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Abstract: In this paper, we propose an optimal adaptive FIR filter, in which the step-size and error 

nonlinearity are simultaneously optimized to maximize the decrease of the mean square deviation 

(MSD) of the weight error vector at each iteration. The optimal step-size and error nonlinearity are de-

rived, and a variable step-size stochastic information gradient (VS-SIG) algorithm is developed to ap-

proximately implement the optimal adaptation. Simulation results indicate that this new algorithm 

achieves faster convergence rate and lower misadjustment error in comparison with other adaptive al-

gorithms. 
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1. INTRODUCTION 

 

Adaptive finite-impulse-response (FIR) filter is one of 

the core technologies in digital signal processing and 

finds a number of applications in areas such as channel 

equalization, system identification, time-series prediction, 

noise cancellation, and beamforming [1]. The adaptive 

FIR filter algorithms have attracted research attention for 

over 50 years, since the late 1950s when the well-known 

least-mean-square (LMS) algorithm was first developed 

by Widrow and Hoff [2]. A large family of the tap-

weight update-equations for adaptive FIR filter can be 

expressed as 

( )( 1) ( ) ( ) ( ),T

k
k k f e k kµ+ = +W W X  (1) 

where W(k) denotes the M×1 weight vector at iteration k, 

e(k) is the error signal, X(k) represents the 1×M input 

(row) regressor, µk is the step-size, and f (.) is a scalar 

(linear or nonlinear) function of the error. 

The step-size µk and the error function f (.) are two key 

factors in the adaptation algorithm (1), because they 

govern the convergence speed as well as the steady-state 

misadjustment of the algorithm. Up to now, a lot of step-

sizes (usually variable step-sizes [3-11]) and error 

functions (usually error nonlinearities [12-16]) have been 

proposed to improve the convergence performance. The 

previous studies, however, focus only on one of the two 

factors, and to the best of our knowledge, no reports in 

the literature have attempted to optimize both the step-

size and error nonlinearity at the same time. In this work, 

we propose an optimal adaptive FIR filter, in which the 

step-size and the error nonlinearity are simultaneously 

optimized to maximize the decrease of the mean square 

deviation (MSD) of the weight error vector at each 

iteration. In particular, we develop a variable step-size 

stochastic information gradient (SIG) [17] algorithm to 

approximately realize this optimal adaptive filter. As will 

be shown in the simulation part, the new algorithm 

achieves a noticeable performance improvement over 

some existing algorithms. 

 

2. THE OPTIMAL ADAPTIVE FIR FILTER 

 

Consider the case in which the adaptive FIR filter 

attempts to identify the M×1 weight vector W
* of an 

unknown FIR system, whose output samples {d(k)} are 

related via 

*( ) ( ) ( ),d k k v k= +X W  (2) 

where v(k) is the disturbance noise. In this case, the error 

signal e(k) is given by 

( ) ( ) ( ) ( ),e k k k v k= +
�X W  (3) 

where *( ) ( )k k= −
�W W W is the weight error vector. By 

the energy conservation relation [16], we have 
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where 
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is the decrease of the mean square deviation (MSD) at k 

iteration 
2

( [ ( ) ]),MSD E k�� W .  denotes the Euclidean 

norm, ( ) ( ) ( )
a
e k k k�� X W is the so called a priori error 

[16]. The MSD is usually used as the performance 

measure for the adaptation algorithm (1). To obtain the 

fast convergence speed and the smallest misadjustment, 

one should maximize the MSD decrease at each iteration. 

