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Abstract: The decay rate of the elastic and electric fields along the growth direction of a
transversely isotropic piezoelectric hollow or solid circular nanocolumn is investigated by
developing the general solution for the corresponding three-dimensional problems. While the
proposed method can be applied to asymmetric deformation, only axisymmetric deformation
is considered in this paper. The derived results are first verified by comparison with existing
elastic isotropic solutions. Then, the locus of smaller roots is plotted for different wall thicknesses,
including also the limiting solid circular nanocolumn case. Owing to the material anisotropy
and the coupling between the mechanical and electric fields, there exists an intriguing
interaction of real and complex root loci for the torsionless axisymmetric deformation. The
numerical results also show that the geometric parameter, material anisotropy, and piezo-
electricity of the hollow or solid nanocolumn can substantially influence the decay rates, which
can be applied to the strain relaxation analysis in novel semiconductor structures containing
self-assembled nanoposts and nanocolumns.

Keywords: nanocolumn, decay rate, Saint-Venant’s principle, transverse isotropy,
piezoelectricity, circular cylinder, three-dimensional elasticity solution

1 INTRODUCTION problem for a semi-infinite hollow circular cylinder
by using the Papkovitch–Neuber solution to the
elastostatic displacement equations of equilibriumThe decay rate of stresses and displacements along
and derived solutions for both the axisymmetric andthe longitudinal direction due to self-equilibrating
the asymmetric cases. Stephen [5] further consideredloads acting at the end of the hollow or solid circular
the decay rates for a compound circular cylinder ofcylinder is an old but challenging mechanics problem.
two materials having different stiffnesses. Ye [6, 7]By employing the Love displacement solution, Klemm
studied the decay rates of angle-ply laminated hollowand Little [1] presented a complete analysis for a long
cylinders based on the recursive and approximationsolid circular cylinder with one end being traction
technique. Piezoelectric materials and structures havefree and the other end under a self-equilibrated
attracted great attention because of their capabilitytraction. Earlier investigators on the decay of the
for converting the mechanical energy into electricelastic field along solid circular cylinders include Purse
energy, and vice versa. As such, the corresponding(see reference [2]) who obtained the eigenfunctions
Saint-Venant’s principle in piezoelectricity has beengoverning axisymmetric torsion problem, and Little
investigated by many researchers (see, for example,and Childs [3] who obtained a vector bi-orthogonality
reference [8]). These include decay rates under anti-from Love’s strain function. Later, Stephen and
plane [9] and plane [10, 11] deformations. However,Wang [4] considered the self-equilibrated end load
to the best of the present authors’ knowledge, the
decay rate in a three-dimensional piezoelectric

* Corresponding author: Department of Civil Engineering, hollow or solid cylinder has not been studied so far,
University of Akron, Akron, OH, 44325-3905, USA. email: pan2@ which yet may have great technical applications to

the semiconductor industry, as discussed below.uakron.edu
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In recent years, various semiconductor nano- equilibrium equations in terms of the electric
potential w and the three displacements u, v and wstructures have been successfully grown to enhance

optoelectronic and electronic properties. Among along the x, y and z directions respectively are
(assuming also zero body force and zero electricthese, the novel nanopost and nanocolumn structures

are particularly of promise, as reported by Chen charge density)
et al. [12], Van Nostrand et al. [13], and Thillosen
et al. [14]. However, the strain relaxation feature c11u,xx+

1
2
(c11−c12)u,yy+c44u,zz+

1
2
(c11+c12)v,xyalong the nanopost or nanocolumn is critical from

+(c13+c44)w,xz+(e15+e31)w,xz=0the device design point of view. Therefore, in this
paper, the exact decay rates of the elastic and 1

2
(c11−c12)v,xx+c11v,yy+c44v,zz+

1
2
(c11+c12)u,xyelectric fields along the growth direction of a piezo-

electric hollow or solid nanocolumn are determined +(c13+c44)w,yz+(e31+e15)w,yz=0
by developing the general solution for the corre-

c44(w,xx+w
,yy

)+c33w,zz+(c13+c44)(u
,xz
+v
,yz

)sponding three-dimensional problems [15, 16]. While
the more general asymmetric case can be discussed

