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Abstract

Estimation and testing procedures for generalized additive (interaction) models are developed.
We present extensions of several existing procedures for additive models when the link is the
identity. This set of methods includes estimation of all component functions and their derivatives,
testing functional forms and in particular variable selection. Theorems and simulation results are
presented for the fundamentally new procedures. These comprise of, in particular, the introduc-
tion of local polynomial smoothing for this kind of models and the testing, including variable
selection. Our method is straightforward to implement and the simulation studies show good
performance in even small data sets. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Additive models in nonparametric regression analysis are rather popular for mainly
two reasons. In economic theory additivity is equivalent to the well-known property
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called strong separability and has many straightforward consequences for analysis, in-
terpretation and decision making. In statistics it is well known due to articles of Stone
(1985, 1986) that additive regression models can be estimated at the univariate rate of
convergence. Most Lexible model estimators suMer from the so-called “curse of dimen-
sionality”. This problem disappears if the impact of the regressors X1; X2; : : : ; Xd on the
response Y is in some sense separable, e.g. when the regression function E[Y |X ]=m(X )
is additive

m(X ) = c +
d∑

=1

f
(X
): (1)

Here, c is a constant and {f
(·)}d
=1 is a set of unknown functions. They are assumed
to be smooth but otherwise arbitrary up to the identiHability condition Ef
(X
) = 0 for
every 16 
6d.

Among the existing procedures such as backHtting (Hastie and Tibshirani, 1990;
Mammen et al., 1999) and series estimator (Andrews and Whang, 1990), the marginal
integration estimator (TjHstheim and Auestad, 1994, or Linton and Nielsen, 1995)
attracted a fair amount of attention thanks to the appealing simplicity in implementation
as well as in theory. Further, its interpretation and extension to interactive models is
well understood (see Nielsen and Linton, 1997; Sperlich et al., 1999, or Sperlich et al.,
2002). Although the backHtting is easy to implement, its iterative structure has made
its theoretical properties and correct interpretation diRcult, see Mammen et al. (1999).
Moreover, there is no theory for extensions as we know them already for the marginal
integration estimator, e.g. by Fan et al. (1998), Severance-Lossin and Sperlich (1999),
Linton and H,ardle (1996) or Sperlich et al. (2002). Nevertheless, due to their very
diMerent interpretation when the real model is not additive, backHtting and marginal
integration should not be considered as competitors.

Apparently, model (1) excludes a wide variety of situations. The most natural and
often used extension is

G(m(X )) = c +
d∑

=1

f
(X
); (2)

where G(·) is a monotone link function. This is needed for many situations when model
(1) is inappropriate, e.g. for binary and survival data. Widely used link functions
include the logit and probit links for binary data, and the logarithm transform for
Poisson count data. One can also let G be the logarithm function and so the regression
function becomes multiplicative. Without loss of generality but along general practice,
we assume the link function G(·) to be known a priori. Testing the speciHcation of
this link is beyond the scope of this paper but is discussed, e.g. in H,ardle et al. (2001)

For the generalized additive model (2) (GAM) there is still need for investigation.
On the one hand, there is little theory for the many existing backHtting procedures.
Derivative estimation is a very important matter, especially in economics, but so far not
investigated for these kinds of models. Indeed, consistent, direct estimation of deriva-
tives is essential in economic studies, e.g. for estimating elasticities, returns to scale,
substitution rates, average derivatives and much more. Often, these indices or functions
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are much more of interest than the regression function itself. Certainly, derivative es-
timates can be obtained from kernel estimates of the additive components. But already
for the most simple case G = identity, Severance-Lossin and Sperlich (1999) showed
that direct estimators for f(�)

� , �¿ 0, using local polynomials outperform by far taking
derivatives of kernel estimates for the f�. Further, the need of testing methods for
various problems as, e.g. variable selection, functional forms and additivity is obvi-
ous. As will be seen in the following, also here derivative estimation can be a very
helpful tool. Since our methods do not restrict the form of link function G, they
generalize the work of Hjellvik et al. (1998) which deals exclusively with additive
models.

We introduce local polynomial estimation scheme for the components f
 in model
(2) and their derivatives. For the ease of notation, asymptotic theory is explicitly
derived only for the more complicated case of estimating derivatives. Having these
estimates at hand they can be used for testing. This can be either testing against
parametric, in our case polynomial, speciHcation or it can be used for variable selection
procedures. We construct our test statistics in analog to the one of H,ardle and Mammen
(1993). We performed a simulation study for the two original new contributions, i.e.
derivative estimation and variable selection.

The paper is organized as follows. In the next section, we provide the technical
setting for the problems and describes the marginal integration estimators of f(�)

� (·). In
Section 3 we discuss important extensions. Section 4 presents procedures and theorems
for a general testing method. Simulation studies are given in Section 5. All proofs are
deferred to the appendix.

2. Estimation of functions and derivatives

As indicated before the main purpose of this paper is to complete the set of tools
for the analysis of marginal impact functions in regression models, especially for GAM
with known link function. We will present Hrst procedures and theory for local poly-
nomial smoother in models with possibly nonidentical link function. For brevity, we
give our results in terms of derivative estimation, of which the estimation of compo-
nent function is a particular case. Before coming closer to the here applied marginal
integration method we need some general considerations about derivative estimation in
generalized additive regression models.

To make inference on the derivative f(�)
� (·), we Hrst want to express it in terms

of the known G and the unknown m. Denote the variable X = (X�; SX ) to highlight
a particular direction �, where SX = (X1; : : : ; X�−1; X�+1; : : : ; Xd). The marginal density
of X�, that of SX and the joint density of X = (X�; SX ), are denoted by ’�(x�), S’( Sx),
and ’(x�; Sx), respectively. We deHne F�(x�) =

∫
G{m(x)} S’( Sx) d Sx= c+f�(x�) for every

16 �6d, then

G{m(x)} =
d∑
�=1

F�(x�) − (d− 1)c: (3)

Taking derivatives on both sides and working by induction on � gives
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Lemma 1. For �¿ 1; de=ne J� = {(j1; j2; : : : ; j�) | 06 j1; j2; : : : ; j�6 �; and j1 + 2j2 +
· · · + �j� = �}; the �th derivative f(�)

� (x�) satis=es the following formula:

f(�)
� (x�) = �!

∑
( j1 ; j2 ;:::; j�)∈J�

G( j1+ j2+···+ j�){m(x�; Sx)}
�∏
�=1

{@(�)
� m(x�; Sx)} j�
(�!) j� j�!

; (4)

where @��m(x) = @�m(x)
@x��

.

Note from this lemma that a function of the vector variable x reduces to a function
of a scalar variable x�. Integrating both sides of (4) yields

Lemma 2. For �¿ 1

f(�)
� (x�)=�!

