set of SDEs on which the EM method fails
to work. Section 5 discusses the results for the case of secondmoment. The last section summarizes the paper and discusses
some possible further research.

2. Preliminary

Throughout this paper, we let (Ω, F , {Ft}t≥0, P) be a complete probability space with a filtration {Ft}t≥0 which is
increasing and right continuous, with F0 containing all P-null sets. Let B(t) = (B1(t), . . . , Bm(t)) be an m-dimensional
Brownian motion defined on the probability space. Let | · | denote the Euclidean norm in Rn. The inner product of x, y in
Rn is denoted by ⟨x, y⟩. We denote max(a, b) and min(a, b) by a ∨ b and a ∧ b respectively. In this paper, we consider the
n-dimensional Itô SDE

dx(t) = f (x(t))dt +

m
i=1

gi(x(t))dBi(t), t ≥ 0, x(0) ∈ Rn. (2.1)

We assume that f , g1, . . . , gm: Rn
→ Rn are smooth enough for the SDE (2.1) to have a unique global solution on [0, ∞)

(see, for example, [1]).
Let us recall the twonumericalmethodswewill use below. The reader is referred to [3,4] formore details on thenumerical

methods. The Euler–Maruyama (EM) method applied to (2.1) is defined by

Yk+1 = Yk + f (Yk)∆t +

m
i=1

gi(Yk)∆Bi,k, Y0 = x(0), (2.2)

for k = 0, 1, . . . , where ∆t is the timestep and ∆Bi,k = Bi((k + 1)∆t) − Bi(k∆t) is the Brownian increment.
The backward EMmethod (or the drift implicit EM method) is defined by

Yk+1 = Yk + f (Yk+1)∆t +

m
i=1

gi(Yk)∆Bi,k, Y0 = x(0), (2.3)

for k = 0, 1, . . . .

3. Euler–Maruyama in small moment

We begin by imposing the linear growth condition on both drift and diffusion coefficients of the SDE (2.1):

|f (x)|2 ∨ |gi(x)|2 ≤ K |x|2 + α ∀x ∈ Rn and 1 ≤ i ≤ m, (3.1)

where K and α are positive constants. In this section, we will be concerned with the asymptotic boundedness in small
moment of the solution x(t) of (2.1) and the preservation of this property using the EM method.

3.1. Asymptotic boundedness

We first give a sufficient condition for the asymptotic small moment boundedness of the SDE solution. It should be
emphasized that a more general sufficient condition exists (see, for example, Theorem 5.2, p. 157 in [19]). The condition
we employ in Theorem 3.1 is in line with the one for the boundedness of the numerical solution in Theorem 3.2, and it is
still an open question that whether there exists a numerical method that could recover the asymptotic boundedness of the
underlying SDE solution under the more general condition (for example, the condition given in Theorem 5.2 of [19]).

Theorem 3.1. Let (3.1) hold. If there exists a positive constant D such that for any x ∈ Rn

⟨x, f (x)⟩ +
1
2

m
i=1

|gi(x)|2

D + |x|2
−

m
i=1

⟨x, gi(x)⟩2

(D + |x|2)2
≤ −λ +

P1(|x|)
D + |x|2

+
P3(|x|)

(D + |x|2)2
, (3.2)



24 W. Liu, X. Mao / Journal of Computational and Applied Mathematics 251 (2013) 22–32

where λ is a positive constant and Pi(|x|) is a polynomial of |x| with degree i, then there exists a p∗
∈ (0, 1) such that for all

0 < p < p∗ the solution of (2.1) obeys

lim sup
t→∞

E(|x(t)|p) ≤ C, ∀x(0) ∈ Rn, (3.3)

where C is a positive constant dependent on K , α, p,D, but independent of x(0).

Following the same technique used in Theorem 5.2 in [19], by choosing the Lyapunov function V = (D + |x(t)|2)p/2, it is
straightforward to prove this theorem. So we omit it here. Now we give the result for the EM solution.

