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Abstract: In this study, an opportunistic spectrum access model with learning strategy is presented for cognitive radio system.
Consider a hidden Markov model in learning process, where the ternary hypothesis testing scheme is proposed to perform
sensing with the goodness of fit testing. By using a gradient method, the secondary user can estimate the channel patterns and
keep up with the variations of the primary user activities. An opportunistic access channel capacity is introduced to evaluate
the quality of service of the objective licensed channel. Also, a partially observable Markov decision process framework is
presented to exploit spectrum holes. Further analysis shows that, unlike the binary hypothesis testing where the idle state is
always protected, the idea of the proposed ternary hypothesis testing puts both the idle and busy state in the same position,
which reflects the real state of the licensed channel more precisely. Simulation results indicate that the proposed ternary
hypothesis testing scheme outperforms the conventional binary hypothesis testing for both the goodness of fit testing and the
energy detection.
1 Introduction

Cognitive radio (CR) is a promising wireless communication
technology to improve the efficient usage of the licensed
spectrum [1]. As one of the basic operation models for CR
system, opportunistic spectrum access (OSA) enables
secondary users (SUs) to access licensed spectrum without
causing harmful interference to primary users (PUs) [2–4].
For the OSA model, a SU usually deploys spectrum sensing
technique to detect the PU transmission state, and then
adapts channel parameters to the changing environment.
Based on the estimate of channel pattern of the PU, the SU
decides whether to choose current channel or switch to
another one. Finally, the SU exploits spectrum holes to
transmit data. The above process consists of an intelligent
cognition cycle.
Most of the related work has shown the perfect performance

of spectrum sensing [5, 6]. When the SU estimates the channel
pattern, a hidden Markov model (HMM) has been used in
learning process [7, 8], in which the maximum-likelihood
(ML) estimation can be achieved by using the gradient
method. Moreover, In [9–11] gave some simple ways to
compute the probability of the observation sequence under
the given model. Lee and Akyildiz [12] provided an optimal
spectrum sensing framework by choosing proper observation
time and transmission time. An efficient channel selection
algorithm called myopic sensing policy was proposed in
[13]. For the rapidly variations of PU activities, by
considering the transition state, the proposed ternary
hypothesis testing scheme can reduce too much access and
exit delay [14]. Monahan [15] developed partially observable
Markov decision process (POMDP) framework and
presented algorithms for computing optimal solutions to
POMDP. As pointed out in [16], a learning-based OSA
model over data-centric PU network divided a frame into a
channel learning subframe and a channel access subframe,
where the SU decided to perform spectrum sensing or data
transmission during each slot adaptively. However, most of
existed work assumed that the SU detected channel during
each slot only with two results, idle or busy, but never
considered the switch between them, which leads to lower
performances especially in the rapid variations of the PU
activity.
In this paper, we consider a cognition cycle which contains

four processes: spectrum sensing, learning process, channel
selection and channel access. First, the SU detects the
current channel during each slot with the following three
results: idle, busy and the transition between idle and busy,
where the goodness of fit testing is performed in spectrum
sensing. Second, assuming the lengths of the PU idle and
busy times follow exponential distribution, the SU estimates
channel pattern by using HMM. Then, the SU decides to
choose the current channel or switch to another one based
on the opportunistic access channel capacity. Finally,
according to the POMDP model, the SU accesses the
channel to transmit data. Simulation results indicate that
compared with the conventional binary hypothesis testing
scheme, our proposed scheme achieves higher channel
utilisation without increasing collision rate by using ternary
hypothesis testing.
The rest of paper is organised as follows. Section 2

describes the adaptive sensing framework for the OSA
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model. In Section 3, the opportunistic access is presented with
the proposed ternary hypothesis testing scheme. In Section 4,
we present some representative simulation results. Finally,
this paper is concluded in Section 5.

2 System model

2.1 PU model

The PU network has a license to use M frequency channels,
and each of them has a bandwidth of W. Fig. 1 illustrates a
two-state continuous-time Markov chain to describe the PU
activity in a licensed channel. The channel state alternates
between idle (i.e. 0) and busy (i.e. 1), whereas the lengths
of idle and busy time are independent of each other with
exponentially distributed with the mean 1/α and 1/β,
respectively. Consider an additive white Gaussian noise
(AWGN) channel, the received sample follows N (μ, σ2),
where μ denotes the amplitude of the PU signal and σ2

denotes the noise variance. Hence, the PU channel pattern
is completely determined by a vector with four parameters
α, β, μ and σ, that is, λ = (α, β, μ, σ)∈Λ. It is assumed that
the channel pattern varies so slowly that the PU activity is
ergodic during a frame.