∑
( j1 ; j2 ;:::; j�)∈J�

∫
G( j1+ j2+···+ j�){m(x�; Sx)}

�∏
�=1

{@(�)
� m(x�; Sx)} j�
(�!) j� j�!

S’( Sx) d Sx:

(5)

Eq. (5) implies that for an i.i.d. sample Xi; i = 1; 2; : : : ; n

f(�)
� (x�) =

1
n

n∑
i=1

G( j1+ j2+···+ j�){m(x�; SX i)}
�∏
�=1

{@(�)
� m(x�; SX i)} j�

(�!) j� j�!
+ Op(1=

√
n): (6)

This is used in the next paragraph to obtain estimators of f(�)
� (x�) with low-dimensional

rates typical for the dimension of the considered derivative function. Later we will also
introduce a statistic for testing f(�)

� (·) ≡ 0 based on its estimates.
For statistical inference, let (Xi; Yi), i=1; 2; : : : ; n be an i.i.d. sample following model

(2). The marginal integration estimator for f(�)
� (x�), respectively F�(x�) from (3) is

deHned by replacing in Eq. (5) the unknown expression m(·) by a local polynomial
smoother m̃(·). The integral over the marginal density S’( Sx) we replace by (marginal)
averaging over m̃(x�; SX i). The multidimensional local polynomial estimator has been
introduced in detail by Ruppert and Wand (1994) and by Severance-Lossin and Sperlich
(1999) in the context of marginal integration. We need the following notation.

Set for all l=1; 2; : : : ; n and �=0; 1; 2; : : : ; p, where p is an integer such that p−�¿ 0
is odd

Z� = {(Xi� − x�)�}n×(p+1); Wl;� = diag
{

1
n
Kh(Xi� − x�)Lg( SX i − SX l)

}n
i=1
;

Y = (Yi)n×1; and E� is a (p+ 1) vector of zeros whose (�+ 1)-element is 1;

where K and L are kernel functions, while for any function K , we denote Kh(u) =
K(u=h)=h, and here h and g are bandwidths. In the following, K (i) denote the ith convo-
lution of a function K with itself, and &r(K) =

∫
urK(u) du. Note that E′

0(Z ′�Wl;�Z�)
−1

Z ′�Wl;�Y is a special local polynomial smoother to get our m̃.
Now we can give a closed expression for the estimators

F̂�(x�) = n−1
n∑
l=1

G{E′
0(Z ′�Wl;�Z�)

−1Z ′�Wl;�Y}
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for F�(x�) and consequently,

m̂(x) = G−1


d∑

=1

F̂
(x
) − (d− 1)
1
nd

n∑
l=1

d∑

=1

F̂
(Xj
)


and

@̂��m(x�; SX l) = �!E′
�(Z

′
�Wl;�Z�)

−1Z ′�Wl;�Y; (7)

f̂
(�)
� (x�) =

�!
n

n∑
l=1

∑
( j1 ; j2 ;:::; j�)∈J�

G(
∑�
�=1 j�){m̂(x�; SX l)}

�∏
�=1

{ [@(�)m(x�; SX l)} j�
(�!) j� j�!

(8)

for m(x) and the derivatives @��m(x) or f(�)
� , respectively. It can be seen easily that in

the case of estimating f� we take

f̂�(x�) = F̂�(x�) − 1
nd

n∑
j=1

d∑

=1

F̂
(Xj
):

To establish the asymptotics for these estimators we need the following assumptions:

(A1) The kernel K(·) is a symmetric, compactly supported and Lipschitz continuous
probability density; while the kernel L(·) is symmetric, compactly supported and
Lipschitz continuous with

∫
L(u) du = 1 and order q where q¿ 1

4 (d − 1) for
estimation and q¿ (d − 1)((p + 1)=(p + 3�)) for testing hypotheses (which in
eMects, can even be relaxed to q¿ (d− 1)((p+ 1− �)=(p+ 3�)) as one can see
from the proof);

(A2) Bandwidths satisfy nhgd−1=ln(n) → ∞, g2q=hp+1 → 0 and h= he = h0n−1=(2p+3)

for estimation in Section 2 and h= ht = h0n−2=(p+3�+2) for testing hypotheses in
Section 4.

(A3) The functions fs(·)’s have bounded Lipschitz continuous (p+ 1)th derivatives.
(A4) The variance function, *2(·), is bounded and Lipschitz continuous.
(A5) ’ and S’ are uniformly bounded away from zero and inHnity and have bounded

Lipschitz continuous (p+ 1)th derivatives.
(A6) G is uniformly bounded away from zero and inHnity and have bounded Lipschitz

continuous (p+ 1)th derivative.

Note that in kernel regression, using marginal integration, these assumptions are stan-
dard and we therefore skip their discussion except one remark. In assumption A1 kernel
L has to be a higher kernel because bias reduction for the nuisance directions is needed.
Certainly, one could also allow K to be of higher order and introduce the correspond-
ing changes in the asymptotic expressions. However, if we do not want to have a
Hrst-order impact of the nuisance directions on the bias, one has always to respect a
certain trade-oM between the order of K and L. The asymptotics of our estimators are
given in the next theorem.

Theorem 1. Under assumptions A1–A6; for any � and for �¿ 1; the estimated �th

derivative f̂
(�)
� (x�) satis=es√

nh2�+1{f̂(�)
� (x�) − f(�)

� (x�) − hp+1−�b��(x�)} D→N{0; v��(x�)};
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where

b��(x�) =
�!&p+1(K∗

� )
(p+ 1)!

∫
{(G′ ◦ m)@(p+1)

� m}(x�; Sx) S’( Sx) d Sx;

v��(x�) = (v!)2‖K∗
� ‖2

2

∫ {
(G′ ◦ m)2*2

’

}
(x�; Sx) S’2( Sx) d Sx;

where K∗
� (u) =

∑p
t=0 s�tu

tK(u) with (sst)06s; t6p = S−1 = {&s+t(K)}−1
06s; t6p.

Note here by the deHnition of matrix S that the �th equivalent kernel K∗
� (u) has the

following property:

&q(K∗
� ) =


0; q6p; q �= �;
1; q= �;

/�; q= p+ 1;

(9)

where /� is some Hnite constant depending on �. Note that the notation “equivalent
kernel” refers to the equivalence between higher order kernel and local polynomial
smoothing, see Lejeune (1985). It should not be confused with the notion of canonical
kernels mentioned in Marron and Nolan (1988), which refers to the classes of kernels
which are rescales of each other.

Now we write

1
�!