+e15(w,xx+w,yy)+e33w,zz=0by using the present formulation, attention is con-
fined to the torsional and torsionless axisymmetric e15(w,xx+w

,yy
)+e33w,zz+(e15+e31)(u

,xz
+v
,yz

)
cases. The numerical results presented clearly show

−e11(w,xx+w,yy)−e33w,zz=0the importance of the material anisotropy and
electromechanical coupling on the decay rate of

(1)nanocolumns.

where c
ij

, e
ij

, and e
ij

are the elastic, piezoelectric, and
dielectric coefficients respectively, of the piezoelectric2 GENERAL SOLUTIONS OF TRANSVERSELY
solid, and the symbol u

,xy
denotes differentiations ofISOTROPIC PIEZOELECTRIC SOLIDS

the elastic displacement component u with respect to
x and y. In addition the linear constitutive equationsAs shown in Fig. 1, a fixed Cartesian coordinate system
in the Cartesian coordinate system are given by(x, y, z) and a circular cylindrical coordinate system

(r, h, z) are attached to the nanocolumn which is free
standing on a substrate (see, for example, reference
[13]). For the transversely isotropic (or hexagonal
crystal) piezoelectric hollow or solid circular nano-
column with poling direction along the z axis, the
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It is obvious that the x–y plane is the isotropicFig. 1 A simplified free-standing transversely isotropic
piezoelectric nanocolumn over a substrate plane and the elastic and piezoelectric properties
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are uniform within this plane. In equation (2), with
c

66
=1

2
(c

11
−c

12
) and

a=c11(c44e11+e2
15

)
e
xx
=u
,x

, e
yy
=v
,y

, e
zz
=w
,z

, e
xy
=1
2
(u
,y
+v
,x

)
b=−c11(c33e11+c44e33+2e15e33)−c44(c44e11+e2

15
)

e
zx
=1
2
(u
,z
+w
,x

), e
zy
=1
2
(v
,z
+w
,y

)
+e11(c13+c44)2−c44(e15+e31)2

E
x
=−w

,x
, E

y
=−w

,y
, E

z
=−w

,z +2e15(c13+c44)(e15+e31)
(3)

c=c11(c33e33+e2
33

)+c44(c33e11+c44e33+2e15e33)
It can be shown that the displacements u, v, and

−e33(c13+c44)2−2e33(c13+c44)(e15+e31)w, the electric potential w, the stresses s
xx

, s
yy

, s
xy

,
s

zz
, s

zx
, and s

zy
, and the electric displacements D

x
, +c33(e15+e31)2D

y
, and D

z
can all be concisely expressed in terms of

d=−c44(c33e33+e2
33

)a 3×1 harmonic function vector P=[W
1
W

2
W

3
]T

and a scalar harmonic function W
0

as [16]
(8)

u+ iv=L(J̃P+ iW0), [w w]T=KP
,z It should be mentioned that the above general

s
xx
+s
yy
=2(c66 J̃H−c44 J̃− ĨT

0
BK )P

,zz
solution (4) is only valid when l

1
≠l

2
≠l

3
. Therefore,

when addressing the corresponding purely elastic
s
xx
−s
yy
+2is

xy
=2c66L2(J̃P+ iW0) isotropic material case or any other possible material

cases where repeated roots occur, a small perturbationCszzD
z
D=B( Ĩ

0
J̃+K )HP

,zz is given to the material coefficients to make the three
eigenvalues unequal so that the general solution
presented in this paper can still be applied withCszx+ is

zy
D
x
+ iD

y
D=LB[( Ĩ

0
J̃+K )P

,z
+ iĨ0W0,z ] negligible errors (see, for example, reference [17]). The

above general solution (4) can also be easily expressed
in the cylindrical coordinate system (r, h, z) as(4)

u
r
+ iu
h
=Lc(J̃P+ iW0), [w w]T=KP

,zwhere

s
rr
+s
hh
=2(c66 J̃H−c44 J̃− ĨT

0
BK )P

,zz
L=

q
qx
+ i
q
qy

, J̃= [1 1 1], Ĩ0= [1 0]T
s
rr
−s
hh
+2is

rh
=2c66(L2c−r−1Lc)(J̃P+ iW0)

