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ABSTRACT

Cloud detection is a basic research for achieving cloud-cover state and other cloud characteristics. Because

of the influence of sunlight, the brightness of sky background on the ground-based cloud image is usually

nonuniform, which increases the difficulty for cirrus cloud detection, and few detection methods perform well

for thin cirrus clouds. This paper presents an effective background estimation method to eliminate the in-

fluence of variable illumination conditions and proposes a background subtraction adaptive threshold method

(BSAT) to detect cirrus clouds in visible images for the small field of view and mixed clear–cloud scenes. The

BSAT algorithm consists of red-to-blue band operation, background subtraction, adaptive threshold selec-

tion, and binarization. The experimental results show that the BSAT algorithm is robust for all types of cirrus

clouds, and the quantitative evaluation results demonstrate that the BSAT algorithm outperforms the fixed

threshold (FT) and adaptive threshold (AT) methods in cirrus cloud detection.

1. Introduction

Clouds play an important role in the energy balance

of the earth because of their absorption and scattering

of solar and infrared radiation (Harshvardhan et al.

1989), and their change is an important influence factor

of the global climate (Carslaw et al. 2002). It is very im-

portant to monitor clouds, and there are several meteo-

rological satellites providing sky-based large-scale clouds

observations around the clock (Hutchison et al. 1995;

Jolivet and Feijt 2003; Glantz 2010). Satellite obser-

vations have many advantages but suffer from various

uncertainties in quantifying cloud features because of

their low spatial and temporal resolution (Nordeen et al.

2005). So, ground-based cloud observation is commonly

used to improve satellite studies. However, the obser-

vation of ground-based cloud mainly depends on visual

judgment of the meteorological observers in the past

(World Meteorological Organization 2008), which has

become a bottleneck of automatic meteorological ob-

servation.

With the development of the remote sensing research

and digital image processing technology, several ground-

based sky-imaging devices are manufactured and applied

to achieve cloud-cover state and other cloud character-

istics automatically. Among these instruments, the whole-

sky imagers (WSI) (Johnson et al. 1989; Shields et al.

1992), developed by the Scripps Institute of Oceano-

graphy at the University of California, San Diego, is the

most known. It measures sky radiances at diverse wave-

length bands (450, 650, and 800 nm) and acquires the

hemisphere sky images, which provides cloud observa-

tion results both daytime and nighttime. Another com-

mercially noted instrument is the total-sky image (TSI)

(Long and DeLuisi 1998), which was manufactured by

the Yankee Environmental Systems, Inc. The TSI pro-

vides the hemisphere sky images in visible bands and

estimates fractional cloud cover in almost real time of

daytime. A number of papers are published using these

two noted apparatuses to determine cloud cover and

cloud type or classification (Shields et al. 1998; Slater

et al. 2001; Long et al. 2006; Sylvio et al. 2010). Some

similar functional sky imagers have also been manu-

factured, such as the whole-sky camera (WSC) (Long

et al. 2006; Calbó and Sabburg 2008), developed by

the University of Girona in Spain; the all-sky imager

(Cazorla et al. 2008), manufactured by Grupo de Fı́sica

de la Atmósfera (GFAT) at the University of Granada,

Spain; and the all-sky images (ASIs) (Huo and Lu 2009),

produced by the Key Laboratory for Atmosphere and

Global Environment Observation at the Institute of At-

mospheric Physics (IAP), Chinese Academy of Sciences.
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Cloud detection is the basis for determining cloud

cover and cloud type. Using aforementioned instru-

ments, many cloud detection algorithms were proposed.

These algorithms can be categorized into two types:

without any a priori knowledge and a priori knowledge

based. In the literature, the former type mainly refers to

2D red-to-blue bands threshold methods. A single fixed

threshold (FT) to the WSI for opaque clouds was pre-

sented by Johnson et al. (1988). Long et al. (2006) clas-

sified WSC image pixels with a red-to-blue ratio (R/B)

greater than 0.6 as cloudy or else as cloudless. Heinle

et al. (2010) used R 2 B instead of R/B and recom-

mended R 2 B 5 30 as an optimal fixed threshold to

detect cloud in their preprocessing. Considering the

complexity of clouds, a single fixed threshold obviously

cannot obtain satisfactory cloud determination result.