Therefore, the optimum step-size and error function 

would be 
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From (5), we get 
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X
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Fig. 1 depicts the curve of the MSD decrease ∆MSD as a 

function of the step-size, from which we see that the op-

timal step-size equals µmax/2. Here µmax is the maximum 

step-size which ensures ∆MSD≥ 0. Of course, the optimal 

step-size µk

* will guarantee the convergence of the recur-

sion, since µk

* < µmax, and we always have 
2 2

( 1) ( ) .E k E k
   + ≤
      

� �W W  

To derive the optimal error function f *, we give the 

following assumptions [16]: 

Assumption 1:  The noise sequence {v(k)} is inde-

pendent, identically distributed, and independent of the 

input sequence {X(k)}; 

Assumption 2:  The filter is long enough such that 

ea(k) is Gaussian distributed;  

Assumption 3:  
1The filter is long enough such that 

                                                           
1 Similar uncorrelation assumption appears in [16]. This as-

sumption can be justified by the law of large numbers. It be-

comes more realistic as the filter gets longer.  

the random variables 
2

( )kX  and ( )2 ( )f e k  are un-

correlated, i.e., 

( ) ( )
2 22 2( ) ( ) ( ) ( )E k f e k E k E f e k     =     

X X  (7) 

Moreover, we assume the error function f (.) satisfies 

lim ( ) ( ) 0
e

e

f e p e
→±∞

=  (8) 

where pe(e) is the probability density function (PDF) of 

error e(x). Notice condition (8) is not too restrictive, be-

cause for most physical signals, the PDF p(x) decreases 

rapidly as x goes to infinity.  

With the above assumptions, we derive 
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where (a) follows from the Gaussian assumption and 

Price theorem [18,19], and (b) follows from the condi-

tion (8). Thus the MSD decrease ∆MSD can be expressed 

as 
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And then, the Gateaux derivative of ∆MSD with respect to 

f  in the direction of β is given by  
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Let ( ) ( ){ }
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all β, we have *( ) ( ) ( ) ,
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Fig. 1. MSD decrease ∆MSD versus step-size µ. 
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( )22 ( ) ( ) .
a k

E e k E kµ   
   

X  As λ can be absorbed into 

the step-size µk, we choose 

* ( )
( ) .

( )

e

e

p e
f e

p e

′
= −  (12) 

Remark 1: It is interesting to observe that the optimal 

error function f *(.) is just the minus score [20] of the 

error variable. Moreover, we can rewrite (12) as 

( )
*

* ( )
( ) log ( ) ,

e

e
f e p e

e e

φ∂ ∂
= = −

∂ ∂
 (13) 

where *( ) log ( )
e

e p eφ = − is the underlying cost function 

of the adaptation. Clearly, minimizing *( )eφ is equiva-

lent to maximizing the logarithmic likelihood function 

log pe(e). Heuristically, we could say the optimal func-

tion (12) gives the maximum likelihood (ML) method, 

which has the best possible asymptotic properties (e.g. 

the asymptotic efficiency) one can hope for. Here we 

should note that the optimal function f *(e) is time-

varying, because the error’s PDF pe(e) always changes 

across iterations.  

Remark 2: The optimal cost can also be regarded as 

the minimum error entropy (MEE) criterion [21-26]. In 

fact, the expectation of the cost function *( )eφ is 

[ ]*( ) log ( )

( ) log ( ) .

e

e e

E e E p e

p e p e de

φ

+∞

−∞

  = − 

= −∫
 (14) 

Thus minimizing *[ ( )]E eφ is equivalent to minimizing 

the error’s entropy ( ) ( ) log ( ) .
e e

H e p e p e de
+∞

−∞

= −∫  This 

gives an interesting interpretation for why the MEE crite-

rion can be successfully used in the areas such as ma-

chine learning and adaptive system training [22-26].  

Remark 3: It should be noted that the authors of [16] 

have proposed to optimize the error function by minimiz-

ing the steady-state excess mean-square error (EMSE), 

and obtained the same optimal function. Their approach 

is based on the Cramer-Rao lower bound (CRLB). Fur-

ther, in an earlier work [14], the error nonlinearity is op-

timized to minimize the EMSE at each iteration by using 

the constrained optimization and calculus of variations 

method, with which the optimal error function is derived 

as 

* ( )
( ) ,

( ) ( )

e

e e

p e
f e

p e p eµλ

′
= −

′′+
 (15) 

where λ is the input signal power. In the case of slow 

adaptation, the step-size µ will be chosen small such that 

the optimal nonlinearity (15) is approximately given by 

(12). 

