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A Poincaré-Hopf type formula for

Chern character numbers

Huitao Feng∗, Weiping Li and Weiping Zhang†

Abstract

For two complex vector bundles admitting a homomorphism with isolated singularities
between them, we establish a Poincaré-Hopf type formula for the difference of the Chern
character numbers of these two vector bundles. As a consequence, we extend the original
Poincaré-Hopf index formula to the case of complex vector fields.

1 Introduction and the statement of the main result

Let M be a closed, oriented, smooth manifold of dimension 2n. Let E+, E− be two complex
vector bundles over M .

Let v ∈ Γ(Hom(E+, E−)) be a homomorphism between E+ and E−. Let Z(v) denote the
set of the points at which v is singular (that is, not invertible). We assume that the following
basic assumption holds.

Basic Assumption 1.0. The point set Z(v) consists of a finite number of points in M .

For any p ∈ Z(v), we choose a small open ball B(p) centered at p such that the closure B(p)
contains no points in Z(v) \ p. Then, when restricted to the boundary ∂B(p), the linear map

v|∂B(p) : E+|∂B(p) → E−|∂B(p), (1.1)

which we denote by vp, is invertible. The map vp determines an element in K1(S2n−1) = Z

which we denote by deg(vp) ∈ Z.1

The main result in this paper is the following theorem:

Theorem 1.1. Under the Basic Assumption 1.0, the following identity holds,

〈ch(E+)− ch(E−), [M ]〉 = (−1)n−1
∑

p∈Z(v)

deg (vp) . (1.2)

∗Partially supported by NNSFC, MOEC and NSFC.
†Partially supported by NNSFC and MOEC.
1One way to define deg(vp) is that vp in (1.1) defines a complex vector bundle Ev(p) over a sphere S2n(vp)

with ∂B(p) as an equator. Then one can define deg(vp) = 〈ch(Ev(p)), [S
2n(vp)]〉.
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Our original motivation is to establish an extension of the Poincaré-Hopf index formula for
vector fields with isolated zero points (cf. [1, Theorem 11.25]) to the case of complex vector
fields, under the framework considered by Jacobowitz in [3].

To be more precise, let TCM = TM ⊗C denote the complexification of the tangent vector
bundle TM . Let K = ξ +

√
−1η ∈ Γ(TCM) be a smooth section of TCM , with ξ, η ∈ Γ(TM).

Let gTM be a Riemannian metric on TM , then it induces canonically a complex symmetric
bilinear form hTCM on TCM , such that

hTCM (K,K) = |ξ|2gTM − |η|2gTM + 2
√
−1〈ξ, η〉gTM . (1.3)

Jacobowitz proved in [3] the following vanishing result.

Proposition 1.2. (Jacobowitz [3]) If hTCM (K,K) is nowhere zero onM , then the Euler number
of M vanishes: χ(M) = 0.

If one takes η = 0, then Proposition 1.2 reduces to the classical Hopf vanishing result:
χ(M) = 0 if M admits a nowhere zero vector field.

Jacobowitz asked in [3] whether there is a counting formula for χ(M) of Poincaré-Hopf type,
extending Proposition 1.2 to the case where hTCM (K,K) vanishes somewhere on M . In Section
3, we will establish such a formula as an application of Theorem 1.1, while Theorem 1.1 itself
will be proved in Section 2.

2 A Proof of Theorem 1.1

We will use the superconnection formalism developed in [5] to prove Theorem 1.1.
Due to the topological nature of both sides of (1.2), we first make some simplifying assump-

tions on the metrics and connections near the set of singularities Z(v).
First of all, we assume that there is a Riemannian metric gTM on TM such that for any

p ∈ Z(v), there is a coordinate system (x1, · · · , x2n), with 0 ≤ xi ≤ 1 for 1 ≤ i ≤ 2n, centered
around p such that

Bp(1) =

{

(x1, . . . , x2n)|
2n
∑

i=1

x2i ≤ 1

}

⊂ M \ (Z(v) \ {p}) (2.1)

and
gTM

∣

∣

∣

Bp(1)
= dx21 + dx22 + · · · + dx22n, (2.2)

that is, the metric gTM is Euclidean on each Bp(1), p ∈ Z(v).
On the other hand, on each Bp(1), the bundles E± are trivial vector bundles. We equip these

two trivial vector bundles over Bp(1) the trivial metrics and trivial connections respectively.
Moreover, we can deform v near ∂Bp(1), so that vp : E+|∂Bp(1) → E−|∂Bp(1) is unitary, while
still keep the new homomorphism nonsingular on M \ Z(v).

