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ABSTRACT

A wavelet-based genetic algorithm using real-number coding and

arithmetical crossover method in signal processing is described in this work. Due

to the characteristic of the wavelet, an analytical signal can be represented by a

finite linear combination of wavelet-based functions. Using a wavelet-based

genetic algorithm to find the coefficients to such representation, an analytical

signal can be reconstructed by the coefficients and the corresponding elementary
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1900 SHAO ET AL.

function. Therefore the method can be used to compress and de-noise analytical

signals because the insignificant information such as noise will not be reserved in

the reconstructed signal. Both simulated signals and experimental

multicomponent chromatograms are successfully compressed and de-noised with

the proposed algorithm.

INTRODUCTION

Wavelet transform is a high performance signal-processing technique1"3 and

has been used in the compression,2 de-noising,3 baseline correction,4 and the

resolution of multicomponent overlapping chromatograms5. The main advantage

of the wavelet transform is that it decomposes a signal into fixed building blocks

of constant shape but at different scales and positions, and each of building

blocks represents the information at a different frequency. Therefore, the wavelet

transform is a powerful tool for time-frequency analysis. Genetic Algorithms

(GAs) were introduced by John Holland6 in 1975, as a probabilistic search

technique. Due to the advantages of global and parallel searching ability, GA has

been applied to combinatorial and parameter optimizations7*9.

In a general time-frequency decomposition, a signal is decomposed into a set

of elementary functions, characterized by time and dimensions in the time-

frequency plane. The analyzing signal can be represented by a linear combination

of a given number of elementary functions with different time-frequency

windows. In this study, wavelet-based elementary functions6 were used to

represent analytical signals, and a genetic algorithm was adopted to optimize the

involved parameters, i.e., translation, dilation, and the corresponding coefficients.

Therefore, a wavelet-based genetic algorithm was called for the proposed

method. The advantage of the method is that it optimizes all the parameters for

the wavelet-based functions simultaneously without any knowledge about the

analyzing signal. •
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WAVELET-BASED GENETIC ALGORITHM 1901

THEORY

Wavelet Analysis

Wavelet is defined as a family of functions which are derived by dilation

and translation from a unique function y/{x). The y/(x) is called the basis of a

wavelet and the corresponding wavelet family \j/at} is given by

where a and b denote the parameters to control the dilation and translation,

respectively, and -j== is the normalization constant. The wavelet transform of a

vH
function,/}*) e L2(R) is defined by

The discrete form of equation (1) and (2) can be written as

M*) = ̂ '¥k'*-**o) (3)
and

W(j^)=(f(x),w,l(x)) = 2-^l2AMrJ-k}ic (4)

where a = a'o, b = kboa
J
o,j and k are integers and, ao-2 and 60=l generally.

Therefore, a discrete signal can be represented by

to (5)

A signal can be precisely approximated by a wavelet representation due to the

characteristic of the wavelet. For low frequency components, the windows

controlled by the dilation parameter j are wide in time domain and narrow in

frequency domain, giving good frequency resolution, and for high frequency

components, the windows are narrow in time domain and wide in frequency
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1902 SHAO ET AL.

domain, allowing good time resolution. Such a sufficient coverage of the time-

frequency plane makes the method very effective for signal analysis.

»

Genetic Algorithm

A genetic algorithm is a stochastic search technique, based on simulations of

the mechanisms of natural selection and natural genetics. It has been widely used

in optimization problems, especially in the complex, multi-variable, and non-

linear optimization problems which are difficult to solve by usual search

methods. Similar to the natural evolution, the genetic algorithm is able to find the

best chromosome from a population by operating genes on chromosomes to make

them possess much higher fitness to the environment. To a practical problem, a

set of candidate solutions constitute the population which is to be optimized, one

candidate solution (individual) is presented as a set of parameters (genes) which

are encoded in a chromosome as a numerical string. A fitness function is used to

evaluate the quality of the individuals in population. Parent individuals are

selected from the population according to their fitness values with the rule that

individuals with higher fitness have higher probability of survival than the lower

ones. Gene crossover and mutation are operated on the corresponding

chromosomes to generate a new population with a certain probability,

respectively.

The basic procedures of GAs generally include: (l)population initialization,

Revaluation of each individual, (3)selection of parents based on the fitness

values, (4)crossover and mutation. The whole procedure can be illustrated as

Figure 1.