Combining (9) and (12), we have 
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where ( )
2

( ) ( ) ( ) ( )
F e e e

J e p e p e p e de
+∞

−∞

′∫�  is the Fish-

er information with respect to location parameter [20]. In 

addition, combining (7) and (12) yields 

( )
2 2*2( ) ( ) ( ) ( ).

F
E k f e k E k J e   =
   
X X  (17) 

Substituting (16) and (17) into (6), we obtain the optimal 

step-size with respect to the optimal error nonlinearity f *, 

that is 

2

*

2

( )
.

( )

a

k

E e k

E k

µ

 
 =

 
 
X

 (18) 

Now we have derived the optimal adaptive FIR filter, 

whose error nonlinearity and step-size are given by (12) 

and (18), respectively. 

 

3. A VARIABLE STEP-SIZE SIG ALGORITHM 

 

There are two obstacles to the practical implementa-

tion of the optimal adaptive FIR filter: (1) the error’s 

PDF p
e
(e) is not available during adaptation, and (2) the 

a priori error e
a
(k) depends on W*, which is unknown. 

One approach to deal with the first obstacle is the online 

density estimation, which estimates the error distribution 

from the latest error samples available. This method has 

been widely used in the areas of information theoretic 

learning (ITL) [22-26]. By this approach, the optimal 

adaptation algorithm becomes  

( )( )* ˆ( 1) ( ) log ( ) ,
k e

k k p e kµ
∂

+ = − −
∂

W W
W

 (19) 

where ˆ (.)
e
p  denotes the estimated PDF of the error. In 

[17], the gradient ( )( )ˆlog ( )
e
p e k

∂
−

∂W
is called the 

stochastic information gradient (SIG), since it can be 

viewed as the stochastic gradient of the error’s entropy. 

By kernel density estimation (KDE) [27], the PDF 

estimate of the error evaluated at e(k) is 

( ) ( )
1

1
ˆ ( ) ( ) ( ) ,

k

e

i k L

p e k K e k e i
L

σ

= − +

= −∑  (20) 

where L is the sliding error samples length, Kσ(.) is the 

kernel function with width σ [27]. Then the stochastic 

information gradient can be calculated as [17] 
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We now calculate the optimal step-size µk

* of (18). 

The problem here is of course that the expectations are 

not computable since the underlying distributions are 

unknown. A simple estimate of the expectation is to 

replace it by the sample mean, thus we have 

2* 2

1 1

( ) ( ) .
k k

k a

i k L i k L

e i iµ

= − + = − +

   
≈    
   
∑ ∑ X  (22) 

In practical situations, the a priori error samples {ea(i)} 

are usually unknown. However, in the initial stage of the 

adaptation, the algorithm is far from the optimum 

solution such that ea(i) ≈ e(i). And hence, the optimal 

step-size in the initial stage can be estimated by 

2* 2

1 1

( ) ( ) .
k k

k

i k L i k L

e i iµ

= − + = − +

   
≈    
   
∑ ∑ X  (23) 

Suppose now the algorithm is near the optimum solution 

when k ≥ k0. In this case, we consider the following 

staircase optimal step-sizes: 

0
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0 0
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                                    0,1, 2, ,
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µ µ τ τ
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where τ ∈�  is large enough such that at iteration k0+ 

(i +1)τ, 
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=  and optimal error nonlinearity f *. 
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where (a) follows from the fact that *[ ( )]E f e′ =  

*2[ ( )] ( ).
F

E f e J e=  Thus we have 

0

*

22

0
( ( 1) ) ( ) .