The TSI algorithm uses variable thresholds depending

on the relative position between pixels and the sun (Long

et al. 2006). Huo and Lu (2009) extended the fixed

threshold method to the ASIs by applying a fast Fourier

transform (FFT), symmetrical to obtain different thresh-

olds under low visibility conditions. Yang et al. (2009)

presented a method to compute adaptive threshold (AT)

for different types of clouds based on histogram maxi-

mum between-class variance. Of a priori knowledge–

based cloud detection methods, Souza-Echer et al. (2006)

adopted a 1D linear segmentation based on saturation

attribute to determine clear, cloud, or undefined sky state,

but the cutoff thresholds were predefined according to

some selected samples. Cazorla et al. (2008) used an op-

timized neural network classifier and a genetic algorithm

to discriminate clear sky and two cloud classes: opaque

and thin clouds. Sylvio et al. (2010) used Euclidean geo-

metric distance (EGD) and Bayesian statistics methods

in a 3D red–green–blue (RGB) color space to classify

the sky and cloud patterns. These methods have got

some interesting cloud detection results, but they need

many training samples or human–computer interaction

before cloud detection, which is not conducive to the

automatic observation of cloud. So, 2D red-to-blue bands

threshold methods are still widely used to detect cloud

in most of ground-based sky-imaging devices.

All these 2D threshold algorithms work quite well for

optically thick clouds, but few methods that are published

in detail perform well for thin cirrus clouds. Because of

the influence of sunlight, the brightness and red/blue

ratio of sky background on the ground-based cirrus cloud

image are usually nonuniform, which increases the diffi-

culty for cirrus cloud detection. The WSI team developed

a thin cloud algorithm, which is discussed in Shields et al.

(1992, 1998) and Seiz et al. (2007); examples are discussed

in Shields et al. (2007a,b). This thin cloud algorithm is

based on first identifying opaque clouds based on either

red/blue or NIR/blue ratios and then dividing the re-

sidual ratio pixels by a ratio background that varies with

look angle, solar zenith angle, and haze amount. How-

ever, details of the algorithm have not yet been pub-

lished, and the algorithm is also quite complex to use. In

this paper, we adopt an effective background estimation

method to eliminate the influence of variable illumina-

tion conditions and bring up a background subtraction

adaptive threshold method (BSAT) to detect cirrus clouds

from the ground-based visible cloud images automati-

cally. The cirrus cloud image dataset is described briefly

in the next section. In section 3, the BSAT algorithm

is introduced in detail. Then, several different types

of cirrus cloud images are analyzed to evaluate the

validity of the proposed method and a quantitative eval-

uate method is introduced in section 4. Finally, a sum-

mary and suggestions for future research are given in

section 5.

2. The cirrus cloud image dataset

The cirrus cloud images using in this paper are se-

lected from a cirrus cloud image dataset. The dataset is

composed of 181 images, which are collected from two

categories: total-sky images and common camera im-

ages. The total-sky images are acquired by ground-based

total-sky cloud imager (TCI) (Zhang et al. 2010), which

is developed by the Institute of Atmospheric Sounding

at the Chinese Academy of Meteorological Sciences.

The TCI system consists of three components, an in-

dustrial digital camera with a fish-eye lens (view angle

is 1858), a sun-block device, and an outside protective

box. Different from other cloud imagers, TCI adopts

a new sun-block mode: that is, without shelter when the

camera is imaging or else sheltering all the view range

completely during nonimaging period, which is actu-

alized by automatic opening and closing of a set of

spherical vanes. It can provide an RGB color image

with a resolution of 1392 3 1024 pixels every 1 min. A

number of total-sky images are collected from June

2009 to October 2010 by three TCI devices, which are

located at Beijing (39.80898N, 116.47198E), Conghua

(23.56798N, 113.61508E), and Yangjiang (21.84558N,

111.97838E) in China. Figure 1 shows the TCI device

and a case of TCI image. The common camera images

are shot by the coauthors from different sites at dif-

ferent times. Considering that the areas influenced by

the direct sunlight are often overexposure, these areas

are not included in the dataset. That is to say, we only

analyze the images with a limited field of view. So, the

two types of images are viewed by human eyes and some

typical cirrus cloud subregions are cropped to form the

final cirrus cloud image dataset.
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3. Background subtraction adaptive threshold
algorithm

In clear sky, sunlight scatters off molecules and other

particles much smaller than the wavelength of the light

in the atmosphere. The scattering of molecular air is

called Rayleigh scattering, which is inversely propor-

tional to the fourth power of wavelength, so that shorter-

wavelength violet and blue light will scatter more than

the longer red wavelength. Real atmospheres include

small particles such as may be characterized by haze.