Theorem 3.2. Let (3.1) and (3.2) hold. Then for any ε ∈ (0, λ), there exists a pair of constants p∗
∈ (0, 1) and ∆t∗ ∈ (0, 1)

such that for ∀p ∈ (0, p∗) and ∀∆t ∈ (0, ∆t∗), the EM solution (2.2) satisfies

lim sup
k→∞

E|Yk|
p

≤
C ′

2

p(λ − ε)
, ∀Y0 ∈ Rn, (3.4)

where C ′

2 is a constant dependent on K , α, p and D, but independent of Y0 and ∆t.

Proof. For the constant D in (3.2), we compute

D + |Yk+1|
2

= D + |Yk|
2
+ 2


Yk, f (Yk)∆t +

m
i=1

gi(Yk)∆Bi,k


+

f (Yk)∆t +

m
i=1

gi(Yk)∆Bi,k


2

.

Let

ξk =
1

D + |Yk|
2

2


Yk, f (Yk)∆t +

m
i=1

gi(Yk)∆Bi,k


+

f (Yk)∆t +

m
i=1

gi(Yk)∆Bi,k


2
 ,

for any p ∈ (0, 1) we have

|D + |Yk+1 |
2
|
p/2

= |D + |Yk |
2
|
p/2(1 + ξk)

p/2.

Clearly ξk > −1, recalling the fundamental inequality

(1 + u)p/2 ≤ 1 +
p
2
u +

p(p − 2)
8

u2
+

p(p − 2)(p − 4)
23 × 3!

u3, u > −1, (3.5)

we have

|D + |Yk+1 |
2
|
p/2

≤ |D + |Yk |
2
|
p/2

1 +

p
2
ξk +

p(p − 2)
8

ξ 2
k +

p(p − 2)(p − 4)
23 × 3!

ξ 3
k


.

Hence the conditional expectation

E(|D + |Yk+1 |
2
|
p/2
Fk∆t) ≤ |D + |Yk|

2
|
p/2 E


1 +

p
2
ξk +

p(p − 2)
8

ξ 2
k +

p(p − 2)(p − 4)
23 × 3!

ξ 3
k |Fk∆t


. (3.6)

Since ∆Bi,k, i = 1, . . . ,m, is independent from each other and is independent of Fk∆t , we have E(∆Bi,k|Fk∆t) = E(∆Bi,k) =

0, E((∆Bi,k)
2
|Fk∆t) = E((∆Bi,k)

2) = ∆t and E(∆Bi,k∆Bj,k|Fk∆t) = E(∆Bi,k∆Bj,k) = E(∆Bi,k)E(∆Bj,k) = 0, for i ≠ j. By
(3.1) we can get

E(ξk|Fk∆t) = E

 1
D + |Yk|

2

2


Yk, f (Yk)∆t +

m
i=1

gi(Yk)∆Bi,k


+

f (Yk)∆t +

m
i=1

gi(Yk)∆Bi,k


2
Fk∆t


=

1
D + |Yk|

2


2⟨Yk, f (Yk)⟩ +

m
i=1

|gi(Yk)|
2


∆t +

1
D + |Yk|

2
|f (Yk)|

2∆t2

≤
1

D + |Yk|
2


2⟨Yk, f (Yk)⟩ +

m
i=1

|gi(Yk)|
2


∆t + K∆t2 +

C2

D + |Yk|
2
∆t2. (3.7)

Similarly, we can show that

E(ξ 2
k |Fk∆t) ≥

4
(D + |Yk|

2)2

m
i=1

⟨Yk, gi(Yk)⟩
2∆t − C1∆t2 −

C2

(D + |Yk|
2)2

∆t2, (3.8)
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and

E(ξ 3
k |Fk∆t) ≤ C1∆t2 +

C2

(D + |Yk|
2)3

∆t2, (3.9)

where C1 is a positive constant dependent on K , and C2 is a positive constant dependent on α. C1 and C2 may change from
line to line. Now consider the following two fractions,

(D + |Yk|
2)p/2P1(|Yk|)

D + |Yk|
2

and
(D + |Yk|

2)p/2P3(|Yk|)