2.2 SU model

As was shown in Fig. 1, each frame is divided as a channel
learning subframe and a channel access subframe, which
consists of NL slots and NA slots, respectively [16]. It is
assumed that the clocks of the SUs will be maintained
synchronisation by themselves and are also independent
with those of the PUs. During the channel learning
subframe, the SU should estimate the channel pattern and
adapt channel parameters to the changing environment in
order to access licensed channel in an optimal way.
Although during the channel access subframe, the SU either
performs sensing or transmits data based on the most recent
sensing results as well as the prior knowledge of channel
pattern in the preceding channel learning subframe.
In the channel learning subframe, a SU detects licensed

channel by using the goodness of fit testing for a slot
duration of T. Based on the ternary hypothesis testing, the
observation during each slot is one of the following three
results: idle, busy and the transition state. By modelling an
Fig. 1 Frame structure of the proposed adaptive sensing scheme
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HMM, the SU estimates channel pattern λ from the sensing
results. Then, the SU calculates opportunistic access
channel capacity Cop and decides to choose current channel
or switch to another one by comparing Cop with the given
threshold Ct, which could provide sufficient access
opportunities to support quality of service (QoS)
requirements.
In the channel access subframe, the SU decides to perform

spectrum sensing or data transmission during each slot
adaptively according to the rate of the PU activity
variations. By using a POMDP framework, the SU could
prevent unnecessary sensing to maximise channel utilisation
as much as possible, while keeping the rate of collision
with the PU at a low level. In Section 3, we will explain
both the channel learning algorithm and the channel access
algorithm in detail.

3 Opportunistic access with learning
strategy

3.1 Spectrum sensing

The SU performs spectrum sensing on a frequency channel
for each slot during the channel learning subframe. Let Y =
{Y1, Y2, …, Yi, …, Yn} denote n samples at local receiver in
a slot. Then, Yi = Xi +Ni, where Xi is a PU signal and Ni is
an AWGN. When there is no PU signal transmission, Yi∼
N(0, σ2). Denote f0(y) as the probability distribution
function (pdf) of Yi and denote F0(y) as the cumulative
distribution function (cdf) of Yi. If the PU is active, Yi∼N
(μ, σ2). Denote f1(y) as the pdf of Yi and denote F1(y) as
the cdf of Yi. Let FY(y) denote the empirical distribution
function (edf) of Y, which is defined as

FY (y) = i|Yi ≤ y, 1 ≤ i ≤ n
{ }∣∣ ∣∣/n (1)

where |†| denotes the cardinality of the finite set.
In this paper, the ternary hypothesis testing scheme is

proposed to perform sensing with the goodness of fit
testing, which is described as
H0: Y is an independent and identically distributed (i.i.d.)

sequence following a cdf with F0(y)
H1: Y is an i.i.d. sequence following a cdf with F1(y)
H2: Y is not an i.i.d. sequence following a cdf with either

F0(y) or F1(y) (i.e. there exists a switch in channel state
IET Commun., 2013, Vol. 7, Iss. 11, pp. 1061–1069
doi: 10.1049/iet-com.2012.0560



Fig. 2 Ternary hypothesis testing scheme

Fig. 3 Binary hypothesis testing scheme
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that Y follows a cdf with tF0(y)/T + (T− t)F1(y)/T, (0 < t <
T ), where t depends on the time point of switch).
The Anderson–Darling (AD) test, one of the widely used

goodness of fit testing in statistics, is always used to
perform sensing [17]. Under H0, the AD test statistic W 2

0 is
defined as

W 2
0 = n

∫+1

−1
FY (y)− F0(y)
( )2

c F0(y)
( )

dF0(y) (2)

where Ψ(t) = 1/[t (1− t)]. In the AD test, the H0 is rejected if
W 2

0 . j0, where ξ0 is a threshold that the false alarm
probability under H0 is at a desired level γ0

Pr W 2
0 . j0|H0

{ } = g0 (3)

It was shown in [6] that the distribution of W 2
0 under H0 does

not depend on the noise distribution F0(y) at all and is more or
less independent of n. Furthermore, as n→ +∞, the
distribution of the test statistic W 2

0 under H0 converges to
the following limited distribution (see (4))
As pointed out in [18], the speed of convergence to the

above limited distribution given in (4) is so rapidly that for
any realistic situation (n > 5), one can use the limited
distribution instead of the distribution of W 2