(f̂
�
� (x�)−f�� (x�))=hp+1−� 1

�!
b��(x�)+

n∑
j=1

wj�1j+Op

(
1√
n

+ hp+2−�
)
; (10)

where we deHned *(Xi), 1i by Yi − m(Xi) = *(Xi)1i, and

wj� =
1
h�n
K∗
�h(x� − Xj�)

S’( SX j)*(Xj)(G′ ◦ m)(x�; SX j)
’(x�; SX j)

: (11)

It is easy to verify that this holds whether h= he or h= ht , compare assumption A2,
and it will be made use of it in the next sections. We use residuals û i:=Yi − m̂(Xi),
to approximate *(Xi)1i.

3. Discussion of extensions

We now discuss brieLy possible extensions which allow to consider more general
models as done in Section 2. This ordering has been chosen as otherwise the notation
would have become much too confusing in Section 2 and especially the appendix.

So far we have considered the GAM

G{m(x)} = c +
d∑

=1

f
(x
) with E[f�(X�)] = 0;

where all component functions were univariate. Clearly, the marginal integration idea
to estimate marginal impact functions and its derivatives works through also for any
other dimension of regressor X�.



L. Yang et al. / Journal of Statistical Planning and Inference 115 (2003) 521–542 527

Consequently, the regressors X1; : : : ; Xd could be grouped into q6d (nonover-
lapping) groups Z1 ∈Rd1 ; : : : ; Zq ∈Rd1 ,

∑q
l=1 dl = d ending up in model

G{m(x)} = c +
q∑
l=1

gl(zl) with E[gl(Zl)] = 0: (12)

The common problem is now to Hnd the correct groups. But this question is equiv-
alent to Hnding the signiHcant interactions between the original, univariate regressors
X1; : : : ; Xd. For this reason we decompose the regression as follows:

G{m(x)} = c +
d∑
�=1

f�(x�) +
∑
�¡


f�;
(x�; x
) +
d∑

�¡
¡�

f�;
;�(x�; x
; x�) + · · · :

In practice one would stop after the second-order interaction to get an idea about the
(correct) grouping in Eq. (12). Therefore, the interesting model is usually

G{m(x)} = c +
d∑
�=1

f�(x�) +
∑
�¡


f�;
(x�; x
); (13)

which can be identiHed when imposing the centering conditions∫
f�(u)’�(u) du= 0

and ∫
f�;
(u; v)’�(u) du=

∫
f�;
(u; v)’
(v) dv= 0:

An intensive discussion of the estimation of additive interaction models when the link
G(·) is the identity can be found in Sperlich et al. (2002). Therefore, we only sketch
here the procedure for the case when G is not trivial. Our consideration has been
motivated by Hnding the right grouping in (12), so it is enough to estimate consistently
the f�;
 up to a constant. With the methods presented in Section 4 these estimates can
be used for testing signiHcance.

Analogous to F� we can deHne F�;
(x�; x
)=
∫
G{m(x�; x
; Wx) W’( Wx) d Wx} where Wx is now

the subvector of x containing all elements except x�, x
 and W’ the marginal density
of Wx. Some small calculations show that (F�;
 − F� − F
)(·) is equal to f�;
 up to an
additive constant. Now we estimate

F̂�;
(x�; x
) = n−1
n∑
l=1

G{m̃(x�; x
; Wx)};

where m̃ can be deHned similar to above, see Sperlich et al. (2002), and proceed with
(F̂�;
 − F̂� − F̂
)(·).

One referee wondered whether our work can be extended to other smoothers such as,
e.g. splines or series estimators. Certainly, the marginal integration idea can always be
applied. However, apart from the fact that there is little distribution theory for splines
in multivariate regression, series estimators (Andrews and Whang, 1990) as well as
splines (Stone, 1994) in additive models are rather used to project the data directly into
the space of additive models and look there for the optimal regression Ht. As discussed
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in Sperlich et al. (2002), mixing such a projection with marginal integration is quite
problematic in practice for interpretation reasons. Concerning derivative estimation in
multivariate regression, to our knowledge kernel methods are so far the only approach
that provides distribution theory, see e.g. Ruppert and Wand (1994), Severance-Lossin
and Sperlich (1999) or Mammen et al. (1999). Finally, for the special context of testing
problems Dette et al. (2001) discussed advantages and disadvantages of both, marginal
integration and kernel-based methods.

4. Hypothesis testing on derivatives

We now turn to componentwise testing. The presented procedures will be useful to
check signiHcance or such polynomial structure as linearity for the considered functions.
The interest in testing whether a function is signiHcant at all is obvious as it enables
us to perform variable selection as well as looking for interaction, see Section 3.
Testing polynomial structure is motivated by both economic and statistic arguments.
Especially, linearity has many important consequences in economics and thus is an
important assumption to check. On the other hand, if a wanted parametric speciHcation
cannot be rejected, the empirical researcher will always prefer to use it. This is due to
interpretation, facilities in modeling, etc.

As in the preceding sections we will condense the presentation on the case of test
statistics with one-dimensional derivative functions. Let us Hrst specify the hypothesis
we focus on. We want to test the null hypothesis

H0 :
∫
f(�)
� (x�)24(x�) dx� = 0 vs: local alternatives

Hn :
1
�!2

∫
f(�)
� (x�)24(x�) dx� ¿C6n;

where 4(x) is a weight function with Lipschitz continuous (p+ 1)th derivative, 6n =
n−1h−(2�+1=2) and C is

(z1−�I + z1−�II )*T ; (14)

where

*2
T =

‖K∗(2)
� ‖2

L2

2

∫ [∫ {
(G′ ◦ m)2*2

’

}
(x�; Sx) S’2( Sx) d Sx

]2

4(x�)2 dx�: (15)

Further, z1−�I is the upper (1 − �I )th point of the standard normal variable, �I ∈ (0; 1)
is the pre-speciHed signiHcance level, while �II is the pre-speciHed type II error. We
deHne the test statistic

T =
∫

1
(�!)2 f̂

(�)
� (x�)24(x�) dx�; (16)

which is an estimate for (1=(�!)2)
∫
f(�)
� (x�)24(x�) dx�. The next theorem will show

that T is a suitable statistic for testing H0.
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Theorem 2. For any given � and h = ht = h0n−2=(p+3�+2) as speci=ed in A2; under
assumptions A1–A6; the limiting distribution of T is

h2�+1=2nT − h2�+1=2n
1

(�!)2

∫
f(�)
� (x�)24(x�) dx�

− h−1=2K∗(2)
� (0)

∫ {
(G′ ◦ m)2*2

’

}
(x�; Sx) S’( Sx)24(x�) dx� d Sx

− nh
p+�+3=2&p+1(K∗

� )
�!(p+ 1)!