(5a) CszzD
z
D=B( Ĩ0 J̃+K )HP

,zzK= [k
1

k
2

k
3
], H=diag[l1 l2 l3 ] (5b)

Cszr+ is
zh

D
r
+ iD

h

D=LcB[( Ĩ0 J̃+K )P
,z
+ iĨ0W0,z ]u=Cc13+c44

e15+e31
D , A=Cc33 e33

e33 −e33
D

(9)
B=Cc44 e15

e15 −e11
D where

(5c)
Lc=

q
qr
+ i

1

r

q
qhk

i
=l
i
(A−l

i
B)−1u (5d)

and W
i

(i=0, 1, 2, 3) satisfy L2c−
1

r
Lc=A qqr− 1

r
+ i

1

r

q
qhBA qqr+ i

1

r

q
qhB

W
i,xx
+W
i,yy
+l
i
W
i,zz
=0 (i=0, 1, 2, 3) (6)

(10)
where l

0
=c

44
/c

66
and l

i
(i=1, 2, 3) are the three

For the torsional axisymmetric deformation of theroots of the cubic equation
piezoelectric solid, u

r
=w=w=s

rr
=s
hh
=s

zz
=s

zr
=

D
r
=D

z
=0 and P=0. Then the general solution (9)al3+bl2+cl+d=0 (7)
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is reduced to the first and second kinds respectively. Substituting
equation (14) into the general solution (11) and
imposing the traction-free boundary conditionsu

h
=W
0,r

, s
rh
=c66(W0,rr−r−1W

0,r
)

s
rh
=0 on r=a and r=b, the homogeneous linear

equations for B
1

and B
2

areCszhD
h

D=BĨ0W0,rz

(11) CJ2(r√l0a) Y2(r
√l0a)

J2(r
√l0b) Y2(r

√l0b)DCB1B2
D=C00D (15)

On the other hand, for the torsionless axisymmetric
deformation of the piezoelectric solid, u

h
=s

rh
=s

zh
= A non-trivial solution for equation (15) yields the

D
h
=0 and W

0
=0. For this case, the above general transcendental equation for r according to

solution (9) is reduced to

J2(r
√l0a)Y2(r

√l0b)−Y2(r
√l0a)J2(r

√l0b)=0
u
r
=J9P,r , [w w]T=KP

,z
(16)s

rr
+s
hh
=2(c66 J̃H−c44 J̃− ĨT

0
BK )P

,zz
s
rr
−s
hh
=2c66 J̃(P

,rr
−r−1P

,r
) which is identical with that derived by Stephen and

Wang [4] if we set k=r√l
0
. Therefore, once the decayCszzD

z
D=B( Ĩ0 J̃+K )HP

,zz
, CszrD

r
D=B( Ĩ0 J̃+K )P

,rz rate for the torsional deformation of an isotropic
elastic hollow cylinder is calculated, the torsional
decay rate for the corresponding transversely isotropic(12)
piezoelectric nanocolumn can be simply found by

dividing result by the factor √l
0
. In other words, the

decay rate for the torsional case of the transversely
3 DECAY RATES OF THE TRANSVERSELY isotropic piezoelectric nanocolumn is inversely

ISOTROPIC PIEZOELECTRIC NANOCOLUMN proportional to the ratio √l
0
=√c

44
/c

66
.