0 to determine
Pr{W 2

0 ≤ j0}.
Similarly, we can define the test statistic W 2

1 as

W 2
1 = n

∫+1

−1
FY (y)− F1(y)
( )2

c F1(y)
( )

dF1(y) (5)

In the AD test, H1 is rejected if W 2
1 . j1, where ξ1 is a

threshold that the probability of miss under H1 is at a
desired level γ1

Pr W 2
1 . j1|H1

{ } = g1 (6)

Theorem 1: Suppose that S is the sample space of Y, when n is
sufficient large, the sets Y |W 2

0 ≤ j0
{ }

, Y |W 2
1 ≤ j1

{ }
and

Y |W 2
0 . j0, W 2

1 . j1
{ }

are a partition of the sample space
S.

Proof 1: See Appendix for the proof.

In the ternary hypothesis testing, it is necessary to exactly
separate the set Y |W 2

0 ≤ j0
{ }

and Y |W 2
1 ≤ j1

{ }
. Fortunately,

this can be ensured by selecting an appropriate n. As a result,
according to the above theorem, the solution for the ternary
hypothesis testing scheme can be calculated as Fig. 2.
In contrast, we can naturally derive the solution for the

binary hypothesis testing scheme as Fig. 3.
Based on the ternary hypothesis testing, the SU performs

sensing during each slot with three observations: idle, busy
and the transition state. Compared with the binary
hypothesis testing scheme, the proposed ternary hypothesis
testing scheme is much more sensitive to the switch
Pr W 2
0 ≤ j0

{ } =
����
2p

√

j0

∑+1

j=0

−1/2

j

( )
(4j + 1) exp −(4j + 1)2p2/

((
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between idle and busy, which will have a great significance
to the upcoming channel learning and access processes.
3.2 Learning process

Unlike Markov models where each state is exactly
corresponded to an observable event, we discuss the
concept of HMM where the observation is a probabilistic
function of the state. A HMM is a doubly embedded
stochastic process with an underlying stochastic process that
is hidden, but can only be observed through another set of
stochastic processes that produce the sequence of
observations.
Consider a channel learning subframe as an HMM. The PU

activities are the hidden state to the SU, which can only be
inferred from noisy observations. Then, the state transition
probabilities depend on the changing rate of PU activity
(i.e. α and β) and the observation probability are related to
the detection probabilities, which in turn are determined
mainly by the mean and variance of the PU signal (i.e. μ
and σ). Suppose that the initial state distribution is equal to
the stationary state distribution. Hence, the state transition
probability distribution P, the observation symbol
probability distribution under given state Q and the initial
state probability distribution π are the function of the
channel pattern λ. By using HMM, the log-likelihood
function of the received observation sequence O = (O1, O2,
…, ONL) can be calculated under the given channel pattern,
that is, ln(Pr{O|λ}). In order to adjust the model parameter
λ = (α, β, μ, σ) to maximise ln(Pr{O|λ}), the SU updates
the estimate of the channel pattern towards the gradient
direction in each iteration.
To model the hidden Markov process, the state reflects the

PU activities during the slot. It is assumed that a slot is short
enough so that the PU activity does not change more than
once within each slot. Accordingly, the state of slot n,
denoted by Sn, is simply defined as an ordered pair of the
PU activities at the beginning and the end of slot n. Then,
8j0
)) ∫+1

0
exp j0/ 8 w2 + 1

( )( )− (4j + 1)2p2w2/ 8j0
( )( )

dw

(4)
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Sn is one of four possible states from the state space {(0,0),
(0,1), (1,0), (1,1)}. If the state is (0,0) or (1,1), the PU
remains inactive or active all along a slot, whereas the state
is (0,1) or (1,0), the PU activity changes once during a slot.
During the channel learning subframe, the sequence of
channel states is formulated by S = (S1, S2, …, SNL). The
observation result, denoted by On, reflects the SU sensing
results in slot n. In order to detect the switch of channel
state between idle and busy more efficiently, in this paper,
the observation space is {0, ξ, 1} during the channel
learning subframe. If the observation is 0 or 1, the SU
decides that the channel is idle or busy during the slot. On
the other hand, if the observation is ξ, the SU decides that
there exists a switch in channel state within the slot.
Now, we determine P, Q, π, respectively. Pk, l(i, j) denotes

the state transition probability from state (k, l ) to state (i, j),
(i.e. Pk, l(i, j) = Pr{Sn + 1 = (i, j) | Sn = (k, l )}). Note that the
PU activity at the end of current slot is the same as the
beginning of the next slot. Based on the prior knowledge of
channel pattern λ = (α, β, μ, σ), the state transition
probability matrix is given as