∫
{(G′ ◦ m)@(p+1)

� m}(x�; Sx) S’( Sx)f(�)
� (x�)4(x�) dx� d Sx

D→N (0; *2
T ): (17)

The test rule is to reject H0 if

h2�+1=2nT¿ h−1=2K∗(2)
� (0)

∫ {
(G′ ◦ m)2*2

’

}
(x�; Sx) S’( Sx)24(x�) dx� d Sx

+ z1−�I *T : (18)

The probability of type II error is smaller than �II as n→ ∞: for any function f�(x);

P[H0 is retained |Hn is true]6 �II + o(n−(p−�+1)=(p+3�+2));

where the term o(n−(p−�+1)=(p+3�+2)) implicitly depends on f�( ).

Consider the test problemH0 :f� is linear.Note that if lookingatH0 :
∫
f(2)
� (x�)24(x�) dx�

= 0, taking p= 3, then n−(p−�+1)=(p+3�+2) = n−2=11 is the rate. Alternatively, we could
look on the Hrst derivative, i.e. H0 :

∫
f(2)
� (x�)24(x�) dx� = const. Then, with � = 1,

p = 2 we get even a rate of n−2=7 although testing against zero or against a constant
is basically the same. Apart from the rate, in small samples it can often be preferable
for numerical reasons to look on lower degrees of derivatives if possible.

The remaining question is how to make these tests feasible, i.e. how to get the
critical values. There are obviously two standard ways: estimating the asymptotics of
the test or applying (wild) bootstrap.

To apply the rejection rule (18) from Theorem 2 we need to estimate *T , see (15)
and the bias expression

h−1=2K∗(2)
� (0)

∫ {
(G′ ◦ m)2*2

’

}
(x�; Sx) S’( Sx)24(x�) dx� d Sx: (19)

For both expressions one would have to estimate function m(·), density ’(·) and its
marginal S’(·). This could be done by any nonparametric consistent estimator. Alter-
natively, for estimating the whole bias expression in once, one could also try one of
the various bias-estimators for non or semiparametric models. Apart from the obvious
fact that this task imposes one more crucial step, it is well known that the Hrst-order
asymptotics derived in Theorem 2 are not very helpful when applying the test in prac-
tice. Hjellvik et al. (1998) showed that maybe several hundred thousand observations
are necessary to reach some reasonable accuracy by this method. This even gets worse
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when the asymptotic expressions also have to be estimated, again depending on some
smoothing parameters.

Instead, (wild) bootstrap (see e.g. Liu, 1988 or Wu, 1986) is used to better approx-
imate the distribution of the statistic T under hypothesis H0. A detailed introduction,
discussion and theory of this method in the context of testing problems combined with
marginal integration can be found in Gozalo and Linton (2001), H,ardle et al. (2001) or
Sperlich et al. (2002). The idea is that random variables u∗i ; i=1; : : : ; n are drawn from a
distribution equal to that of the residuals û up to the second (or higher) moment. Then,

bootstrap samples Y ∗
1 ; : : : ; Y

∗
n can be constructed by Y ∗

i =G−1{c0 +
∑d

=1 f̂

0

 (Xi)}+u∗i ,

where the notations f0

 (·) and c0 indicate that the constant and the additive components

f
 were estimated under the null hypothesis H0. Having a bootstrap sample, calculate
the (bootstrap) test statistic T̂

∗
out from sample (Xi; Y ∗

i )ni=1. As the T̂
∗

are distributed
as T under H0, repeating this many times one gets thus a simulated critical value under
H0, respectively, a simulated p-value for T . Note that in case of limited dependent ob-
servations with binary response (let us still call it Y ) as e.g. in probit or logit models,

G−1 represents the error distribution and we can draw Y ∗
i from G−1{c0+

∑d

=1 f̂

0

 (Xi)}

directly.
The consistency of the (wild) bootstrap for this test procedure can be either con-

cluded from H,ardle et al. (2001) or, more directly, from Gozalo and Linton (2001).
The latter considers an additivity test for our model and uses marginal integration as
well. Not surprisingly, in their consistency proof Gozalo and Linton used the same
decomposition as we [their Eq. (A.25)] but have two terms more [called U4i ; U5i] due
to the diMerent testing problem. Further, they just handle with a simple kernel K(·)
instead of K∗

� (·) and with the f
(·) instead of their derivatives. As these technicalities
are clearly irrelevant to their consistency proof for the bootstrap [their Proof of The-
orem 2], we can conclude directly the consistency just by following their arguments
[starting from their Eq. (A.39)]. We therefore skip here a detailed proof of consistency
for the wild bootstrap.

5. Some simulation results

We investigated the performance of our procedures in Hnite samples; Hrst for the
derivative and function estimation, then for the variable selection, i.e. component wise
testing for signiHcance of the impact functions.

5.1. Function and derivative estimation

Although the introduction of a nontrivial link function G(·) looks straight for-
ward for the marginal integration, in practice it unfortunately can cause strong nega-
tive eMects on the small sample performance. We will illustrate this in the follow-
ing by doing the same simulations twice, Hrst for the identical link and then for
G(·) = ln(·).
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We drew n= 200 independent variables X ∼ U [ − 2; 2]3 and considered the models

G�{m(X )} = c +
3∑
�=1

f�(X�); �= 1; 2 with f1(X1) = 1:5 sin(−1:5X1)

f2(X2) = X 2
2 − 4

3 ; f3(X3) = X3 (20)

and c = 3:0. Further, G1 is the identity and G2 the logarithm. Finally, we added a
standard normal disturbance 1 to Eq. (20).

To get m̃ we used local linear smoother. In the previous section we did not dis-
cuss the question of bandwidth choice. Yang and Tschernig (1999) proposed plug-in
optimal bandwidth for the simpler problem of multivariate regression, but there does
not seem to be a solution for testing. In our current setting, the optimal bandwidth
depends on the direction of estimation, the diMerent G� and whether the function or
its derivatives are being estimated. For function estimation, cross-validation (CV) is
a commonly used bandwidth selector. However, the CV aims to minimize the mean
squared error of estimating the whole regression, not any particular components. In
addition, CV loses its appeal for derivative estimation. Therefore, we believe that
plug-in methods might be more appropriate here. Recall that h = h0n−1=(2p+3), see
assumption (A2). Then, following Theorem 1 the h0 that minimizes the squared error
at x� is

h0(x�)

=

[
(2�+1)‖K∗

� ‖2
2

∫ {(G′◦m)2*2=’}(x�; Sx) S’2( Sx) d Sx

2(p+1−�)((&p+1(K∗
� )=(p+1)!)