The scattering in these atmospheres is called Mie scat-

tering and results in a proportionality that is less strong

than Rayleigh and that depends on how clean and clear

the air is. On the other hand, the cloud consists of water

droplets that are much larger than the droplets associated

with either haze or clear air, and the scattering from

them is almost independent of wavelength in the visible

spectrum (Nishita et al. 1993). This is the reason why

the sky is the blue color against white clouds to our

eyes. Almost all the cirrus cloud images are consistent

with or similar to meet the rules.

Using this property, many researchers separated clouds

from sky background based on the ratio of red-to-blue

channel (Shields et al. 1998; Slater et al. 2001; Long et al.

2006; Calbó and Sabburg 2008). The objective of this

operation is increasing the differentia between the clear

sky and the clouds. Considering that log-ratio operation,

difference operation, and normalized difference opera-

tion also have similar effects with ratio operation, we

compare the mentioned four operations in order to

choose a more suitable method for the cirrus cloud

detection.

a. Overview of the new algorithm

The proposed cirrus cloud detection method consists

of red-to-blue band operation, background subtraction,

adaptive threshold selection, and binarization. The whole

flowchart is illustrated as Fig. 2. First, a red-to-blue chan-

nel operation is performed to transfer the original RGB

image into a single channel image in order to enhance

the differentia between the cloud and background. Sec-

ond, morphology opening operation is used to estimate

nonuniform illumination background, and the back-

ground subtraction result can be obtained by subtracting

the background image from the channel operation result

image. Then, a threshold method is used to compute an

adaptive threshold for the background subtraction im-

age. Finally, a binarization processing is done to distin-

guish cloud and sky pixels. The effectiveness of BSAT

algorithm is based on the histogram bimodal distribu-

tion of images. When the sky is clear or overcast, it is not

suitable for using the BSAT algorithm. The related so-

lutions have been mentioned in Li et al. (2011). In this

paper, we focus on the detection of cirrus cloud for a

limited field of view and a mixed clear/cloud scene. The

detailed steps of the BSAT will be explained in the fol-

lowing sections.

b. Four blue-to-red channel operation methods

The equations of ratio, log-ratio, difference, and nor-

malized difference operation are as follows:

Vr 5 R/B, (1)

Vl 5 log(R)/log(B), (2)

Vd 5 R 2 B, and (3)

Vn 5
R 2 B

R 1 B
, (4)

where R and B represent red and blue channel gray

values, respectively, and Vr, Vl, Vd, and Vn are the

FIG. 1. Ground-based TCI: (left) TCI device and (right) an example of TCI image obtained at

0625 local time (LT) 30 Jun 2010 in Yangjiang, China.
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corresponding results of ratio, log-ratio, difference, and

normalized difference operation.

To choose the most appropriates band operation for

cirrus cloud image, four operation methods are calcu-

lated respectively for 181 cirrus cloud images. These

images have similar results, and Fig. 3 shows one of the

results. To better display, all images are converted to

an unsigned 8-bit format. In Fig. 3, the left panel shows

the original image, which is a subregion of Fig. 1; the top

panels shows the ratio, log-ratio, difference, and nor-

malized difference operation results from left to right

in turn; and the bottom panels show the corresponding

normalized histograms. From these histograms, it can

be found that the gray values are on the high side after

ratio and log-ratio operations, and the values are on the

low side after difference operation, whereas the opera-

tion of normalized difference acquires the biggest gray-

scale, which will help to improve the detection accuracy

of cirrus cloud. So, in the next step, normalized differ-

ence operation of red-to-blue band is applied to the

original RGB image instead of ratio.

c. Background subtraction

Background subtraction is widely applied in video sur-

veillance system (Piccardi 2004), which is used to de-

tect a movement or significant differences inside of the

video frame. In this paper, a mathematical morphology

processing is adopted to estimate sky background based

on a single cirrus cloud image.