2

k i

a
E e k i E k

τ
µ

τ
+   + + ≈   

X  (26) 

Combining (18) and (26) yields 

0 0

* *
( 1) 2.

k i k iτ τ
µ µ

+ + +
≈  (27) 

Therefore, the staircase optimal step-sizes can be 

approximately given by 

0

*

0 0
2 ,   ( 1) .i

k k
if k i k k iµ µ τ τ= + ≤ < + +  (28) 

One drawback of the staircase optimal step-sizes is that, 

the step-sizes are frozen between any two successive 

turning points. To deal with this problem, we give the 

following smoothed optimal step-sizes: 

* * 1/

1 0
2 ,   .

k k
for k kτ

µ µ
+

= ≥  (29) 

Now we have derived the computable optimal step-

sizes for both the initial and final stages of the adaptation. 

In order to ultimately implement the algorithm, we need 

identify the dividing point k0 between the two stages. To 

this end, we introduce the autocorrelation ( )kρ �  

[ ( ) ( 1)]E e k e k −  between e(k) and e(k–1) to measure how 

far the algorithm is from the optimum solution. As 

argued in [4], the error autocorrelation ρ(k) will be large 

in the early stage of adaptation and will approach zero as 

the algorithm approaches the optimum even in the 

presence of noises {v(k)}. The time-average estimate of 

ρ(k) can be expressed as 

ˆ ( )kρ = ˆ ( 1) (1 ) ( ) ( 1),k e k e kαρ α− + − −  (30) 

where 0 1α< < is the exponential weighting parameter. 

Based on ˆ ( ),kρ  the proposed step-size is given by 

2

1

*
2

1

* 1/

1

( )

ˆ( )

( )

ˆ2 ( ) ,  

k

i k L

k

k

i k L

k

e i

if k

i

if kτ

ρ ε

µ

µ ρ ε

= − +

= − +

−

  
  
   ≥ = 
 
 

 <

∑

∑ X
 (31) 

where ε > 0 is a small positive number used for the 

threshold. Sometimes we need choose a minimum step-

size µmin to provide a minimum level of tracking ability, 

i.e., *

min
max{ , }.

k k
µ µ µ=  

Combining (19), (21) and (31), we obtain the variable 

stochastic information gradient (VS-SIG) algorithm. 

 

4. SIMULATION RESULTS 

 

In this section, we perform simulation experiments to 

illustrate the favorable behavior of the VS-SIG algorithm 

in comparison to other adaptive algorithms. The system 

to be identified is an FIR channel with 14-dimentional 

normalized weight vector (||W*
||=1). The input signal is a 

zero-mean white Gaussian process with unit power. The 

noise sequence {v(k)} is zero-mean Laplace distributed 

with variance 0.01 such that SNR=20dB. To calculate the 

stochastic information gradient, we set the sliding error 

samples length L=20, and choose Gaussian function as 

the kernel, whose kernel width is determined by the 
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Silverman’s rule [27]. Further, we set α=0.99, ε=0.1 and 

µmin= 0.000005 for the VS-SIG algorithm. All the 

simulation results below are obtained by ensemble 

averaging over 100 independent trials. 

Fig. 2 shows the convergence curves of the MSD for 

the VS-SIG algorithm with different τ values and the SIG 

algorithm with step-size µ = 0.001. It is clear that the 

VS-SIG algorithm converges faster and has lower 

misadjustment error. The excellent performance of the 

VS-SIG algorithm can also be observed from Fig. 3 and 

Fig. 4, in which the learning curves of VS-SIG (τ = 50) 

are compared, respectively, with those of the least mean 

p-power (LMP) [13] algorithms and several variable 

step-size LMS algorithms. Except the RVSS-NLMS 

algorithm [8], the used variable step-size LMS 

algorithms are summarized in [7]. Table 1 lists the 

parameters setting for different variable step-size 

algorithms. These parameters are experimentally chosen 

such that the algorithms achieve a good tradeoff between 

the convergence speed and the final misadjustment. 

 

5. CONCLUSION 

 

A variable step-size stochastic information gradient 

(VS-SIG) algorithm has been developed to 

approximately realize the optimal adaptive FIR filter 

designed by optimizing both the step-size and error 

nonlinearity such that the MSD decrease at each iteration 

is maximized. Simulation experiments have shown that 

the proposed algorithm is highly effective in improving 

the convergence speed and misadjustment error. 
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