∫ {(G′◦m)@(p+1)
� m}(x�; Sx) S’( Sx) d Sx)2

]1=(2p+3)

;

(21)
whereas the globally optimal one is

h0

=

[
(2�+1)‖K∗

� ‖2
2

∫ {(G′ ◦ m)2*2=’}(x�; Sx) S’2( Sx)’�(x�) d Sx dx�

2(p+1−�)(&p+1(K∗
� )=(p+1)!)2

∫
(
∫ {(G′ ◦ m)@(p+1)

� m}(x�; Sx) S’( Sx) d Sx)2’�(x�) dx�

]1=(2p+3)

minimizing the integrated mean squared error [MISE(f�)]. Both expressions could be
pre-estimated, either nonparametrically, or maybe better, approximated by parametric
estimates. More discussion about this in the context of marginal integration estimation
can also be found in Sperlich et al. (1999) or, in the context of testing, in Dette et al.
(2001).

On the other hand, one has to understand that decreasing the bandwidth is some-
how like decreasing the degrees of freedom, or, oversmoothing means to approximate
the “true model” by a smooth one. This is indeed a philosophical question as al-
ready the existence of a true, estimable model is discussable. Empirical researchers in
many practical Helds may have a minimum degree of smoothness in mind and thus
chooses the bandwidth “by eye” regardless of any asymptotic optimality criteria, see
the recent work of Chaudhuri and Marron (1999) for the so-called SiZer approach to
smoothing.
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We consider only global bandwidths what is reasonable here as we assume no prior
knowledge of the functionals f�; � = 1; : : : ; d and the distribution of the explanatory
variables was uniform. As kernel we chose the quartic one. Then the exact solution for
(21) is n1=5h0 = (0:65157; 0:70568;∞) (with p= 1) if the link is G1(·). However, for
only n= 200 this bandwidth led sometimes to numerical problems, and the impractical
∞ we replaced by 2.0 to allow for some nonlinearity in the estimation.

So we chose Hnally the bandwidth vector (for the estimation when the link is G1)
h1 = (1:0; 1:5; 2:0) what is a fair compromise between the optimality considerations
and numerical necessities for the diMerent curvatures. For simpliHcation we set further
g= h. When the link function is G2(·), similar considerations lead to the choice h2 =
(1:5; 1:75; 2:0).

After running 500 repetitions we had to skip about 1% of the results which still
suMered from numerical problems when the link was G2. In Figs. 1 (for G1) and Fig.
2 (for G2) are given the data generating functions, respectively their derivatives, as
dotted lines together with the 99% conHdence bands (solid lines) for the estimator
resulting from the 500 repetitions. Note that we did no bias reduction here. For that
reason the real data generating functions (dotted lines) do not lie inside the bands.
Instead, we see clearly the structural biases.

Though the procedures seem to work reasonably well, we recognize an enormous loss
of exactness when the link is not trivial. Not surprisingly, the derivative estimation with
only n=200 observations seems to be pretty hard, especially for G2. We can recognize
further the biases and boundary eMects. As indicated before, the chosen bandwidths do
not seem to be optimal but quite reasonable.

5.2. Testing the component functions

As the testing problem is easier than estimation, we considered here a more com-
plicated model

GT{m(X )} =
3∑
�=1

f�(X�) with f3(X3) = a · X3 (22)

with f1, f2 as in (20) and GT (u) = −ln(1=u− 1). So one observes

Y =

 1 if
3∑
�=1

f�(X�)¿1;

0 else;

where 1 was logit distributed. Again we drew n = 200 independent variables X ∼
U [ − 2; 2]3.

To implement the test, T was computed by

T̂ =
1
n

n∑
j=1

f̂
(�)
� (Xj�)24(Xj�)

(1=n)
∑n
t=1 Kh(Xj� − Xt�)

1
(�!)2 : (23)

For the wild bootstrap, we took observations Y ∗
i , i=1; : : : ; n drawn from the (estimated)

data generating process under H0, given (Xi)ni=1 and calculated the corresponding test
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Fig. 1. Model (20) with identity link G1. Functions on the left, derivatives on the right. Dotted lines are the
data generating functions, respectively their derivatives, solid lines are the 99% conHdence bands after 500
runs.

statistic T̂
∗
. For this (pre-) estimation undersmoothing is recommended, see H,ardle and

Marron (1991). In our simulation study we used local linear smoother with h=g= 1:5
for all directions to estimate the data generating process under H0. For the simulation
study we drew only 249 bootstrap samples to approximate the distribution of T̂ . In
practice one should certainly draw about 1000.

Our aim was to test H0 :f3 ≡ 0 for increasing a, see (22). We Hrst compared the
test statistics based on function estimates with the one based on derivative estimates.
It is certainly known that the one based on derivatives is especially of interest when
the considered function is not smooth, e.g. has a peek or a jump. On the other hand,
it is also known that in those cases kernel smoother cannot always be recommended.

In Theorem 2, for a Hrst derivative-based test, the local quadratic smoother has been
suggested. For those, larger bandwidths are necessary and we had to set the bandwidth
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Fig. 2. Model (20) with log link G2. Functions on the left, derivatives on the right. Dotted lines are the data
generating functions, respectively their derivatives, solid lines are the 99% conHdence bands after 500 runs.

Table 1
Relative rejection frequencies and p-values for testing H0 :f3 ≡ 0 with tests based on function estimate
(� = 0) and based on derivative estimates (� = 1), using local quadratic smoother with h = g = 3:0

SigniHcance level 1% 5% 10% 15% p-value

f3(u) = 0 � = 0 6.0 10.0 14.8 20.8 48.7
� = 1 2.0 2.8 6.4 8.4 55.0

f3(u) = u � = 0 100 100 100 100 0.0
� = 1 24 42 49 58 16.5

to h= g= 3:0. In Table 1 the relative frequencies of rejections for function-based test
(�= 0) as well as for derivative-based (�= 1) tests are given, all after 500 repetitions.
Additionally, in Table 2 we give the corresponding variances over the 500 repetitions.

We tried thereby other bandwidths and diMerent degrees for the local polynomial
smoother. We found that for n= 200 the bandwidth choice can be very crucial when
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Table 2
Variances for the relative rejection frequencies and p-values for testing H0 :f3 ≡ 0 with tests based on
function estimate (� = 0) and based on derivative estimates (� = 1), see Table 1

SigniHcance level 1% 5% 10% 15% p-value

f3(u) = 0 � = 0 5.7 9.0 12.7 16.5 9.6
� = 1 2.0 2.7 6.0 7.7 7.6

f3(u) = u � = 0 0.0 0.0 0.0 0.0 0.0
� = 1 17.9 24.5 25.1 24.5 3.4

Table 3
Relative rejection frequencies and p-value for testing H0 :f3 ≡ 0 with tests based on function estimate,
using local linear smoother with h = g = 1:75. Left column refers to the alternative f3(u) = a · u

a SigniHcance level in (%)

1 5 10 15 p-value

0.00 1.2 4.4 8.4 11.8 54.4
0.25 6.4 16.4 28.0 36.8 34.5
0.50 37.2 60.0 71.6 78.4 10.4
0.75 84.0 93.6 97.2 98.8 0.01
1.00 98.4 99.6 100 100 0.00

using local quadratic or higher order polynomials. It can also be seen in Table 1 that
though the p-value is Htted well under H0, the quantiles are not. Thus we conclude
that our estimates are just too wiggly or, the data are too sparse causing numerical
problems. A very intensive simulation study would be necessary to investigate in detail
the performance and usefulness of derivative-based tests in this context if the sample
size is “small”. We see e.g. in Table 1 that it is pretty conservative for these samples.