P = Pk, l(i, j)
{ }

=
e−aT 1− e−aT 0 0
0 0 1− e−bT e−bT

e−aT 1− e−aT 0 0
0 0 1− e−bT e−bT

⎡
⎢⎢⎣

⎤
⎥⎥⎦ (7)

We define Qi, j(o) as the probability that the observation On is
o under the given state Sn is (i, j), (i.e. Qi, j(o) = Pr{On = o | Sn
= (i, j)}). Recall that Q0, 0(0) = Pr W 2

0 ≤ j0|H0

{ }
can be

calculated as (4). Krishnamurthy [8] gives the upper bound
of Q1, 1(0) = Pr W 2

0 ≤ j0|H1

{ }
∀n satisfied with (23), ∃λ >

0, such that

Pr W 2
0 ≤ j0|H1

{ } ≃ e−lC
�
n

√
E elBn
( )

e−l
��
j0

√ (8)

where

C =
����������������������������������������∫+1

−1
F1(y)− F0(y)
( )2

c F0(y)
( )

dF0(y)

√

is a constant and

Bn =
������������������������������������������
n

∫+1

−1
FY (y)− F1(y)
( )2

c F0(y)
( )

dF0(y)

√

In Appendix, it is derived that Q1, 0(0) = Pr W 2
0 ≤ j0|H2

{ }
is

approximately equal to Pr W 2
0 ≤ 3j0|H1

{ }
for large n, which

can be calculated by (8). Similarly, we determine the rest of
observation probability in matrix. Consequently, the
Q = Qi, j(o)
{ }

=
Pr W 2

0 ≤ j0|H0

{ }
Pr W 2

0 . j0, W 2
1 . j1|H0

{ }
Pr W 2

1 ≤ j1|H0

{ }
⎡
⎢⎣

Pr W 2
0 ≤ 3j0|H1

{ }
Pr W 2

0 . 3j0|H1

{ }+ Pr W 2
1 .

{
Pr W 2

1 ≤ 3j1|H0

{ }
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observation probability matrix Q is derived as (see (9))

The initial state distribution is denoted by πi, j, (i.e. πi, j =
Pr{S1 = (i, j)}). It is assumed that the initial state
distribution is equal to the stationary state distribution.
Hence, we have

p = pi, j

{ }

=

e−aT 1− e−bT( )
/ 2− e−aT − e−bT( )

1− e−aT( )
1− e−bT( )

/ 2− e−aT − e−bT( )
1− e−aT( )

1− e−bT( )
/ 2− e−aT − e−bT( )

1− e−aT( )
e−bT/ 2− e−aT − e−bT( )

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦ (10)

Since a general HMM is completely described by P4×4, Q3×4,
π4×1, which is only dependent on the parameter λ = (α, β, μ,
σ), the ML estimation is able to find the real channel
pattern. In this paper, denote ln(Pr{O|λ}) as the
log-likelihood function of the observation sequence O under
the given channel pattern λ, which can be calculated as

Pr {O|l} =
∑

S= S1, S2, ..., SNL

( )pS1
QS1

O1

( )∏NL

i=2

PSi−1
Si
( )

QSi
Oi

( )

(11)

As a result, the real channel pattern can be achieved by

l̂ = argmax
l[L

ln Pr {O|l}( )
(12)

To reduce the computational complexity, the gradient method
is adopted with recursive algorithm that updates the estimate
of the channel pattern once in each frame. In frame n, the
gradient method updates the estimate as

l̂(n) = l̂(n− 1)+ 1(n)∇ ln Pr{O(n)|l̂(n− 1)}
( )

(13)

where ε (n) is the step size for frame n and ∇ln(Pr{O|λ}) is
the gradient of ln(Pr{O|λ}), that is

∇ ln Pr {O|l}( ) = ∂ ln Pr {O|l}( )
∂a

,
∂ ln Pr {O|l}( )

∂b
,

(

∂ ln Pr {O|l}( )
∂m

,
∂ ln Pr {O|l}( )

∂s

)
(14)