(D + |Yk|
2)2

. (3.10)

For 0 < p < 1 the highest degrees of |Yk| in the numerators are p + 1 and p + 3 respectively, which are smaller than the
corresponding highest degrees of |Yk| in the denominators. Thus for any |Yk| ∈ R there exists an upper bound for both of
the fractions. Also it is obvious that C2/(D + |Yk+1|

2)i−p/2, i = 1, 2, 3 are bounded by some constant that depends on α and
D. Substituting (3.7)–(3.9) into (3.6), then using (3.1) and (3.2) and the argument for (3.10) we have that

E((D + |Yk+1|
2)p/2|Fk∆t) ≤ (D + |Yk|

2)p/2


1 +

p
2(D + |Yk+1|

2)


2⟨Yk, f (Yk)⟩ +

m
i=1

|gi(Yk)|
2


∆t

+
p(p − 2)

2(D + |Yk|
2)2

m
i=1

⟨Yk, gi(Yk)⟩
2∆t + C ′

1∆t2


+ C ′

2∆t

= (D + |Yk|
2)p/2

1 + p∆t

 ⟨Yk, f (Yk)⟩ +
1
2

m
i=1

|gi(Yk)|
2

D + |Yk|
2

−

m
i=1

⟨Yk, gi(Yk)⟩
2

(D + |Yk|
2)2

+

p2∆t
m
i=1

⟨Yk, gi(Yk)⟩
2

2(D + |Yk|
2)2

+ C ′

1∆t2

+ C ′

2∆t

≤ (D + |Yk|
2)p/2


1 − pλ∆t +

mp2∆tK
2

+ C ′

1∆t2


+ C ′

2∆t,

where C ′

1 is a positive constant dependent on K and p, C ′

2 is a positive constant dependent on K , α, p and D, and both of them
may change from line to line. For any given ε ∈ (0, λ), choose p∗

∈ (0, 1) sufficiently small for mp∗K < ε, then choose
∆t∗ ∈ (0, 1) sufficiently small for p∗λ∆t∗ ≤ 1 and C ′

1∆t∗ ≤
1
2p

∗ε. For any p ∈ (0, p∗) and any ∆t ∈ (0, ∆t∗) we have

E((D + |Yk+1|
2)p/2|Fk∆t) ≤ (D + |Yk|

2)p/2(1 − p(λ − ε)∆t) + C ′

2∆t.

Taking expectations on both sides yields

E((D + |Yk+1|
2)p/2) ≤ E((D + |Yk|

2)p/2)(1 − p(λ − ε)∆t) + C ′

2∆t. (3.11)

By iteration we have

E((D + |Yk|
2)p/2) ≤ E((D + |Y0|

2)p/2)(1 − p(λ − ε)∆t)k +
1 − (1 − p(λ − ε)∆t)k−1

p(λ − ε)
C ′

2. (3.12)

Since E(|Yk|
p) ≤ E((D + |Yk|

2)p/2), we have

E(|Yk|
p) ≤ E((D + |Y0|

2)p/2)(1 − p(λ − ε)∆t)k +
1 − (1 − p(λ − ε)∆t)k−1

p(λ − ε)
C ′

2. (3.13)

Let k → ∞, then (3.4) follows. �

3.2. A linear scalar SDE example

Let us consider a linear scalar SDE,

dx(t) = (α1 + α2x(t))dt + (σ1 + σ2x(t))dB(t), x(0) ∈ R, (3.14)

where α1, α2, σ1, σ2 are real numbers. We impose the condition, α2 − σ 2
2 /2 < 0. By using this example, we will illustrate

• the existence of the constant, D, in condition (3.2) and how to choose it.
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Obviously both drift and diffusion coefficients of (3.14) satisfy the linear growth condition (3.1). Now we consider the
condition (3.2),