There are much more encouraging Hndings for tests based on the function estimate
(� = 0). We present for this case also results when using local linear smoother with
bandwidth h= g= 1:75. Again we did a simulation study of 500 repetitions. In Table 3
it can be seen how fast the power increases with a from (22).

All in all we conclude that even for small data sets but pretty complex model
structures our procedures work reasonable well. The function and derivative estimates
give clearly the wanted functional forms. The test procedures are more crucial. For
such small samples we recommend to use only statistics based on function estimate (if
possible) and low polynomial degrees. They perform well in both, Htting the correct
quantiles under the hypothesis and showing strong power against the alternative.
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Appendix

Our estimation procedure makes uses of the following lemma which is a generaliza-
tion of the result of Linton and H,ardle (1996).

Lemma A.1. Under assumptions A1–A6; for any �√
nh(F̂�(x�) − F�(x�) − hp+1b�(x�))

D→N{0; v�(x�)};
where

b�(x�) =
&p+1(K∗

0 )
(p+ 1)!

∫ [
(G′ ◦ m){@(p+1)

� (m’) − m@(p+1)
� (’)}

’

]
(x�; Sx) S’( Sx) d Sx;

v�(x�) = ‖K∗
0 ‖2

2

∫ {
(G′ ◦ m)2*2

’

}
(x�; Sx) S’2( Sx) d Sx:

Furthermore√
nh(m̂(x) − m(x) − hp+1b(x)) D→N{0; v(x)}; (A.1)

where

b(x) = (G−1)′ ◦ G ◦ m(x)
d∑
�=1

b�(x�)

and

v(x) = {(G−1)′ ◦ G ◦ m(x)}2
d∑
�=1

v�(x�):

Proof. It follows the same asymptotic reasoning as Linton and H,ardle (1996) with
minor changes because of the use of equivalent kernel K∗

0 instead of K . The bias here
is of order hp+1 instead of h2.

Proof of Theorem 1. The steps are similar to Severance-Lossin and Sperlich (1999).
The special features here is the use of formula (4) and its empirical version (8); and
the fact that for �= 0; 1; 2; : : : ; �; the partial derivative estimates [@(�)m(x�; SX l) have the
bias rates of hp+1−� and variance rates of 1=nh2�+1; which together with the previous
lemma; gives that

√
nh2�+1 1

�!
(f̂

(�)
� (x�) − f(�)

� (x�))

= n−1
n∑
l=1

G′(m(x�; SX l))( [@(�)m(x�; SX l) − @(�)m(x�; SX l))

+ O(
√
nh2�+1hp+2−� + h);

where the asymptotics of n−1 ∑n
l=1(G′ ◦ m)( [@(�)m − @(�)m)(x�; SX l) is treated as in

Severance-Lossin and Sperlich (1999).
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The proof of Theorem 2 is essentially the same with trivial link or more general
links. Therefore, to simplify notation, we give the proof in the case of trivial link
function. In this case, G′ ◦ m ≡ 1 and m(X ) = c +

∑d

=1 f
(X
). Therefore,

b��(x) =
�!&p+1(K∗

� )
(p+ 1)!

∫
{@(p+1)
� m}(x�; Sx) S’( Sx) d Sx =

�!&p+1(K∗
� )

(p+ 1)!
f(p+1)
� (x�)

and the expression for T is

∫ f(�)
� (x�)
�!

+
hp+1−�&p+1(K∗

� )
(p+ 1)!

f(p+1)
� (x�) +

n∑
j=1

wj�1j


2

4(x�) dx�

+ Op

(
1
n

+ h2p+4−2�
)
;

which can be reduced to

Q +
∫
f(�)
� (x�)2

(�!)2 4(x�) dx� +
hp+1−�&p+1(K∗

� )
(p+ 1)!�!

∫
f(p+1)
� (x�)f(�)

� (x�)4(x�) dx�

+ Op(h2p+4−2�) (A.2)

with the quadratic term Q =
∫ {∑n

j=1 wj�1j}24(x�) dx�, and wj� from (11).
We leave out here the routine veriHcation that the following cross term is negligible:∫

2

{
f(�)
� (x�)
�!

+
hp+1−�&p+1(K∗

� )
(p+ 1)!

f(p+1)
� (x�)

}
n∑
j=1

wj�1j4(x�) dx�:

The formula of *2
T in the case of trivial link is simpliHed to

*2
T =

‖K∗(2)
� ‖2

L2

2

∫ {∫
*2(x) S’2( Sx)
’(x)

d Sx
}2

42(x�) dx�: (A.3)

To derive the asymptotics of Q, write it as
∑n
j;k=1 1j1kA(Xj; Xk)*(Xj)*(Xk) where

A(Xj; Xk) =
1
h2�n2

∫
K∗
�h(x� − Xj�)K∗

�h(x� − Xk�)

× S’( SX j) S’( SX k)
’(x�; SX j)’(x�; SX k)

4(x�) dx�: (A.4)

Separating the diagonal and the cross terms, one gets Q = Q1 + Q2 with

Q1 =
n∑
j=1

12jA(Xj; Xj)*(Xj)*(Xj) =
n∑
j=1

A(Xj; Xj){Yj − m(Xj)}2 (A.5)
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and

Q2 =
∑

16 j¡k=n

2A(Xj; Xk){Yj − m(Xj)}{Yk − m(Xk)}:

We simplify the expressions A(Xj; Xk) and Q1 in the following lemmata.