The gradient in (14) can be derived from the partial
derivatives of ln(Pr{O|λ}) with respect to α, β, μ, σ,
respectively, by using the forward–backward method [7].
Note that, in each iteration, the gradient method updates the

estimate of the channel pattern towards the gradient direction
Pr W 2
0 ≤ 3j0|H1

{ }
Pr W 2

0 . 3j0|H1

{ }+ Pr W 2
1 . 3j1|H0

{ }
Pr W 2

1 ≤ 3j1|H0

{ }
Pr W 2

0 ≤ j0|H1

{ }
3j1|H0

}
Pr W 2

0 . j0, W 2
1 . j1|H1

{ }
Pr W 2

1 ≤ j1|H1

{ }
⎤
⎥⎦

(9)

IET Commun., 2013, Vol. 7, Iss. 11, pp. 1061–1069
doi: 10.1049/iet-com.2012.0560



www.ietdl.org

of ln(Pr{O|λ}). Over multiple frames, the estimate gradually
converges to the real channel pattern. Unfortunately, the
gradient method can only find a local optimal point. Hence,
we should choose the initial estimate that is close to the real
channel pattern.

3.3 Channel selection

Based on the estimate of the channel pattern in frame n, the
SU decides whether to choose the current channel or switch
to another one in the next frame. In this paper, we
introduce the opportunistic access channel capacity as an
indicator of QoS, which is denoted as

Cop =
b

a+ b
W log2 1+ m2

s2

( )
(15)

The SU compares Cop with the given threshold Ct to decide
which action the SU takes. If Cop≥Ct, then the SU stays
on the current channel. Although Cop < Ct, the SU continues
to access the current channel during the following channel
access subframe and then switches to the next available
frequency channel in the next frame.

3.4 Channel access

During the channel access subframe, consider a POMDP
framework – a generalisation of a Markov decision process
which permits uncertainty regarding the state of a Markov
process and allows state information acquisition [15, 19]. In
the POMDP model, the SU combines the most recent
sensing result with the prior knowledge of channel pattern
estimated in the preceding of channel learning subframe to
decide whether to transmit data or perform sensing in each
slot. The proposed channel access scheme should maximise
channel utilisation as much as possible, while keeping the
rate of collision with the PU at a low level.
Similar to the HMM, the states, the observations and the

actions are described in a POMDP model. The definition of
the state is the same as that in the HMM and the state
transition probabilities can be calculated from the channel
pattern estimated in the channel learning subframe. The
action of slot n, is denoted by An from the action space {0,
1}. If An = 0, the SU chooses to perform sensing during the
slot n. Whereas An = 1, the SU decides to transmit data in
slot n. During the channel access subframe, a sequence of
the actions is given by A = (A1, A2, …, ANA). Considering
that the SU could not perform sensing as well as transmit
data at the same time, the observation probabilities in the
POMDP depend on both the channel patterns and the
actions, that is, Qi,j,m(o) = Pr{On = o|Sn = (i, j), An =m}. If
the SU performs sensing during the slot n (i.e. An = 0), the
observation probabilities is equal to the sensing result in the
channel learning subframe. On the other hand, if the SU
transmits data during the slot n (i.e. An = 1), the observation
On is a null observation (i.e. Q*,*,1(Ø) = 1). Hence, the
observation space for a channel access subframe is {0, ξ, 1, Ø}.
The belief vector for the slot n is denoted by π(n) = (π0,0(n),

π0,1(n), π1,0(n), π1,1(n)), where πi,j(n) represents the
probability of the state (i, j) in slot n, which is influenced
by both the previous observations and the actions (i.e.
πi,j(n) = Pr{Sn = (i, j) | π(1), A1, A2, …, An− 1, O1, O2, …,
On−1}), where the initial belief vector π(1) is the stationary
distribution as shown in (10). If An = 1, then the
decision-making algorithm obtains no information about the
IET Commun., 2013, Vol. 7, Iss. 11, pp. 1061–1069
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real state and the belief vector evolves according to the state
transition probability. On the other hand, if An = 0, in
addition to the state transition, the sensing result is also
taken into account by the decision-making algorithm.
Accordingly, by using Bayes’ theorem, the belief vector in
slot n is updated from the belief vector in slot n− 1 as

pi, j(n) =
∑

(k, l) Pk, l(i, j)Qk,l,m(o)pk, l(n− 1)∑
(i, j)

∑
(k,l) Pk, l(i, j)Qk,l,m(o)pk, l(n− 1)

(16)

The SU should try to maximise the channel utilisation while
keeping the collision rate at a low level during the channel
access subframe. The policy is a function that maps the
belief vector to the next action. Among the policies, we aim
to find the optimal policy that can maximise the following
optimal value function