⟨Yk, f (Yk)⟩ +
1
2 |g(Yk)|

2

D + |Yk|
2

=


α2 +

1
2σ

2
2


Y 2
k

D + |Yk|
2

+
(α1 + σ1σ2)Yk + σ 2

1

D + |Yk|
2

, (3.15)

and

⟨Yk, g(Yk)⟩
2

= (σ1Yk + σ2Y 2
k )2

= σ 2
2 Y

4
k + 2σ1σ2Y 3

k + σ 2
1 Y

2
k

= σ 2
2


Y 2
k +

σ 2
1

2σ 2
2

2

−
σ 4
1

4σ 2
2

+ 2σ1σ2Y 3
k . (3.16)

Choose D = (σ 2
1 )/(2σ 2

2 ) then we have

⟨Yk, f (Yk)⟩ +
1
2 |g(Yk)|

2

D + |Yk|
2

−
⟨Yk, g(Yk)⟩

2

(D + |Yk|
2)2

≤


α2 −

1
2
σ 2
2


+

(α1 + σ1σ2)Yk + σ 2
1

D + |Yk|
2

+
1

(D + |Yk|
2)2


σ 4
1

4σ 2
2

− 2σ1σ2Y 3
k


. (3.17)

Thus −λ = α2 − σ 2
2 /2, P1(Yk) = (α1 + σ1σ2)Yk + σ 2

1 and P3(Yk) = σ 4
1 /(4σ 2

2 ) − 2σ1σ2Y 3
k . Then the similar process to the

proof of Theorem 3.2 leads to the property (3.4) for the linear scalar SDE (3.14).

4. Backward Euler–Maruyama in small moment

So far, we have established some positive results on the asymptotic boundedness in small moment of the EM method
under the linear growth condition (3.1). Now we consider to relax the constraint of the drift coefficient by imposing the
one-sided Lipschitz condition,

⟨x − y, f (x) − f (y)⟩ ≤ µ̄|x − y|2 + ᾱ ∀x, y ∈ Rn,

where µ̄ ∈ R and ᾱ ∈ R+. Without losing generality, we further assume for ∀x ∈ Rn

⟨x, f (x)⟩ ≤ µ|x|2 + α, (4.1)

where µ ∈ R and α ∈ R+. The diffusion coefficient still obeys the linear growth condition,

|gi(x)|2 ≤ K |x|2 + α, 1 ≤ i ≤ m. (4.2)

In this section, we start with a counter example to show that the EM solutionwill blow up under (4.1) and (4.2). Thenwewill
show that the backward EMmethod can still preserve the boundedness property of the SDE solution under these conditions.

4.1. A counter example

Consider the following scalar SDE,

dx(t) = (−0.5x(t) − x3(t) + 1)dt + (x(t) + 1)dB(t), (4.3)

to which the EMmethod is applied.

Lemma 4.1. Suppose ∆t ∈ (0, 1) and p ∈ (0, 1), then for any Y0 ∈ R,

lim
k→∞

E|Yk|
p

= ∞. (4.4)

Proof. By the property of conditional expectations, we have

E|Yk+1|
p

= E[E(|Yk+1|
p
Y1)] ≥ E[1{|Y1|p≥23/∆tp/2}E(|Yk+1 |

p
Y1)]. (4.5)

Since there is a positive probability that the first Brownian motion increment will make |Y1|
p

≥ 23/∆tp/2, we only need
to show that for |Y1|

p
≥ 23/∆tp/2, E(|Yk+1|

p
|Y1) ≥ 2k+3/∆tp/2 for all k ≥ 0. We show this by induction. Clearly,

E(|Y1|
p
|Y1) = |Y1|

p
≥ 23/∆tp/2. Suppose E(|Yk|

p
|Y1) ≥ 2k+2/∆tp/2 for some k ≥ 1, we will show that for any ∆t ∈ (0, 1),

E(|Yk+1|
p
|Y1) ≥ 2k+3/∆tp/2. Applying the EM method to the SDE (4.3), we have

|Yk+1| = |Yk − 0.5∆tYk − ∆tY 3
k + Yk∆Bk + ∆t + ∆Bk|.
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Then by the fundamental inequality, |a + b|p > |a|p − |b|p, we have

|Yk+1|
p

≥ |∆tY 3
k + (0.5∆t − 1)Yk + Yk∆Bk|

p
− |∆t|p − |∆Bk|

p

≥ ∆tp|Yk|
3p

− (1 − 0.5∆t)p|Yk|
p
− |Yk∆Bk|

p
− |∆t|p − |∆Bk|

p.