Lemma A.2. A(Xj; Xk) from (A.4) can be written as

1
h2�+1n2 (K∗

� ∗ K∗
� )

(
Xj� − Xk�

h

)
S’( SX j) S’( SX k)

’(Xj�; SX j)’(Xj�; SX k)
4(Xj�){1 + Op(h)}: (A.6)

Proof. By deHnition

A(Xj; Xk) =
1
h2�n2

∫
K∗
�h(x� − Xj�)K∗

�h(x� − Xk�)
S’( SX j) S’( SX k)

’(x�; SX j)’(x�; SX k)
4(x�) dx�

=
1

h2�+1n2 (K∗
� ∗ K∗

� )
(
Xj� − Xk�

h

)
S’( SX j) S’( SX k)

’(Xj�; SX j)’(Xj�; SX k)

×4(Xj�){1 + Op(h)}:

Lemma A.3. As n→ ∞ it holds in (A.5) that

Q1 =
(K∗
� ∗ K∗

� )(0)
h2�+1n

∫
S’( Sx)2*(x)2

’(x)
4(x�) dx� d Sx + Op

(
1
h2�n

+
1

h2�+1n3=2

)
: (A.7)

Proof. We calculate the mean and the variance of Q1

EQ1 = nE{A(X1; X1)*(X1)2}

=
(K∗
� ∗ K∗

� )(0)
h2�+1n

∫
S’( Sx)2*(x)2

’(x)
4(x�) dx� d Sx {1 + O(h)}

and

Var(Q1) = nVar{A(X1; X1)*(X1)2}6 nE{A(X1; X1)2*(X1)4}
=

(K∗
� ∗ K∗

� )(0)2

h4�+2n3 E
S’( SX 1)4*(X1)4

’(X1)4 42(X1�){1 + O(h)}

=Op

(
1

h2�+1n3=2

)
:

Therefore;

Q1 =
(K∗
� ∗ K∗

� )(0)
h2�+1n

∫
S’( Sx)2*(x)2

’(x)
4(x�) dx� d Sx + Op

(
1
h2�n

+
1

h2�+1n3=2

)
as is in (A.7).
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Note because E[1i] = 0, i = 1; 2; : : : ; n and the random vectors (Xi; 1i), i = 1; 2; : : : ;
n are i.i.d., Q2 is an U -statistic, symmetric and nondegenerate because
Ej1j1kA(Xj; Xk)*(Xj)*(Xk) = 0, where Ej = E1j;X j . To apply central limit theorem to
this U -statistic, we calculate the following three quantities:

1. The variance of one term: An = E[1112A(X1; X2)*(X1)*(X2)]2

2. The fourth moment of one term: Bn= E[1112A(X1; X2)*(X1)*(X2)]4

3. The Cn = E[Jn(11; X1; 12; X2)]2, where

Jn(1; X; @; Y ) = E1[111A(X1; X )*(X1)*(X )11@A(X1; Y )*(X1)*(Y )]

and then verify that
Cn + (1=n)Bn

A2
n

→ 0; as n→ ∞ (A.8)

see, Hall (1984).

Lemma A.4. As n→ ∞ in (A.8) one has

An =
2*2
T

h4�+1n4 + O
(

1
h4�n4

)
: (A.9)

Proof. We start with the deHnition of An and Eq. (A.6) in Lemma A.2

An = E

[
1

h2�+1n2 (K∗
� ∗ K∗

� )
(
X1� − X2�

h

)
S’( SX 1) S’( SX 2)*(X1)*(X2)
’(X1�; SX 1)’(X1�; SX 2)

×4(X1�){1 + Op(h)}
]2

or

1
h4�+2n4

∫ [
(K∗
� ∗ K∗

� )
(
x� − y�
h

)
S’( Sx) S’( Sy)*(x)*(y)
’(x�; Sx)’(x�; Sy)

4(x�){1 + Op(h)}
]2

×’(x�; Sx)’(y�; Sy) dx� d Sx dy� d Sy

and which equals; by change of variables y� = x� + hu

1
h4�+1n4

∫ [
(K∗
� ∗ K∗

� )(u)
S’( Sx) S’( Sy)*(x)*(x� + hu; Sy)

’(x�; Sx)’(x�; Sy)
4(x�)

]2

=
‖(K∗

� ∗ K∗
� )‖2

L2

h4�+1n4

∫
S’( Sx)2 S’2( Sy)*2(x)*2(x�; Sy)

’(x�; Sx)’(x�; Sy)
42(x�) dx� d Sx d Sy {1 + O(h)}

=
2

h4�+1n4

‖K∗(2)
� ‖2

L2

2

∫ {∫
*2(x�; Sx) S’2( Sx)

’(x)
d Sx
}2

4(x�)2 dx� {1 + O(h)}

=
2*2
T

h4�+1n4 + O
(

1
h4�n4

)
:
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Lemma A.5. As n→ ∞; in (A.8) one has

Bn =
‖K∗(2)

� ‖4
L4

h8�+3n8

∫ {∫
*4(x) S’4( Sx)
’3(x)

d Sx
}2

44(x�) dx� + O
(

1
h8�+2n8

)
: (A.10)

Proof. Like for An; we start with the deHnition of Bn and Eq. (A.6) in Lemma A.2

Bn = E

[
1

h2�+1n2 (K∗
� ∗ K∗

� )
(
X1� − X2�

h

)
S’( SX 1) S’( SX 2)*(X1)*(X2)
’(X1�; SX 1)’(X1�; SX 2)

×4(X1�){1 + Op(h)}
]4

=
1

h8�+4n8

∫ [
(K∗
� ∗ K∗

� )
(
x� − y�
h

)
S’( Sx) S’( Sy)*(x)*(y)
’(x�; Sx)’(x�; Sy)

4(x�){1 + Op(h)}
]4

×’(x�; Sx)’(y�; Sy) dx� d Sx dy� d Sy

=
‖K∗(2)

� ‖4
L4

h8�+3n8

∫ {∫
*4(x�; Sx) S’4( Sx)

’3(x)
d Sx
}2

44(x�) dx� {1 + O(h)}:

Now we want to calculate Cn = E[Jn(11; X1; 12; X2)]2, where

Jn(1; X; @; Y ) = E1[111A(X1; X )*(X1)*(X )11@A(X1; Y )*(X1)*(Y )]:

Lemma A.6. It holds that

Jn(1; X; @; Y ) =
1@ S’( SX )*(X ) S’( SY )*(Y )42(X�)
h4�+1n4’(X�; SX )’(X�; SY )

K∗(4)
�

(
Y� − X�
h

)

×
∫

S’2( Sx)*2(X�; Sx)
’(X�; Sx)

d Sx {1 + Op(h)}: (A.11)

Proof. By deHnition of Jn and Eq. (A.6) in Lemma A.2

Jn(1; X; @; Y ) =
1@

h4�+2n4

∫
K∗(2)
�

(
x� − X�
h

)
S’( Sx) S’( SX )*(X )
’(x�; Sx)’(x�; SX )

*2(x)

×K∗(2)
�

(
x� − Y�
h

)
S’( Sx) S’( SY )*(Y )
’(x�; Sx)’(x�; SY )

42(x�)’(x�; Sx) dx� d Sx

×{1 + Op(h)};
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which; by a change of variable x� = X� + hu; becomes

Jn(1; X; @; Y ) =
1@

h4�+1n4

∫
K∗(2)
� (u)

S’( Sx) S’( SX )*(X )
’(X� + hu; Sx)’(X� + hu; SX )

*2(X� + hu; Sx)

×K∗(2)
�

(
X� − Y�
h

+ u
)

S’( Sx) S’( SY )*(Y )
’(X� + hu; Sx)’(X� + hu; SY )

×42(X� + hu)’(X� + hu; Sx) du d Sx {1 + Op(h)}

and thus

Jn(1; X; @; Y ) =
1@ S’( SX )*(X ) S’( SY )*(Y )42(X�)
h4�+1n4’(X�; SX )’(X�; SY )

(K∗(4)
� )

(
Y� − X�
h

)

×
∫

S’2( Sx)*2(X�; Sx)
’(X�; Sx)

d Sx {1 + Op(h)}:
Lemma A.7.