VNA
(p) = max

ANA[{0, 1}

∑
(i, j)

pi, j NA

( )
R (i, j), ANA

( ){ }

Vn(p) = max
An[{0, 1}

∑
(i, j)

pi, j(n)R (i, j), An

( ){

+
∑

{0, j, 1}

∑
(i, j)

∑
(k, l)

Pk, l(i, j)Qk, l(o)pk, l(n)Vn+1(p)

}

(17)

where R((i, j), An) denotes a reward function. The reward
R((0,0), 1) should be a positive value, since the SU could
successfully transmit data without causing harmful
interference to PU. The reward R((0,1), 1), R((1,0), 1),
R((1,1), 1) should be a negative value, since the collision
occurs when the SU transmit data. The rest of reward (i.e.
R((*,*), 0)) should be chosen to zero or a slight negative
value, since the time is consumed without data transmission.
Although the optimal policy can be calculated by dynamic

programming recursion, it could not satisfy the real time
operation because of the high computational complexity
[16]. To choose an appropriate action with lower
complexity, for each slot n, we can empirically reduce the
optimal policy to

An =
1, 1− p0, 0(n) ≤ d
0, 1− p0, 0(n) . d

{
(18)

where δ denotes the decision threshold [20, 21].
Now, two evaluate parameters (i.e. the channel utilisation

and the collision rate) is set to reflect the performances of
the proposed scheme. The channel utilisation is defined as
the proportion of slots that the SU could successfully
transmit data without causing harmful interference to PU,
that is

U = n|Sn = (0, 0), An = 1, 1 ≤ n ≤ NA

{ }∣∣ ∣∣
NL + NA

(19)

whereas the collision rate is defined as the proportion of slots
that the SU transmits data when the licensed channel is
occupied by the PU, that is

C = n|Sn = (0, 0), An = 1, 1 ≤ n ≤ NA

{ }∣∣ ∣∣
n|Sn = (0, 0)
{ }∣∣ ∣∣ (20)
1065
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Fig. 4 Estimate of channel pattern λ= (α, β, μ, σ) during the channel learning subframe

a Estimate of channel parameter α
b Estimate of channel parameter β
c Estimate of channel parameter μ
d Estimate of channel parameter σ
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where |†| denotes the cardinality of the finite set, as defined in
(1). In the next section, we will compare the ternary
hypothesis testing scheme with the conventional binary one
based on the two parameters above.
Finally, it is necessary to explain how the proposed ternary

hypothesis testing scheme can reduce the access and exit
delay. Consider that the current state Sn is (1, 0), for the
ternary hypothesis testing scheme, the SU performs sensing
and the observation result is most likely equal to ξ, then
updates the belief vector towards the idle state, which
implies the SU to transmit data in the next slot. However,
for the binary hypothesis testing scheme, in this situation,
the observation result is always given by 1, then the SU
updates the belief vector towards the busy state, which
consequently leads to unnecessary sensing in slot n + 1.
Similarly, such improvement achieved by the ternary
hypothesis testing scheme will also be occurred when the
current state Sn is (0, 1). Therefore unlike the binary
hypothesis testing scheme where the idle state is protected,
the idea of the proposed ternary hypothesis testing scheme
also considers the transition state, which reflects the real
state of the licensed channel more precisely.
4 Simulation results

In this section, we first consider the performance of the
channel learning scheme and the channel access scheme,
1066
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respectively, then combine both schemes to evaluate the
utilisation of the time-varying channel pattern, at last
consider the performances with different traffic models.
Suppose that the length of a frame is set about 1 s, the
length of a slot T is set about 1 ms and each slot is
generated by 16 samples when the SU performs sensing.
There are 100 slots in a channel learning subframe and 900
slots in a channel access subframe, respectively. In this
paper, we compares the ternary hypothesis testing with the
binary hypothesis testing by using the goodness of fit
testing and the energy detection to perform sensing,
respectively. The thresholds for the goodness of fit testing
are set by ξ0 = 1.121 and ξ1 = 1.410. In addition, the energy
detection is performed compared with the goodness of fit
testing, as shown in [5]. If the PU is inactive during the
slot, the received signal follows the central χ2 distribution
with the mean nσ2. On the other hand, if the PU is active,
the received signal follows the non-central χ2distribution
with the mean nσ2 and the non-centrality parameter nμ2/σ2