It is assumed that the circular hollow nanocolumn
occupies the region a∏r∏b, 0∏z∏+2. In this 3.2 Torsionless case
investigation, only the torsional and torsionless

Similarly, for this case, it is assumed that the physicalaxisymmetric deformations of the nanocolumn are
quantity in the nanocolumn decays exponentially asconsidered. The two lateral surfaces of the column

r=a and r=b are traction free; thus
P=e−rz [�J0(r

√l
a
r)�C1+�Y0(r

√l
a
r)�C2 ] (17)

s
rr
=s
rz
=s
rh
=0, on r=a and r=b (13)

where the angular brackets �Ω� stand for a 3×3
diagonal matrix with its element varying with theIn addition, either the charge-free (insulating) con-
index a, and C

1
and C

2
are two 3×1 constant vectorsdition D

r
=0 or electroded (conducting) condition

to be determined. Substituting equation (17) into thew=0 is imposed on the two surfaces r=a and r=b.
general solution (12) and imposing the traction-free
and charge-free (or electroded) boundary conditions
on r=a and r=b, the homogeneous linear equations3.1 Torsional case
for C

1
and C

2
are

It is first pointed out that the torsional case is purely
elastic and that its solution is associated with the A11C1+A12C2=0
scalar harmonic function W

0
only. Assuming that the

field quantity in the nanocolumn decays exponentially A21C1+A22C2=0
in its growth direction, then

(18)
W0=B1J0(r

√l0r) e−rz+B2Y0(r
√l0r) e−rz (14)

where the elements of the matrices A
ij

are given
below for different boundary conditions at r=a andwhere B

1
and B

2
are two constants to be determined,

and J
n

and Y
n

are the nth-order Bessel functions of r=b.

JSA324 © IMechE 2007J. Strain Analysis Vol. 42



561Decay rates for a nanocolumn

If r=a and r=b are traction free and charge free If r=a is traction free and charge free while r=b
is traction free and electroded, then(D

r
=0), then

A11=C ( Ĩ
0
J̃+K )√H�J1(ra

√l
a
)�

2c66 J̃
√H�J1(ra

√l
a
)�

−ra(c44 J̃+ ĨT
0

BK )�J0(ra
√l
a
)�D A11=C ( Ĩ

0
J̃+K )√H�J1(ra

√l
a
)�

2c66 J̃
√H�J1(ra

√l
a
)�

−ra(c44 J̃+ ĨT
0

BK )�J0(ra
√l
a
)�D

A12=C ( Ĩ
0
J̃+K )√H�Y1(ra

√l
a
)�

2c66 J̃
√H�Y1(ra

√l
a
)�

−ra(c44 J̃+ ĨT
0

BK )�Y0(ra
√l
a
)�DA12=C ( Ĩ

0
J̃+K )√H�Y1(ra

√l
a
)�

2c66 J̃
√H�Y1(ra

√l
a
)�

−ra(c44 J̃+ ĨT
0

BK )�Y0(ra
√l
a
)�D

A21=C ( Ĩ
0
J̃+K )√H�J1(rb

√l
a
)�

2c66 J̃
√H�J1(rb

√l
a
)�

−rb(c44 J̃+ ĨT
0

BK )�J0(rb
√l
a
)�D A21=C [0 1]K�J0(rb

√l
a
)�

ĨT
0

B( Ĩ
0
J̃+K )√H�J1(rb

√l
a
)�

2c66 J̃
√H�J1(rb

√l
a
)�

−rb(c44 J̃+ ĨT
0

BK )�J0(rb
√l
a
)�D

A22=C ( Ĩ
0
J̃+K )√H�Y1(rb

√l
a
)�

2c66 J̃
√H�Y1(rb

√l
a
)�

−rb(c44 J̃+ ĨT
0

BK )�Y0(rb
√l
a
)�D

A22=C [0 1]K�Y0(rb
√l
a
)�

ĨT
0

B( Ĩ
0
J̃+K )√H�Y1(rb

√l
a
)�

2c66 J̃
√H�Y1(rb

√l
a
)�

−rb(c44 J̃+ ĨT
0

BK )�Y0(rb
√l
a
)�D(19)

If r=a and r=b are traction free and electroded
(w=0), then (21)

If r=a is traction free and electroded while r=b
is traction free and charge free, then