Cn =
‖K∗(4)

� ‖2
L2

h8�+1n8

∫ {∫
S’( Sx)2*(x�; Sx)2

’(x�; Sx)
d Sx
}4

44(x�) dx� + O
(

1
h8�n8

)
: (A.12)

Proof. By deHnition; applying substitution and some algebra.

Lemma A.8. As n→ ∞ it holds

√
h4�+1n2Q2

D→N (0; *2
T ): (A.13)

Proof. we have established in (A.9); (A.10); and (A.12) that An ˙ 1=h4�+1n4; Bn ˙
1=h8�+3n8; and Cn ˙ 1=h8�+1n8; and hence

Cn + (1=n)Bn
A2
n

= O
(
h+

1
nh

)
→ 0; as n→ ∞:

Therefore; by the central limit theorem for nondegenerate U -statistic as in Hall (1984);√
h4�+1n2Q2 is asymptotically normal with asymptotic variance

n2

2
h4�+1n2An =

n2

2
h4�+1n2 2*2

T

h4�+1n4 = *2
T :

Proof of Theorem 2. Now combining the results on Q1 and Q2; namely
(A.7) in Lemma A.3 and (A.13) in Lemma A.8; plus Eq. (A.2); we obtain Eq. (17) in
Theorem 2.



542 L. Yang et al. / Journal of Statistical Planning and Inference 115 (2003) 521–542

References

Andrews, D.W.K., Whang, Y.J., 1990. Additive interactive regression models: circumvention of the curse of
dimensionality. Econom. Theory 6, 466–479.

Chaudhuri, P., Marron, J.S., 1999. SiZer for exploration of structures in curves. J. Amer. Statist. Assoc. 94,
807–823.

Dette, H., von Liers und Wilkau, C., Sperlich, S., 2001. A comparison of diMerent nonparametric methods
for inference on additive models. Working Paper 01-28, Carlos III de Madrid, Spain.

Fan, J., H,ardle, W., Mammen, E., 1998. Direct estimation of low dimensional components in additive models.
Ann. Statist. 26, 943–971.

Gozalo, P.L., Linton, O.B., 2001. Testing additivity in generalized nonparametric regression models.
J. Econom. 104, 1–48.

Hall, P., 1984. Central limit theorem for integrated square error of multivariate nonparametric density
estimators. J. Multivariate Anal. 14, 1–16.

H,ardle, W., Mammen, E., 1993. Comparing nonparametric versus parametric regression Hts. Ann. Statist.
21, 1926–1947.

H,ardle, W., Marron, J.S., 1991. Bootstrap simultaneous error bars for nonparametric regression. Ann. Statist.
19, 778–796.

H,ardle, H., Huet, S., Mammen, E., Sperlich, S., 2001. Bootstrap inference in semiparametric generalized
additive models. Working Paper 00-70, Carlos III de Madrid, Spain.

Hastie, T.J., Tibshirani, R.J., 1990. Generalized Additive Models. Chapman & Hall, London.
Hjellvik, V., Yao, Q., TjHstheim, D., 1998. Linearity testing using local polynomial approximation. J. Statist.

Plann. Inference 68, 295–321.
Lejeune, M., 1985. Estimation non-parametrique par noyaux: regression polynomiale mobile. Rev. Statist.

Appl. XXXIII, 43–67.
Linton, O.B., H,ardle, W., 1996. Estimation of additive regression models with known links. Biometrika 83,

529–540.
Linton, O.B., Nielsen, J.P., 1995. A kernel method of estimating structured nonparametric regression based

on marginal integration. Biometrika 82, 93–101.
Liu, R., 1988. Bootstrap procedures under some non i.i.d. models. Ann. Statist. 16, 1696–1708.
Mammen, E., Linton, O.B., Nielsen, J.P., 1999. The existence and asymptotic properties of a backHtting

projection algorithm under weak conditions. Ann. Statist. 27, 1443–1490.
Marron, J.S., Nolan, D., 1988. Canonical kernels for density estimation. Statist. Probab. Lett. 7, 195–199.
Nielsen, J.P., Linton, O.B., 1997. An optimization interpretation of integration and backHtting estimators for

separable nonparametric models. J. Roy. Statist. Soc. Ser. B 60, 217–222.
Ruppert, D., Wand, M.P., 1994. Multivariate locally weighted least squares regression. Ann. Statist. 22,

1346–1370.
Severance-Lossin, E., Sperlich, S., 1999. Estimation of derivatives for additive separable models. Statistics

33, 241–265.
Sperlich, S., Linton, O.B., H,ardle, W., 1999. Integration and backHtting methods in additive models: Hnite

sample properties and comparison. Test 8, 419–458.
Sperlich, S., TjHstheim, D., Yang, L., 2002. Nonparametric estimation and testing of interaction in additive

models. Econom. Theory 18, 197–251.
Stone, C.J., 1985. Additive regression and other nonparametric models. Ann. Statist. 13, 689–705.
Stone, C.J., 1986. The dimensionality reduction principle for generalized additive models. Ann. Statist. 14,

90–606.
Stone, C.J., 1994. The use of polynomial splines and their tensor products in multivariate function estimation.

Ann. Statist. 22, 118–184.
TjHstheim, D., Auestad, B.H., 1994. Nonparametric identiHcation of nonlinear time series: projections.

J. Amer. Statist. Assoc. 89, 1398–1409.
Wu, C.F.J., 1986. Jacknife, bootstrap and other resampling methods in regression analysis (with discussion).

Ann. Statist. 14, 1261–1350.
Yang, L., Tschernig, R., 1999. Multivariate bandwidth selection for local linear regression. J. Roy. Statist.

Soc. Ser. B 61, 793–815.


	Derivative estimation and testing in generalized additive models
	Introduction
	Estimation of functions and derivatives
	Discussion of extensions
	Hypothesis testing on derivatives
	Some simulation results
	Function and derivative estimation
	Testing the component functions

	Acknowledgements
	Appendix
	References