Crossover or recombination of genes between two parent individuals is

implemented in various ways, such as single-point, two-point, and uniform

crossover. The single-point and two-point crossover act in a similar way in which

genes after or between the randomly selected point(s) will be exchanged to form

new individuals, i.e., the children. Uniform crossover can be viewed as multi-
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WAVELET-BASED GENETIC ALGORITHM 1903

1 Start | '

Population initialization

Figure 1. Flowchart of a genetic algorithm

point crossover in which both the points and the number of the points are

determined by probability. Mutation will be applied to individuals by changing

randomly selected genes according to a probability threshold.

Wavelet-based Genetic Algorithm for Signal Decomposition

The aim of this study is to represent a signal by a finite linear combination of

elementary functions with arbitrary time-frequency windows in the following

form

f =7 C(D . (6^

where the number N is the number of elementary functions, y^ is a set of

elementary functions defined by dilation with a, and translation with bh ct is the

corresponding coefficients, / can be regarded as an approximation of the

original signal/. The genetic algorithm is applied to find all the parameters a,, bh

and Ci with the best fitness to the original signal.

D
ow

nl
oa

de
d 

by
 [

Fl
or

id
a 

A
tla

nt
ic

 U
ni

ve
rs

ity
] 

at
 2

3:
20

 0
6 

M
ar

ch
 2

01
6 



1904 SHAO ET AL.

The elementary functions (p^ are derived from a locally support wavelet-

like basis function by dilation and translation. These elementary functions are not

necessary independent each other. In this study, the following four elementary

functions were investigated:

(1) B2-spline

<p(t) =

(2)B3-spline

4 2 (7)

0 otherwise

<p(t) =

h- l<r<2

+- 2<r<3 (8)

-(4-/)3 3</<4
6

0 otherwise

(3) Marr function

1 2 /2) (9)

(4) Morlet wavelet basis function

?)(x) = cos(1.75x)exp(-x2/2) (10)

For a given basis function, a real-valued triplet (ahbi,ci) for each elementary

function is represented as genes, and a given number of the triplets are

represented as a chromosome which approximates the given signal. A simple way

to encode the parameters in the form of real number strings is adopted as the

following definition:

typedef struct {

float a; //dilation factor

float b; //translation factor
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WAVELET-BASED GENETIC ALGORITHM 1905

float c; //coefficient

}GENE;

typedef struct{

GENE chrome[nChrome]; //nChrome = number of elementary

//functions in a chromosome

float fitness; //fitness of individual

} CHROME;

The standard selection mechanism based on fitness scaling is used with a slight

modification to ensure the diversity in the population. An elitist strategy is

employed in which the best individual of the population always survives to the

next generation.

Two methods for mutation, i.e., real-number adaptive mutation ratio method

and dynamic adjustment of mutation probability, are used respectively. For the

adaptive mutation, during the initial stage random mutation is used to ensure the

diversity in the population. When the best fitness does not improve within 50

generations, big creep mutation giving a big disturbance around a real number

will be used to enlarge the search space. When another 50 generations passed

without any evolution, little creep mutation giving a little disturbance around a

real number will be used to locally optimize the chromosome. The other mutation

method is to adjust mutation probability during the evolution process, i.e. to start

the algorithm with an initial mutation probability during the initial stage, to

increase the probability gradually for each 50 generations without any evolution

until a threshold, and then to decrease the probability gradually back to the initial

value during the last stage.

Besides the standard single point crossover, arithmetical crossover is also

implemented, which takes two (real-valued) parent genes, 5 and /, and calculates

their offspring genes, s' and t', as a linear combination of the parents' string by

s'=k-s + (l-k)-l
t'=(\-k)-s+k-l ( H )

with the parameter £e[0,l]. For each individual gene participating in the

crossover, the parameter k is an uniformly random choice from the interval [0,1].
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1906 SHAO ET AL.

1 2 3 4
Retention Time(min)

Figure 2 Simulated four component chromatogram with 512 data points

The evaluation function in this work is defined as the norm-of the difference

between the signal/and its approximation/ divided by the signal norm | | / | | to

produce a relative error measurement as in equation (12).

(12)

The value F is to be minimized by the algorithm.

DATA PREPARATION AND CALCULATION

Figure 2 shows the simulated four-component chromatogram by Gaussian

equation,

(13)

where / ( / ) is the simulated chromatogram with 512 discretely sampled data

points, / is retention time, n is the component number, cj and t0J are the
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WAVELET-BASED GENETIC ALGORITHM 1907

concentration and position of component j , respectively. The width at half height

of the simulated peaks can be obtained by 2a^2\n(2).