By partition of unity, we may then construct Hermitian metrics and connections ∇E± on E±

over M such that the above simplifying assumptions hold on ∪p∈Z(v)Bp(1).
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We now follow the formalism in [5].
Let E = E+ ⊕E− be the Z2-graded complex vector bundle over M . Let ∇E = ∇E+ ⊕∇E−

be the Z2-graded connection on E.
Let v : E+ → E− extend to an (odd) endomorphism of E by acting as zero on E−, with the

notation unchanged. Let v∗ : E− → E+ (and thus also extends to an (odd) endomorphism of
E) be the adjoint of v with respect to the Hermitian metrics on E± respectively.

Set V = v + v∗. Then V is an odd endomorphism of E. Moreover, V 2 is fiberwise positive
over M \ Z(v).

We fix a square root of
√
−1. Let ϕ : Ω∗(M) → Ω∗(M) be the rescaling on differential forms

such that for any differential form α of degree k, ϕ(α) = (2π
√
−1)−

k
2α. The final formulas below

will not depend on the choice of this square root.
For any t ∈ R, let At be the superconnection on E, in the sense of Quillen [5], defined by

At = ∇E + tV. (2.3)

Let ch(E,At) be the associated Chern character form defined by

ch (E,At) = ϕ trs
[

e−A2
t

]

. (2.4)

The following transgression formula has been proved in [5, (2)],

∂ch (E,At)

∂t
= − 1

√

2π
√
−1

dϕ trs
[

V e−A
2
t

]

. (2.5)

Set for any T > 0,

γ(T ) =
1

√

2π
√
−1

ϕ

∫ T

0
trs

[

V e−A2
t

]

dt. (2.6)

From (2.5) and (2.6), one gets

ch (E,A0)− ch (E,AT ) = dγ(T ). (2.7)

Set M1 = M \⋃

p∈Z(v)Bp(1).
Since V is invertible on M1, by proceeding as in [5, §4], one sees that the following identity

holds uniformly on M1,
lim

T→+∞
ch (E,AT ) = 0. (2.8)

Lemma 2.1. The following identity holds,

〈ch (E+)− ch (E−) , [M ]〉 = −
∑

p∈Z(v)

lim
T→+∞

∫

∂Bp(1)
γ(T ). (2.9)

Proof. Since by our choice the connections ∇E± are the trivial connections when restricted to
⋃

p∈Z(v)Bp(1), one has

〈ch (E+)− ch (E−) , [M ]〉 =
∫

M
ch (E,A0) = ϕ

∫

M
trs

[

e−(∇E)2
]

= ϕ

∫

M1

trs

[

e−(∇
E)

2
]

.

(2.10)
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By (2.7), (2.8) and (2.10), we have

〈ch (E+)− ch (E−) , [M ]〉 = lim
T→+∞

(
∫

M1

ch (E,A0)−
∫

M1

ch (E,AT )

)

= lim
T→+∞

∫

M1

dγ(T ) = lim
T→+∞

∫

∂M1

γ(T )

= −
∑

p∈Z(v)

lim
T→+∞

∫

∂Bp(1)
γ(T ),

where the last equality comes from the orientation consideration. Q.E.D.

Recall that the map vp is the restriction of v on ∂Bp(1) (cf. (1.1)).