By Hölder’s inequality, we have E(|Yk|
3p

|Y1) ≥ (E(|Yk|
p
|Y1))

3. Since ∆Bk is independent of Y1 for all k > 0, E(|∆Bk|
p
|Y1) =

E(|∆Bk|
p) < 2. Then taking conditional expectation on both sides we have

E(|Yk+1|
p
|Y1) ≥ E(|Yk|

p
|Y1)(∆tp(E(|Yk|

p
|Y1))

2
− (1 − 0.5∆t)p − E|∆Bk|

p) − |∆t|p − E|∆Bk|
p

≥ E(|Yk|
p
|Y1)(∆tp(E(|Yk|

p
|Y1))

2
− 1 − 2) − 1 − 2

≥
2k+2

∆tp/2
(22k+4

− 3) − 3

≥
2k+3

∆tp/2
.

Then substituting it back to (4.5) we obtain

E|Yk+1|
p

≥
2k+3

∆tp/2
P


|Y1|
p

≥
23

∆tp/2


.

Hence the assertion holds. �

This lemma states that for any initial value, the pth moment, 0 < p < 1, of the EM solution will blow up. This contrasts
to the initial-data-independent asymptotic boundedness of the underlying SDE solution, shown by Theorem 4.2. Hence the
EMmethod is no longer a good candidate.

4.2. Asymptotic boundedness

Let us present another theorem on the asymptotic boundedness of the solution of the SDE (2.1). The condition used in
Theorem 4.2 will be employed in Theorem 4.3 as well.

Theorem 4.2. Let (4.1) and (4.2) hold. If there exists a constant D such that

m
i=1

|gi(x)|2

D + |x|2
−

2
m
i=1

⟨x, gi(x)⟩2

(D + |x|2)2
≤ ρ +

P1(|x|)
D + |x|2

+
P3(|x|)

(D + |x|2)2
, (4.6)

whereρ is a constantwithµ+ρ/2 < 0, then there exists a p∗
∈ (0, 1) such that for all 0 < p < p∗ the solution of SDE (2.1) obeys

lim sup
t→∞

E(|x(t)|p) ≤ C, ∀x(0) ∈ Rn, (4.7)

where C is a constant dependent on µ, α, K , p and D, but independent of x(0).

It is straightforward to adapt the proof of Theorem 3.1 to show Theorem 4.2.
Let us now begin to discuss the asymptotic boundedness in small moment of the backward EM solution (2.3) under

conditions (4.1), (4.2) and (4.6).

Theorem 4.3. Let (4.1), (4.2) and (4.6) hold. Then there exists a pair of constants p∗
∈ (0, 1) and ∆t∗ ∈ (0, 1/(2|µ|)) such that

for ∀p ∈ (0, p∗) and ∀∆t ∈ (0, ∆t∗), the backward EM solution (2.3) satisfies

lim sup
k→∞

E|Yk|
p

≤
C ′

2

p(λ − ε)
, ∀Y0 ∈ Rn, (4.8)

where −λ = µ + ρ/2 < 0, ε ∈ (0, |µ + ρ/2|) and C ′

2 is a constant dependent on K , α, p and D, but independent of Y0 and ∆t.

Proof. From (2.3), we have

|Yk+1|
2

=


Yk+1, Yk +

m
i=1

gi(Yk)∆Bi,k


+ ⟨Yk+1, f (Yk+1)∆t⟩.