A11=C [0 1]K�J0(ra
√l
a
)�

ĨT
0

B( Ĩ
0
J̃+K )√H�J1(ra

√l
a
)�

2c66 J̃
√H�J1(ra

√l
a
)�

−ra(c44 J̃+ ĨT
0

BK )�J0(ra
√l
a
)�D

A11=C [0 1]K�J0(ra
√l
a
)�

ĨT
0

B( Ĩ
0
J̃+K )√H�J1(ra

√l
a
)�

2c66 J̃
√H�J1(ra

√l
a
)�

−ra(c44 J̃+ ĨT
0

BK )�J0(ra
√l
a
)�D

A12=C [0 1]K�Y0(ra
√l
a
)�

ĨT
0

B( Ĩ
0
J̃+K )√H�Y1(ra

√l
a
)�

2c66 J̃
√H�Y1(ra

√l
a
)�

−ra(c44 J̃+ ĨT
0

BK )�Y0(ra
√l
a
)�D

A12=C [0 1]K�Y0(ra
√l
a
)�

ĨT
0

B( Ĩ
0
J̃+K )√H�Y1(ra

√l
a
)�

2c66 J̃
√H�Y1(ra

√l
a
)�

−ra(c44 J̃+ ĨT
0

BK )�Y0(ra
√l
a
)�D

A21=C [0 1]K�J0(rb
√l
a
)�

ĨT
0

B( Ĩ
0
J̃+K )√H�J1(rb

√l
a
)�

2c66 J̃
√H�J1(rb

√l
a
)�

−rb(c44 J̃+ ĨT
0

BK )�J0(rb
√l
a
)�D A21=C ( Ĩ

0
J̃+K )√H�J1(rb

√l
a
)�

2c66 J̃
√H�J1(rb

√l
a
)�

−rb(c44 J̃+ ĨT
0

BK )�J0(rb
√l
a
)�D

A22=C [0 1]K�Y0(rb
√l
a
)�

ĨT
0

B( Ĩ
0
J̃+K )√H�Y1(rb

√l
a
)�

2c66 J̃
√H�Y1(rb

√l
a
)�

−rb(c44 J̃+ ĨT
0

BK )�Y0(rb
√l
a
)�D A22=C ( Ĩ

0
J̃+K )√H�Y1(rb

√l
a
)�

2c66 J̃
√H�Y1(rb

√l
a
)�

−rb(c44 J̃+ ĨT
0

BK )�Y0(rb
√l
a
)�D

(22)(20)
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The condition that equation (18) admits a non- If r=a is charge free while r=b is electroded, then
the transcendental equation for r istrivial solution yields the transcendental equation for

r as
J1(sra)Y0(srb)−Y1(sra)J0(srb)=0 (27)

If r=a is electroded while r=b is charge free, thenKA11 A
12

A
21

A
22
K=0 (23)

the transcendental equation for r is

It should be noted that, when the piezoelectric J0(sra)Y1(srb)−Y0(sra)J1(srb)=0 (28)
tensor vanishes (i.e. e

ij
=0), the problem decouples

The calculations show that the roots to the trans-into purely elastic and purely dielectric problems.
cendental equations (24), (26), (27), and (28) are allWhile the purely elastic case is still relative com-
real.plicated, the purely dielectric case can be simply

discussed below for different electric boundary
conditions.

4 RESULTS AND DISCUSSIONIt is found that, if both r=a and r=b of a dielectric
hollow circular nanocolumn are charge free, then the

First, the results are verified by comparison withtranscendental equation for r is
existing isotropic solutions. It is noted that, by using

J1(sra)Y1(srb)−Y1(sra)J1(srb)=0 (24) a small perturbation from isotropy to anisotropy, the
decay rates based on the present formulation are inwhere
complete agreement with those obtained by Little and
Childs [3] for an isotropic elastic solid circular cylinder,s=Se33e11 (25)
and by Stephen and Wang [4] for an isotropic elastic
hollow circular cylinder. For example, in Fig. 2 the