[22]. When sample size n is sufficient large, according to
the central limit theorem, the χ2 distribution can well be
approximated by norm distribution. Also, the thresholds for
the energy detection are set by ζ0 = 18.94 and ζ1 = 23.77.
We use a constant step size, ε(n) = 10− 3 for the recursive
algorithm. To simplify the model, assume that the SU does
not switch to another channel when making channel selection.
In Fig. 4, we illustrate how well the SU estimates the

time-varying channel pattern by using channel learning
IET Commun., 2013, Vol. 7, Iss. 11, pp. 1061–1069
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scheme. Consider the situation that the channel pattern
changes in frame 400th. Before the frame 400th, the real
channel pattern λ = (20 Hz, 20 Hz, 0.85, 1.2). After the
frame 400th, the real channel pattern λ = (10 Hz, 30 Hz, 1,
1). As illustrated in these figures, the SU could well keep
up with the variations of the channel pattern except for the
parameter μ with binary hypothesis testing scheme. In fact,
for the binary hypothesis testing scheme, the channel
parameter μ has less influence on the probability
distribution of Q, which consequently leads to more
sensitive to the randomness of the exponential distribution.
In addition, the convergence rate of the proposed ternary
hypothesis testing scheme is faster than that of the binary
hypothesis testing scheme. In general, when the channel
pattern changes, the estimate of the channel pattern will
approach to the real channel pattern within about 200
frames and then fluctuates around it because of the constant
step size. We can further use the adaptive step size to
improve the speed and the accuracy of convergence of the
channel pattern.
In Fig. 5, we compare the ternary hypothesis testing

scheme with the conventional binary hypothesis testing
scheme by evaluating the channel utilisation and collision
rate, respectively. In order to focus on the performance of
Fig. 5 Comparison of performance during the channel access subfram

a Comparison of the channel utilisation
b Comparison of the collision rate

Fig. 6 Comparison of pdf of the channel utilisation

a Goodness of fit testing
b Energy detection
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the channel access scheme regardless of the influence on
the estimation error of the channel learning scheme, we
assume that the channel pattern λ = (10 Hz, 30 Hz, 1, 1)
remains the same over the time and is known to the SU. It
can be seen that with the increasing of decision threshold δ,
the performance of the channel utilisation improves as well
as the collision rate decreases. Furthermore, the proposed
ternary hypothesis testing scheme achieves better channel
utilisation than that of the conventional binary hypothesis
testing without at the expense of the collision rate.
Simulation result indicates that compared with the binary
hypothesis testing, the proposed ternary hypothesis testing
scheme improves the average of channel utilisation by 5%
for the goodness of fit testing and 6% for the energy
detection, respectively. However, the collision rate of the
proposed ternary hypothesis testing as well as the traditional
binary hypothesis testing alternate up and down randomly,
and the average difference of collision rate remains within
only 1%.
Then, we combine the channel learning scheme and the

channel access scheme to evaluate the performance of
channel utilisation. In Fig. 6, consider the real channel
pattern is λ = (10 Hz, 30 Hz, 1, 1) during 1000 frames and
assume the initial channel pattern is λ0 = (20 Hz, 20 Hz,
e
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Fig. 7 Comparison of performance with different traffic patterns

a Comparison of the channel utilisation
b Comparison of the collision rate
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0.85, 1.2). We estimate the channel utilisation in each frame
and describe the pdf over 1000 frames. The decision
threshold δ is set about 0.05. By comparing these two
subfigures, it can be observed that the goodness of fit
testing outperforms the energy detection for the channel
utilisation. Since the proposed learning scheme requires
additional NL slots for the channel learning subframe, for
fairness in comparison, the proposed scheme without
learning contains NL +NA slots for the channel access
subframe within a frame. It can be seen from Fig. 6a that
when the SU performs sensing with goodness of fit testing,
the proposed ternary hypothesis testing scheme achieves the
average of channel utilisation (i.e. 0.46) considerably higher
than the proposed scheme without learning (i.e. 0.28), and
binary hypothesis testing (i.e. 0.42). Whereas the SU
performs sensing with the energy detection, as shown in
Fig. 6b that the proposed ternary hypothesis testing scheme
achieves the average of channel utilisation (i.e. 0.40)
considerably higher than the proposed scheme without
learning (i.e. 0.24), and the binary hypothesis testing (i.e.
0.36).
Finally, we consider a more realistic situation that the PU

traffic patterns are not exponentially distributed, and the real
patterns are unknown to the SU. Compared with
exponential distribution, in our simulations, the PU traffic
pattern are simulated by uniform distribution, Rayleigh
distribution and logarithmic normal distribution,
respectively. However, because of the non-after-effect
advantage of exponential distribution, the SU estimates the
PU activities and access licensed channel by the same way.
The average lengths of idle and busy time are set to be
equal that different traffic models can be compared under
fair conditions. In Fig. 7, it can be shown that even though
the real traffic models are different, the channel utilisation
remains almost the same. On the other hand, the collision
rate is influenced by different traffic patterns. To the best of
our knowledge, unlike the ML estimation that the real
traffic pattern should be known to the SU, in the realistic
situation, it is convenient to use the linear minimum
mean-square estimation that the SU only needs to know the
first- and second-order moment of channel patterns. As a
result, we can naturally come to a conclusion that the
proposed algorithm can fit the realistic situations well even
when the real traffic patterns are unknown to the SU.
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5 Conclusion