By (4.1), we obtain

|Yk+1|
2

≤
1
2
|Yk+1|

2
+

1
2

Yk +

m
i=1

gi(Yk)∆Bi,k


2

+ µ∆t|Yk+1|
2
+ α∆t.
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Hence

D
1 − 2µ∆t

+ |Yk+1|
2

≤
D

1 − 2µ∆t
+

1
1 − 2µ∆t

|Yk|
2
+ 2


Yk,

m
i=1

gi(Yk)∆Bi,k


+

 m
i=1

gi(Yk)∆Bi,k


2

+ 2α∆t


≤

D + |Yk|
2

1 − 2µ∆t
(1 + ζk),

where

ζk =
1

D + |Yk|
2

2


Yk,

m
i=1

gi(Yk)∆Bi,k


+

 m
i=1

gi(Yk)∆Bi,k


2

+ 2α∆t

 .

It is clear that ζk > −1 for all k ≥ 0. For any p ∈ (0, 1), by inequality (3.5) we have

E((D + |Yk+1|
2)p/2

Fk∆t) ≤


D + |Yk|

2

1 − 2µ∆t

p/2

E


1 +

p
2
ζk +

p(p − 2)
8

ζ 2
k +

p(p − 2)(p − 4)
23 × 3!

ζ 3
k |Fk∆t


. (4.9)

Then following the same way as Theorem 3.2, by (4.2) we can show

E(ζk
Fk∆t) =

1
D + |Yk|

2


m
i=1

|gi(Yk)|
2∆t + 2α∆t


, (4.10)

E(ζ 2
k

Fk∆t) ≥

4
m
i=1

⟨Yk, gi(Yk)⟩
2

(D + |Yk|
2)2

∆t −
P2(|Yk|)∆t2

(D + |Yk|
2)2

, (4.11)

and

E(ζ 3
k

Fk∆t) ≤ C1∆t2 +
P4(|Yk|)∆t2

(D + |Yk|
2)3

, (4.12)

where C1 is a constant dependent on K . Substituting (4.10)–(4.12) into (4.9), then using (4.2) and (4.6) and the similar
argument in (3.10) we obtain

E((D + |Yk+1|
2)p/2

Fk∆t) ≤


D + |Yk|

2

1 − 2µ∆t

p/2

×

1 +
p
2

m
i=1

|gi(Yk)|
2

D + |Yk|
2

∆t +
p(p − 2)

8

4
m
i=1

⟨Yk, gi(Yk)⟩
2

(D + |Yk|
2)2

∆t +
p(p − 2)(p − 4)

23 × 3!
C1∆t2

+ C ′

2∆t

≤
(D + |Yk|

2)p/2

(1 − 2µ∆t)p/2


1 +

1
2
pρ∆t +

1
2
p2mK∆t + C ′

1∆t2


+ C ′

2∆t,

where C ′

1 is a positive constant dependent on K and p, C ′

2 is a positive constant dependent on K , α, µ, p and D, and both of
them may change from line to line. Taking expectations on both sides, we obtain

E((D + |Yk+1|
2)p/2) ≤

1 +
1
2pρ∆t +

1
2p

2mK∆t + C ′

1∆t2

(1 − 2µ∆t)p/2
E((D + |Yk|

2)p/2) + C ′

2∆t. (4.13)

For any ε ∈ (0, |µ+ρ/2|), by choosing p∗ sufficiently small such that p∗mK ≤ 1/(2ε) and sufficiently small∆t∗, for p < p∗

and ∆t < ∆t∗ we have

(1 − 2µ∆t)p/2 ≥ 1 − pµ∆t − C3∆t2 > 0, (4.14)

where C3 > 0 is a constant dependent on µ and p. Then further reducing ∆t∗ gives that for ∆t < ∆t∗

C ′

1∆t <
1
8
pε, C3∆t <

1
4
ε,

pµ +
1
4


∆t
 <

1
2
.
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Using these three inequalities together with (4.14), we have from (4.13) that

E((D + |Yk+1|
2)p/2) ≤

1 +
1
2p

ρ +

1
2ε

∆t

1 − p

µ +

1
4ε

∆t

E((D + |Yk|
2)p/2) + C ′

2∆t. (4.15)

Since that for any h ∈ [−0.5, 0.5]

(1 − h)−1
= 1 + h + h2

∞
i=0

hi
≤ 1 + h + h2

∞
i=0

0.5i
= 1 + h + 2h2,

then by further reducing ∆t∗ such that for any ∆t < ∆t∗ we obtain

4p


µ +
1
4
ε

2

∆t +


ρ +

1
2
ε


p


µ +
1
4
ε


∆t + 2


p


µ +
1
4
ε


∆t
2


< ε.