If both r=a and r=b are electroded, then the
complex decay roots rb for axisymmetric torsionless

transcendental equation for r is
displacements for an isotropic elastic hollow cylinder
with Poisson’s ratio n=0.25 are illustrated. It isJ0(sra)Y0(srb)−Y0(sra)J0(srb)=0 (26)

Fig. 2 Dimensionless complex decay roots rb under axisymmetric torsionless deformation for
an isotropic elastic hollow nanocolumn with Poisson’s ratio n=0.25. Only real parts of
the roots are shown
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Table 1 Material properties ofobserved that Fig. 2 is identical with Fig. 3 in the
GaN [18, 19]paper by Stephen and Wang [4].

Next, the specific results for the transversely iso- c
11
=c

22
(GPa) 390.0

c
33

(GPa) 398.0tropic piezoelectric gallium nitride (GaN) nanocolumn
c

12
(GPa) 145.0[13] are presented. It is noted that GaN is a semi-

c
13
=c

23
(GPa) 106.0

conductor compound with strong coupling between c
44
=c

55
(GPa) 105.0

c
66

(=(c
11
−c

12
)/2) (GPa) 122.5the electric and mechanical fields and with a wide

e
15

(C/m2) −0.30energy bandgap [18, 19]. As such, the correspond-
e

31
(C/m2) −0.33ing GaN nanopost and nanocolumn growth and

e
33

(C/m2) 0.65
overgrowth have recently attracted wide attention

e
11
=e

22
(10−12 C2/N m2) 78.8

in the semiconductor community (see, for example, e
33

(10−12 C2/N m2) 78.8
references [12] to [14]). The material properties of
the transversely isotropic (or hexagonal) GaN with
its material symmetry axis along the z direction are anisotropic effect and the electromechanical coupling

(the piezoelectric effect). For the purely elastic andlisted in Table 1.
Figure 3 demonstrates the dimensionless real and isotropic case, such interactions only occur for the

non-axisymmetric deformation [4]. Different electricalcomplex decay roots rb under the axisymmetric
torsionless deformation for the transversely isotropic boundary conditions (insulating or conducting) also

influence the root loci. The decay rate, defined as thepiezoelectric hollow GaN nanocolumn. Both surfaces
r=a and r=b are insulating, i.e. D

r
=0. Similarly, decay distance of end effects (or the strain relaxation

rate), is the real part of the root with smallest positiveFig. 4 presents the corresponding results when
both r=a and r=b are conducting (or electroded), real part. By comparing Fig. 3 and Fig. 4, it is found

that, when a/b>0.05, the difference between thei.e. w=0. It is found that, even for the axisymmetric
torsionless case, there exists an intriguing interaction decay rates for the insulating and conducting cases

is minimal. On the other hand, the discrepancy inbetween the real and complex root loci due to the

Fig. 3 Dimensionless real and complex decay roots rb under axisymmetric torsionless deformation
for a transversely isotropic piezoelectric hollow GaN nanocolumn with boundary condition
D

r
=0 on r=a and r=b. Only real parts of the roots are shown
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Fig. 4 Dimensionless real and complex decay roots rb under axisymmetric torsionless deformation
for a transversely isotropic piezoelectric hollow GaN nanocolumn with boundary condition
w=0 on r=a and r=b. Only real parts of the roots are shown

decay rates for the two different electric conditions decoupled purely electric roots under the insulating
boundary condition (by the marked dashed lines)is most apparent for a solid cylinder: rb=2.855 for

the insulating condition and rb=2.605 for the are also presented for comparison. Furthermore, in
Fig. 5, the smallest decay mode loci have beenconducting condition.