In this paper, an OSA model is proposed for CR system,
which divided a frame into the channel learning subframe
and the channel access subframe. We consider a channel
learning subframe as a HMM, where the ternary hypothesis
testing scheme is proposed to perform sensing with the
goodness of fit testing. Then the SU estimates the channel
pattern and decides whether to choose current channel or
switch to another one. By using a POMDP framework in
the channel access subframe, the SU could either perform
sensing or transmit data based on the belief vector.
Simulation results indicate that the proposed ternary
hypothesis testing achieves high channel utilisation
compared with the conventional binary hypothesis testing,
whereas keeping the collision rate at a low level. Future
work will consider more practical system and we hope that
the proposed scheme provide insights for the design of
multiuser OSA model with energy efficiency.
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8 Appendix

8.1 Proof of sufficient condition for sample size n

To prove the sufficient condition for n, we first calculate low
bound of W 2

0 +W 2
1 as

W 2
0 +W 2

1 = n

∫+1

−1
FY (y)− F0(y)
( )2

c F0(y)
( )

dF0(y)

+ n

∫+1

−1
FY (y)− F1(y)
( )2

c F1(y)
( )

dF1(y)

≥ n

2

∫+1

−1
F1(y)− F0(y)
( )2

cmin F∗(y)
( )

fmin(y) dy

(21)

where Ψmin(F*(y)) = min{Ψ(F0(y)), Ψ(F1(y))} and fmin(y) =
min{ f0(y), f1(y)}. Note that

∫+1

−1
F1(y)− F0(y)
( )2

cmin F∗(y)
( )

fmin(y) dy (22)
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is a constant which is independent of Y. Furthermore, if

n . 2 j0 + j1
( )

/

∫+1

−1
F1(y)− F0(y)
( )2

cmin F∗(y)( )
fmin(y) dy

(23)

Equation (21) can be simplified as

W 2
0 +W 2

1 . j0 + j1 (24)

Derived from (24), it can be naturally concluded that with
respect to Y∈ S

Y |W 2
0 ≤ j0

{ }
> Y |W 2

1 ≤ j1
{ } = Ø (25)

As a result, the sets Y |W 2
0 ≤ j0

{ }
, Y |W 2

1 ≤ j1
{ }

and
Y |W 2

0 . j0, W 2
1 ≤ j1

{ }
are a partition of the sample space S.
8.2 Derived of Pr W 2
0 ≤ j0|H2

{ }
To derive the closed form of Pr W 2

0 ≤ j0|H2

{ }
, we rewrite the

test statistic W 2
0 under H2 as

W 2
0 = n

∫+1

−1
FY (y)− F0(y)
( )2

c F0(y)
( )

dF0(y)

= n

∫+1

−1

T − t

T
FY0

(y)− F0(y)
( )

+ t

T
FY1

(y)− F0(y)
( )( )

× c F0(y)
( )

dF0(y)

(26)

where FY0(y) denotes the edf with the normal population N(0,
σ2) and FY1(y) denotes the edf with the normal population
N(μ, σ2). Note that (FY1(y)− F0(y)) is much larger with
probability than (FY0(y)− F0(y)) under the condition that n
is large enough. Since the time point t is random during the
slot, to simplify the computation, we calculate the mean of
W 2

0 in place of the marginal distribution that

E W 2
0

( ) = ∫T
0

∫+1

−1

be−bt

1− e−bT
n

t

T
FY1

(y)− F0(y)
( )( )2

× c F0(y)
( )

dF0(y) dt (27)

Consider that α and β are sufficient small compared with the
time duration of slot, (27) can well be approximated by

E W 2
0

( ) = n

3

∫+1

−1
FY1

(y)− F0(y)
( )2

c F0(y)
( )

dF0(y) (28)

Therefore it can be found that Pr W 2
0 ≤ j0|H2

{ }
is

approximately equal to Pr W 2
0 ≤ 3j0|H1

{ }
.
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