Mathematical morphology is a nonlinear theory for

image processing based on set and lattice theory. It was

originally developed for binary images, and it was later

extended to grayscale images. Dilation and erosion are

two elementary morphology operations (Gonzalez et al.

2004). Mathematically, the dilation of set A (which in

this case is a cloud image) by E is defined as

A 4 E 5 [z j (Ê)z \A 6¼ f], (5)

where A4E is the result of dilation, z is an element of

A, E is the structuring element, Ê means the reflection

of E, (Ê)z denotes the translation of set Ê by z, \ rep-

resents the intersection of two sets, and f is the empty

set. The definition of erosion is similar to that of dilation.

The erosion of set A by E, which is denoted as AQE, is

defined as

A Q E 5 [z j (E)z \ Ac 6¼ f], (6)

where (E)z is the translation of set E by z and Ac is the

complement of set A.

In image processing domain, dilation and erosion are

used most often in various combinations. Opening and

closing operations are two best common combinations

of dilation and erosion. The morphological opening of

A by E, which is denoted as A+E, is simply erosion of

A by E, followed by dilation of the result by E,

FIG. 2. The flowchart of the proposed cirrus cloud detection.
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A+E 5 (A Q E) 4 E. (7)

The closing operation of A by E, which is denoted as

A d E, is a dilation followed by an erosion,

A d E 5 (A 4 E) Q E. (8)

Opening operation can be used to estimate back-

ground for nonuniform illumination conditions. Accord-

ing to the definition of opening, the structure element is

prerequisite. Structure element has all kinds of shapes,

including line, disk, diamond, rectangle, square, and so

on. Considering cirrus clouds are often wispy or in rip-

ples arranged in a regular formation, a flat, rectangle-

shaped structuring element is adopted in this paper, and

two nonnegative integers are needed to specify the size

of rectangle.

To estimate background accurately, the size of the

structure element should be larger than the cirrus clouds.

Figure 4 shows an example of background subtraction

with structure elements of different sizes. The left panel

is the original image with a nonuniform illumination

background. When the structure size is smaller than the

big rectangle in the center of the image, the background

(top left panel) can be estimated partly, but the middle

rectangle is misestimated as background. Then sub-

tracting the background image from the original image,

the background subtraction result (top middle panel)

can be obtained. The top-right image shows the ulti-

mate binarization result. When the structure size is big-

ger than the middle rectangle, the estimated background

is well. All the objects are detected correctly. The corre-

sponding results are shown in the bottom panels of Fig. 4.

d. Adaptive threshold and binarization

After background subtraction, the cloud pixels can

be marked as foreground against sky background. The

histogram represents the brightness values as a bimodal

distribution. The Otsu (1979) threshold method can be

used to choose an adaptive threshold by maximizing

between-class variance of the two types. The basic idea

of Otsu is as follows:

Suppose the gray levels of the given image can be

represented as L. The number of pixels at level i is de-

noted by ni and the total number of pixels is denoted by

N 5 �L
i51n

i
. The probability of each gray value is rep-

resented as Pi 5 ni/N. If the pixels of the image are di-

vided into two class CB and CO (background and object,

which in this case is clouds) by a threshold at level T,

then the probabilities of each class are given as

vB 5

�
T

i51

ni

N
5 �

T

i51

Pi and (9)

vO 5

�
L

i5T11

ni

N
5 �

L

i5T11

Pi 5 1 2 vB, (10)

respectively. The average gray values of the classes can

be denoted as

mB 5

�
T

i51

ni 3 i

�
T

i51

ni

5

�
T

i51

Pi 3 i

vB

and (11)

mO 5

�
L

i5T11

ni 3 i

�
L

i5T11

ni

5

�
L

i5T11

Pi 3 i

vO

, (12)

whereas the total average gray of the original image can

be represented as

FIG. 3. Comparison of the four channel operation methods: (far left) original image; (top, left to right) ratio, log-ratio, difference, and

normalized difference operation results; and (bottom) the corresponding normalized histograms.
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m 5 �
L

i51

Pi 3 i 5 �
T

i51

Pi 3 i 1 �
L

i5T11

Pi 3 i

5 mBvB 1 mOvO. (13)

The between-class variance between background and

object is

s2(T) 5 vB(mB 2 m)2
1 vO(mO 2 m)2

5 vBvO(mB 2 mO)2. (14)

The threshold T, which maximizes s2(T), is the opti-

mal threshold to segmentation object and background.