Together with (4.15), we arrive at

E((D + |Yk+1|
2)p/2) ≤


1 +

1
2
p


ρ +
1
2
ε


∆t


1 + p


µ +
1
4
ε


∆t

+ 2

p


µ +
1
4
ε


∆t
2


E((D + |Yk|
2)p/2) + C ′

2∆t

≤


1 + p


µ +

1
2
ρ + ε


∆t


E((D + |Yk|
2)p/2) + C ′

2∆t. (4.16)

Then by iteration and letting k → ∞, we have

lim sup
k→∞

E(|Yk+1|
p) ≤ lim sup

k→∞

E((D + |Yk+1|
2)p/2) ≤

C ′

2

−p

µ +

1
2ρ + ε

 .
The proof is complete. �

5. The second moment

In this section, we discuss the asymptotic boundedness in the secondmoment for both the EMmethod and the backward
EMmethod. Following the same structure as in the previous sections, we first give the results for the underlying SDEs, then
the results for numerical solutions are proved under the same conditions.

5.1. The EM method

For the asymptotic second moment boundedness of the underlying solution, we still require condition (3.1) but replace
condition (3.2) by the following condition that

⟨x, f (x)⟩ +
1
2

m
i=1

|gi(x)|2 ≤ −β|x|2 + a1, ∀x ∈ Rn, (5.1)

where β and a1 are positive constants.

Theorem 5.1. Let (3.1) and (5.1) hold, then the underlying solution of SDE (2.1) is asymptotically bounded in the secondmoment

lim sup
t→∞

E(|x(t)|2) ≤
a1
β

, ∀x(0) ∈ Rn. (5.2)

We refer the reader to Chapter 5 of [19] for the proof.
Now we consider to reproduce this boundedness property by the EMmethod.

Theorem 5.2. Let (3.1) and (5.1) hold, then for any ∆t < 2β/K the EM solution (2.2) satisfies

lim sup
k→∞

E|Yk|
2

≤
2a1 + α∆t
2β − K∆t

, ∀Y0 ∈ Rn.
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Moreover, let the stepsize tend to zero, then

lim
∆t→0

lim sup
k→∞

E|Yk|
2

≤
a1
β

, ∀Y0 ∈ Rn. (5.3)

Proof. Since ∆Bi,k, i = 1, . . . ,m, is independent from each other, we have E(∆Bi,k) = 0, E((∆Bi,k)
2) = ∆t and

E(∆Bi,k∆Bj,k) = E(∆Bi,k)E(∆Bj,k) = 0, for i ≠ j. Taking square and expectation on both sides of the EM solution (2.2),
we have

E|Yk+1|
2

≤ E|Yk|
2
+ ∆t2E(|f (Yk)|

2) + ∆tE


2⟨Yk, f (Yk)⟩ +

m
i=1

|gi(Yk)|
2


≤ E|Yk|

2
+ ∆t2(KE|Yk|

2
+ α) + ∆t(−2βE|Yk|

2
+ 2a1)

≤ (1 − 2β∆t + K∆t2)E|Yk|
2
+ (α∆t2 + 2a1∆t).

By iteration, we see

E|Yk+1|
2

≤ (1 − 2β∆t + K∆t2)k+1E|Y0|
2
+ (α∆t2 + 2a1∆t)

1 − (1 − 2β∆t + K∆t2)k+1

1 − (1 − 2β∆t + K∆t2)
.

Choosing ∆t < 2β/K , we have 1− 2β∆t + K∆t2 < 1. Let k tend to infinity and ∆t tend to 0; then the assertion holds. �

It is interesting to see that for the case of second moment, the EM method can reproduce not only the boundedness
property but also the upper bound accurately, that is the upper bounds in (5.2) and (5.3) are identical. From this point of
view, the result for the second moment is better than that for the small moment. However, it should be noticed that the
condition (5.1) is stronger than condition (3.2).