Experimental chromatograms were obtained on an HPLC system of

Spectrasystem FL2000(Spectra-Physics, USA) and Shimadzu LC-6A (Shimadzu,

Japan), respectively. The column was packed with ODS silica of lOuni

(250x5mm, Shimadzu), and the post-column reaction agent was delivered by a

LC-6A pumps (Shimadzu). The samples are mixed rare earths. The experimental

conditions and sample preparation are the same as our previous works11'12.

A computer program was written in C++ language and implemented on a

Pentium-266. In all calculations, the population size is 50, the maximum

generation number is 5000 (for the last experimental chromatogram, 10000 was

used), the crossover probability is 0.9. For the adaptive mutation, the mutation

probability is 0.033, the big and little disturbance of a real number are 20% and

1%, respectively. For dynamic mutation, the initial mutation probability is 0.01,

and it will increase gradually (0.01 for every 50 generations without evolution)

until it reaches 0.05. Whenever the probability reached 0.05, it will decrease

gradually (0.01 for every 50 generations without evolution) until its initial value.

The span for parameters a, b, and c are respectively controlled as the following:

a e[0.001,1.2]

ce l/Di,-y'- /»»+ 2 I
where t^ and ^ are the minimum and maximum of the retention time, / ^

and /m x are the minimum and maximum of the chromatographic signal, and A/

is the difference between / ^ and / ^ .

RESULTS AND DISCUSSION

Effect of Genetic Operators on the Algorithm

In order to improve the performance of the genetic algorithm, results obtained
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1908 SHAO ET AL.

0.10

0.08

0.06-

0.04

0.02-

-a*mdicd. adaptive

0 1000 2000 3000 4000 5000
Generations

Figure 3 The error curves vs. generation averaged over 5 runs

with different crossover and mutation methods in the genetic algorithm were

compared. Table 1 lists the fitness obtained with different crossover and mutation

methods, 10 elementary functions from B2-spline basis for the chromatogram in

figure 2. Figure 3 shows the comparison between the error curves vs generation

for three different methods in Table 1. From Table 1, it is clear that the

arithmetical crossover with adaptive mutation is the best method. From figure 3,

the evolution procedure for each method can be investigated. It is clear that the

arithmetical crossover with adaptive mutation method is much better than the

single-point crossover with adaptive mutation method, and slightly better than the

arithmetical crossover with dynamic mutation method only during the final

period.

Effect of the Basis Functions on the Reconstructed Results

Table 2 shows the results, in which the fitness is calculated by equation (12),

obtained with B2-spline, B3-spline, Marr, and Morlet basis functions,
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WAVELET-BASED GENETIC ALGORITHM 1909

Table 1 Results with different genetic operators

Crossover type Mutation type Best fitness Mean fitness

Arithmetical

Arithmetical

Single-point

Adaptive

Dynamic

Adaptive

0.0100

0.0126

0.0116

0.0133

0.0159

0.0181

*: Results over 5 runs were sampled.

Table 2 Results using different basis functions'

Function

B2-spline

B3-spline

Marr

Morlet

best fitness

0.0100

0.0107

0.5959

0.1611

mean fitness

0.0133

0.0114

0.6137

0.1733

*: Results over 5 runs were sampled.

respectively. 10 elementary functions are used in the calculation. From both the

best fitness and mean fitness in the table it can be seen that B2- and B3-spline are

superior to the other two functions. On the other hand, due to the relatively

simple and explicit analytical form, B-spline functions are easy to evaluate and

manipulate, and consume less CPU-time than the others. Therefore B2-spline

was chosen in the following discussion because B2 is simpler than B3-spline.

The result of approximation using B2-spline is shown in figure 4 by dot line, the

fitness of which is 0.0100. It can be seen that the reconstructed chromatogram is

almost the same as the simulated one.

Effect of the Number of Elementary Function on the Reconstructed Results

Table 3 tabulates the fitnesses by equation (12) obtained with B2-spline

function as basis function but a different number of elementary functions. From
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1910 SHAO ET AL.