Using this adaptive threshold, the background subtrac-

tion result can be divided into two classes. The pixels

whose gray values are larger than threshold T are la-

beled as clouds or else are labeled as cloudless.

4. Experimental results and accuracy evaluation

To illustrate the performance of the proposed method,

five different types of cirrus cloud images, which are

named C1, C2, C3, C4, and C5, are taken as exam-

ples from the cirrus cloud image dataset in this paper.

Figure 5 shows the experimental results of the proposed

method. The size of the rectangle-shaped structuring

element is 200 3 200. C1, C2, C3, C4, and C5 are dis-

played from top to bottom in turn. The left column is

the original images. The second and third columns are

the steps in order to get the result images (right column).

By visual examination, the results of the red-to-blue

channel normalized difference (second column) have

obvious nonuniform background brightness, and the

background and cloud are interacting with each other in

many regions. After background subtraction, the clouds

have clear boundaries and the backgrounds have homo-

geneous brightness (third column). In the BSAT result

images, white represents clouds and black denotes sky

regions. Comparing the BSAT results with the original

images, the cirrus cloud detection effects are satisfactory.

Another five different type cirrus cloud images, which

are denoted as C6, C7, C8, C9, and C10, are used to

further evaluate the good performance of the BSAT

algorithm. In this paper, the BAST results are compared

with the two alternate methods, the FT algorithm and

the AT algorithm. The results are not compared with

the WSI thin cloud algorithm, because the details of how

to apply the WSI algorithm are not readily available.

Here, the fixed threshold R/B 5 0.6 (Long et al. 2006) is

adopted in the FT algorithm. The method of Yang et al.

(2009) is adopted in the AT algorithm. Figure 6 shows

the experimental results of the three methods. C6, C7,

C8, C9, and C10 are displayed from top to bottom in

turn, where the left images are the original images, the

middle-left images are the FT results, the middle-right

images are the AT results, and the right images are the

results of the proposed BSAT.

By human examination, the FT results failure to dis-

tinguish some cirrus clouds in C7, C8, and C9 obviously,

whereas the AT results misclassify some sky regions as

clouds in the same images. Both the FT and AT methods

undetected some thin cirrus clouds for C6 but identify

many sky regions as clouds for C10. The proposed BSAT

obtains satisfactory visual effects for all the five images.

In addition to visual evaluation, a good quantitative

evaluation method is necessary. Cloud detection is

FIG. 4. Examples of background subtraction with structure element of different sizes: (far left) the

original images; (top, left to right) results of the opening operation, background subtraction, and bi-

narization with a small structure element; and (bottom) the corresponding results with an big structure

element.
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actually a binary classification, and there are four pos-

sible categories for each pixel:

True positive (TP): Both the visual and the detection

method classify the pixel as cloud.

True negative (TN): Both the visual and the detection

method classify the pixel as sky.

False positive (FP): The visual classifies the pixel as

sky, but the detection method classifies the pixel as

cloud.

FIG. 5. Experimental results of the BSAT algorithm: (left) the original images, (middle left) results of the blue-to-red channel normalized

difference, (middle right) results of the background subtraction, and (right) results of the BSAT.
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False negative (FN): The visual classifies the pixel as

cloud, but the detection method classifies the pixel

as sky.

A similar method has been adopted by Shufelt (1999)

for building detection evaluation. Here, we use the fol-

lowing two indexes for cirrus cloud detection assessment:

correctness: TP/(TP 1 FN) and

accuracy: TP/(TP 1 FP 1 FN).