5.2. The backward EM method

To relax the constraint on the drift coefficient, we replace the linear growth condition by the following condition

⟨x, f (x)⟩ ≤ −η|x|2 + a2, ∀x ∈ Rn, (5.4)

where η and a2 are positive constants. We still need the linear growth condition (4.2) on the diffusion coefficient. For the
asymptotic boundedness of the secondmoment of the underlying solutionwe state another theorem as follows andwe refer
the reader to Chapter 5 of [19] for the proof.

Theorem 5.3. Let (4.2) and (5.4) hold. If 2η > mK, the underlying solution of SDE (2.1) is asymptotically bounded in the second
moment

lim sup
t→∞

E(|x(t)|2) ≤
2a2 + mα

2η − mK
, ∀x(0) ∈ Rn. (5.5)

However, in the same spirit of Lemma 4.1, we see the secondmoment of the EM solutionmay blow up under condition (5.4).
So we turn to the backward EMmethod.

Theorem 5.4. Let (4.2) and (5.4) hold. If 2η > mK, then for any ∆t > 0 the BE solution (2.3) satisfies

lim sup
k→∞

E|Yk|
2

≤
2a2 + mα

2η − mK
, ∀Y0 ∈ Rn. (5.6)

Proof. Taking square on both sides of the backward EM solution, by (5.4) we obtain

|Yk+1|
2

=


Yk+1, Yk +

m
i=1

gi(Yk)∆Bi,k


+ ⟨Yk+1, f (Yk+1)∆t⟩

≤
1
2
|Yk+1|

2
+

1
2

Yk +

m
i=1

gi(Yk)∆Bi,k


2

− η∆t|Yk+1|
2
+ a2∆t

≤
1

1 + 2η∆t

Yk +

m
i=1

gi(Yk)∆Bi,k


2

+
2a2∆t

1 + 2η∆t
.
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Then taking expectation on both sides, by (4.2) we see

E|Yk+1|
2

≤
1

1 + 2η∆t
(E|Yk|

2
+ mK∆tE|Yk|

2
+ mα∆t) +

2a2∆t
1 + 2η∆t

≤
1 + mK∆t
1 + 2η∆t

E|Yk|
2
+

(2a2 + mα)∆t
1 + 2η∆t

.

By iteration, we have

E|Yk+1|
2

≤


1 + mK∆t
1 + 2η∆t

k+1

E|Y0|
2
+

(2a2 + mα)∆t
1 + 2η∆t

×
1 − ((1 + mK∆t)/(1 + 2η∆t))k+1

1 − (1 + mK∆t)/(1 + 2η∆t)
.

Due to 2η > mK , let k → ∞; then the assertion holds. �

We have three comments on Theorem 5.4.

• Compare the upper bounds in (5.5) and (5.6), we observe the backward EMmethod can reproduce the asymptotic upper
bound of the underlying solution accurately as well.

• There is no constraint on the stepsize for the backward EMmethod.
• The conditions we imposed in the case of secondmoment are stronger than those used in the small moment in Section 4.

6. Conclusions and further discussion

In this paper we have presented results on numerical asymptotic boundedness in both small moment and second
moment. In both cases, the numerical methods are showed to be able to reproduce the asymptotic boundedness property
of the underlying solution under certain conditions. It should be noted that the conditions for the small moment are weaker
than those for the second moment, but better results are obtained for the second moment, that is the upper bound could be
reproduced accurately and the requirement of the stepsize could be stated explicitly.

One obvious open question is in the case of smallmomentwhetherwe could recover the upper bound of the true solution
of the SDE accurately by using the numerical solution with carefully chosen D and ∆t . Besides, although the asymptotic
boundedness property for pthmomentwith 1 < p < 2 could be implied by the secondmoment, it is stillworth to investigate
if there exists different (possibly weaker) conditions for p ∈ (1, 2). Also, the existence of sufficient conditions for the case
of p > 2 is interesting for further research.
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