1 2 3 4
Retention Time(min)

Figure 4 Comparison between simulated and reconstructed chromatograms

Table 3 Results using different number of elementary functions*

number

functions

5

10

15

20

25

30

of compression

ratio

34.1:1

17.1:1

11.4:1

8.5:1

6.8:1

5.7:1

best

fitness

0.0211

0.0100

0.0081

0.0123

0.0190

0.0875

mean

fitness

0.0282

0.0133

0.0119

0.0146

0.0411

0.1027

*: Results over 5 runs were sampled.

both the best fitness and the mean fitness in the table, it can be seen that there is

no significant difference when the number of functions is between 10-20 with 15

being the best. Considering that the compression ratio becomes smaller and the

computation becomes slower with the increase of the number due to the increase

of the optimizing parameters, 10 or 15 should be the best value for the number of
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WAVELET-BASED GENETIC ALGORITHM 1911

Table 4 Results obtained from the simulated chromatograms

with different level of noise*

noise level
5%
10%
20%
30%
40%
50%

best fitness
0.0375
0.0704
0.1391
0.2048
0.2700
0.3299

mean fitness
0.0378
0.0714
0.1402
0.2059
0.2707
0.3306

RE" "
0.0183
0.0237
0.0382
0.0581
0.0741
0.0960

*: Results over 5 runs were sampled.

**: RE is calculated by equation (12) using the reconstructed and the

simulated chromatogram without noise.

the elementary functions. But it should be noted that the suitable number of the

elementary functions should be related with the complexity (the number of

peaks) of analyzing signal. It should be larger with the increase of the complexity

of signal.

Effect of Noise Level on the Reconstructed Results

In order to investigate the effect of noise level in the analyzing signal,

signals with different levels of noise were prepared by adding random noise into

the simulated chromatogram in Figure 2. Generally the noise in an HPLC data is

heteroscedastic, but for simplicity and the reason that the type of noise should not

influence the results of the method, random noise was adopted in this study. The

intensity of the added noise in percentage of the intensity of the signal are,

respectively, 5%, 10%, 20%, 30%, 40%, and 50%. Table 4 shows the fitness

obtained with the 15 B2-spline based elementary functions, and figure 5 shows

the comparison between the reconstructed chromatogram (with the fitness being

0.0377 and the RE being 0.1391) and simulated chromatogram with 20% noise.

The dash line at the bottom of figure 5 is the residual which is not recorded in the

reconstructed chromatogram, i.e., the noise filtered out by the method.
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1912 SHAO ET AL.

6-

0 1 2 3 4 5
Retention Time(min)

Figure 5 Comparison between the original and reconstructed chromatogram

From the table it is clear that not only did the fitness became larger and larger

with the increase of noise level, which can be explained by the increase of the

residual, the RE, which represents the difference between the reconstructed

signal and the real analyzing signal, also increased. This indicates that the noise

level will affect the results of the method. But from the values of RE in the table,

it can be seen that the reconstructed signal will remain the main information of

the analyzing signal. Figure 5 will also show us the conclusion.

Compression and De-nosing of Experimental Chromatograms

At first an experimental chromatogram with a great level of noise was

investigated by the methods according to the parameters optimized above using

15 and 20 B2-spline based elementary functions. Table 5 shows the results and

the comparison between the experimental chromatogram and the reconstructed

chromatogram with fitness being 0.0708 from 20 functions is shown in figure 6.

The dash line in the figure is the noise filtered out by the method. From the table
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WAVELET-BASED GENETIC ALGORITHM 1913

Table 5 Results obtained from the experimental chromatograms*

number of compression best mean

functions ratio fitness fitness

15

20

53.0:1

39.7:1

0.0721

0.0708

*:Results over 5 runs were sampled.

0.04-1

0.03-

O.O2-

co
c 0.01-

0.00

0.0812

0.0732

0 2 4 , 6 8 10 12
Retention Time(min)

Figure 6 The experimental (2384 points) and the reconstructed chromatograms

and the figure, it can be seen that both the compression and the de-noising for the

experimental chromatograms are satisfactory.

An experimental chromatogram with 15 peaks was also investigated by the

method. Figure 7 shows the comparison between the experimental and the

reconstructed chromatogram. The fitness of the reconstructed chromatogram is

0.0649. The compression ratio is 7.5:1 because 40 elementary functions are used

in calculation. It is clear that all the peaks remained in the reconstructed

chromatogram except for the small peaks caused by the injection disturbance.
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3.0
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515H
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- experimental
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;t ., i
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i '

JJU
0.0 10.0 20.0 30.0 40.0 50.0 60.0

Retention Time(min)

Figure 7 The experimental (900 points) and the reconstructed chromatograms

CONCLUSION

A wavelet-based genetic algorithm was developed to approximate analytical

signals as a linear combination of wavelet-like elementary functions. Due to the

characteristic of the wavelet-like functions, the method is able to represent

signals in very high efficiency. Because only the significant information of the

signals are recorded in the elementary functions, the method can also be used for

de-noising. From the results of both simulated and experimental chromatograms,

it was proven that the method can represent chromatographic signals by only a

few elementary function. The method may be a high performance method for

compression and de-noising of analytical signals.
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