The correctness is a measure of the correctly de-

tected cloud pixels among all the cloud pixels. The

accuracy reports the total accuracy of the method, which

takes both FP and FN into account. For a good cloud

FIG. 6. Experimental results of the three methods: (left) the original images, (middle left) results of the FT, (middle right) results of the

AT, and (right) results of the BSAT.
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detection algorithm, both correctness and accuracy

should be higher. To compute these two indexes, a se-

ries of standard cloud masks are manually interpreted

by an experienced cloud observer as the cloud truth

classification.

Figure 7 shows the quantitative evaluation results of

the three methods to the whole dataset. Both the cor-

rectness and accuracy of the FT algorithm are almost

the lowest in the three methods. The AT method obtains

the highest correctness for the most test images, but the

accuracy are obvious lower than the BSAT, which means

the AT algorithm misclassifies many clear-sky pixels as

clouds, whereas the correctness of the BSAT is close to

the AT method and the accuracy is the highest. The sta-

tistical results (maximum, minimum, and average) of the

three methods can be found in Table 1, which denotes the

BSAT algorithm outperforms the FT and AT methods

in cirrus cloud detection. The average detection cor-

rectness of the BSAT is 90.45%, and the accuracy is

85.38%.

The BSAT algorithm is proposed for detecting cirrus

cloud in a limited view. We did a preliminary test of the

performance of the BSAT for all-sky images. Three TCI

images, which are named C11, C12, and C13, are ana-

lyzed to test the BSAT. Figure 8 shows the experimental

results. C11, C12, and C13 are displayed from top to

bottom in turn. The middle-left images are the results of

the red-to-blue channel normalized difference. Results

after background subtraction are shown in the middle-

right images. Comparing the BSAT results (the right

images) with the original images (the left images), the

cloud detection effects for TCI images are satisfactory,

but the regions near the sun and the horizon still have

some misclassification.

5. Conclusions

Automatic cloud observation is an urgent task for

meteorological stations. Many ground-based cloud de-

vices (WSI, TSI, WSC, ASIs, and TCI) are manufactured

with the aim of solving this problem. Cloud detection is

a basic research for achieving cloud-cover state and

other cloud characteristics. The FT and AT algorithms,

which are two alternate 2D red-to-blue bands threshold

methods, are widely used in these instruments to detect

cloud automatically. They work quite well for optically

thick clouds, but few methods perform well for thin

cirrus clouds. In this paper, we propose a background

subtraction adaptive threshold method to detect cirrus

clouds from the ground-based visible cloud images au-

tomatically. The experimental results show that the

BSAT algorithm is robust for all types of cirrus clouds

for the small field of view and mixed clear–cloud scenes

we have tested. The quantitative evaluation results dem-

onstrate that the BSAT algorithm outperforms the FT

and AT methods in cirrus cloud detection for these test

scenarios. It must be noted that, although the BSAT

TABLE 1. Quantitative evaluation results of the three methods.

FT AT BSAT

Min Max Mean Min Max Mean Min Max Mean

Correctness (%) 7.34 99.91 57.75 77.35 99.98 94.20 81.27 95.81 90.45

Accuracy (%) 7.26 78.98 46.62 25.70 89.35 60.07 78.76 92.06 85.38

FIG. 7. Quantitative evaluation results on the dataset for the

three methods: (top) correctness of the three methods and (bot-

tom) accuracy of the three methods.
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algorithm is proposed for detecting cirrus cloud, it still

can be extended to deal with the more general all-sky

images. There are several problems need to be solved.

The first problem is how to identify the image is clear,

overcast, or mixed automatically. The related solutions

have been mentioned in Li et al. (2011), which identified

the image as unimodal or bimodal distribution according

to its standard deviation. The second problem is how

to estimate background in a complex all-sky image. A

big structure element or multimorphological processing

is the optional solution for background estimation. The

third problem is the impact of direct sunlight, because

the area influenced by the direct sunlight is often over-

exposure, which may not be removed by background

subtraction. So, the overexposure region can be con-

sidered as clouds in the first step of cloud detection.

Then, in the second step, the specific location of the

sun in the image can be calculated by using the longi-

tude, latitude, and time of the image. Using its property

of high brightness, the area of sun can be identified ac-

curately. Finally, the result of the first step is subtracted

from the second step, which yields the desired cloud de-

tection result.
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