It should be noted that Fig. 3 should be extremely redrawn (from Figs 3 and 4) for the corresponding
fully coupled piezoelectric case (dashed curves foruseful for the GaN nanopost and nanocolumn growth

as the experimental environment is most probably the insulating condition on the two surfaces, and
dash-dotted curves for the conducting conditioninsulating instead of conducting. For instance, for a

solid GaN nanocolumn of radius b=100 nm, using on the two surfaces). By comparing Fig. 5 with the
previous two figures (Figs 3 and 4), it is observedthe normalized decay rate rb=2.855, it is found that

the elastic and electric fields at the height z=161 nm that the piezoelectric effect can influence the root
loci, especially those of the higher decay modes. Asare reduced to 1 per cent of the value at the bottom

of the nanocolumn z=0. It is further observed from far as the decay rate is concerned, the piezoelectric
effects must be taken into consideration for thickFig. 3 that, for a hollow GaN nanocolumn, there is a

special ratio a/b where the normalized decay rate cylinders, a/b<0.2, and they can only be ignored for
relatively thin cylinders, a/b>0.2. In other words, inreaches its minimum (i.e. rb=2.447 at a/b=0.4).

When the wall of the hollow nanocolumn becomes the analysis of the strain and electric fields in GaN
nanocolumn structures, it is recommended thatthinner than a/b=0.4, then the normalized decay

rate increases. The thinner the hollow nanocolumn, the fully coupled piezoelectric model should be
employed (see, for example, references [20] to [22]).the faster the elastic and electric fields decay.

In order to demonstrate clearly how the piezo- This is particularly true for the solid nanocolumn
where a decay rate of rb=3.2213 is predicted forelectricity influences the decay roots, in Fig. 5 the

decay roots for a GaN hollow nanocolumn are pre- the decoupled purely elastic case, and rb=2.855
and rb=2.605 correspond to the fully coupledsented by ignoring the piezoelectric effects (i.e. e

ij
=0).

In Fig. 5, besides the decoupled purely elastic roots piezoelectric case with insulating and conducting
boundary conditions respectively (Fig. 5 for theunder the traction-free boundary condition, the
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Fig. 5 Dimensionless real and complex decay roots rb under axisymmetric torsionless deformation
for a decoupled purely elastic and purely electric hollow GaN nanocolumn. The smallest
decay model loci of the corresponding fully coupled piezoelectric case are also shown
for comparison (the dashed curves are for insulating boundary conditions and the
dash-dotted curves for conducting boundary conditions on the two surfaces). Only real
parts of the roots are shown

smallest loci at a/b=0). Figure 5 also indicates electric field relaxation in the piezoelectric hollow
or solid nanocolumn. In particular, a solid GaNclearly that, even for the decoupled piezoelectric

case, an interaction between the real and complex nanocolumn can have a decay rate of rb=3.2213
for the decoupled purely elastic case, and rb=2.855root loci still exists. It should be mentioned that

the decay roots for the axisymmetric torsionless and rb=2.605 for the fully coupled piezoelectric
case with insulating and conducting boundary con-displacements for an isotropic elastic hollow nano-

column are all complex and there is no mode- ditions respectively. This obviously indicates that the
piezoelectric effect cannot be ignored for a solid GaNcoupling phenomenon (see Fig. 2 here or Fig. 3 in

the paper by Stephen and Wang [4]). Thus it is con- nanocolumn as far as the decay rate is concerned.
The results presented in this paper should be parti-cluded that the material anisotropy in a nanocolumn

can also significantly influence the decay roots. cularly useful to guide the nanopost and nanocolumn
growth where the growth-induced strain is critical to
the corresponding semiconductor nanostructured
devices. Even though only the simple axisymmetric5 CONCLUSIONS
case is discussed, the methodology can be easily
extended to the more complicated asymmetric case.The decay rate of the elastic and piezoelectric fields

along a transversely isotropic piezoelectric hollow or For the asymmetric case, because of the coupling
between torsional and torsionless displacements,solid circular nanocolumn is investigated in detail by

developing the general solution for the correspond- and between mechanical and electric fields (the
piezoelectric effects), and because of the anisotropicing three-dimensional problem. It is shown clearly

that the geometric parameter, material anisotropy, effect, it is expected that the decay root loci for this
situation are more complex than their isotropicand piezoelectricity can all significantly affect the

decay rate and thus can influence the strain and counterparts.
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