Lemma 2.2. For any p ∈ Zv, the following identity holds,

lim
T→+∞

∫

∂Bp(1)
γ(T ) = (−1)ndeg(vp). (2.11)

Proof. For any p ∈ Z(v), since when restricted on the sphere ∂Bp(1), the homomorphism v

has been deformed to be unitary, we get that v∗ = v−1 and V 2 is the identity map acting on
E|∂Bp(1). Also, since ∇E is the trivial connection over Bp(1), we will use the simplified notation
d for it. By (2.3), one has on Bp(1) that

At = d+ tV, A2
t = d2 + t[d, V ] + t2V 2 = t2IdE + tdV.

One then deduces that
∫

∂Bp(1)
γ(T ) =

1
√

2π
√
−1

ϕ

∫

∂Bp(1)

∫ T

0
trs

[

V e−A2
t

]

dt

=
1

√

2π
√
−1

ϕ

∫

∂Bp(1)

∫ T

0
e−t2trs

[

V e−tdV
]

dt

=
1

(2π
√
−1)n

−1

(2n− 1)!

∫ T

0
t2n−1e−t2dt

∫

∂Bp(1)

(

trE+

[

v∗dv (dv∗dv)n−1
]

− trE−

[

vdv∗ (dvdv∗)n−1
])

=
1

(2π
√
−1)n

2(−1)n

(2n− 1)!

∫ T

0
t2n−1e−t2dt

∫

∂Bp(1)
trE+

[

(

v−1dv
)2n−1

]

.

Hence,

lim
T→+∞

∫

∂Bǫ(p)
γ(T ) =

1

(2π
√
−1)n

2(−1)n

(2n − 1)!

∫ +∞

0
t2n−1e−t2dt

∫

∂Bp(1)
trE+

[

(

v−1dv
)2n−1

]

=
1

(2π
√
−1)n

(−1)n(n− 1)!

(2n− 1)!

∫

∂Bp(1)
trE+

[

(

v−1dv
)2n−1

]

= (−1)ndeg(vp),

where one compares with [2, Propositions 1.2 and 1.4] for the last equality. Q.E.D.
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From Lemmas 2.1 and 2.2, one gets Theorem 1.1. Q.E.D.

We conclude this section with the following result which is complementary to Theorem 1.1.

Lemma 2.3. Under the Basic Assumption 1.0, for any closed form α ∈ Ω∗(M) without degree
zero component, one has

〈[α] (ch (E+)− ch (E−)) , [M ]〉 = 0, (2.12)

where [α] ∈ H∗(M,C) is the de Rham cohomology class induced by α.
Proof. By the Poincaré lemma (cf. [1]), as α is closed and contains no zero degree component,
on each Bp(1), p ∈ Z(v), there exists a form βp such that α = dβp on an open neighborhood of
Bp(1).

By partition of unity, one then constructs a differential form β on M such that β = βp on
each Bp(1), p ∈ Z(v). Then,

α− dβ = 0 (2.13)

on ∪p∈Z(v)Bp(1) = M \M1.
On the other hand, by (2.4) and (2.5) one knows that for any t ≥ 0, one has

〈[α] (ch (E+)− ch (E−)) , [M ]〉 =
∫

M
(α− dβ)ϕ trs

[

e−A
2
t

]

. (2.14)

From (2.8), (2.13) and (2.14), and by taking t → +∞, one gets (2.12). Q.E.D.

3 A Poincaré-Hopf formula for complex vector fields

Let M be a closed and oriented manifold of dimension 2n. Let gTM be a Riemannian metric on
TM . Let TCM = TM ⊗C be the complexification of TM . Then gTM extends to a symmetric
bilinear form hTCM on TCM .

Let K = ξ +
√
−1η ∈ Γ(TCM) be a complex vector field on M , with ξ, η ∈ Γ(TM). Then

one has
hTCM (K,K) = |ξ|2gTM − |η|2gTM +

√
−1〈ξ, η〉gTM . (3.1)

Let ZK be the zero set of hTCM (K,K), that is,

ZK =
{

x ∈ M : hTCM (K(x),K(x)) = 0
}

. (3.2)

In the rest of this section, we make the following assumption.

Basic Assumption 3.0. The set ZK consists of a finite number of points.

Let a0 > 0 be the injectivity radius of gTM . Let 0 < ǫ < a0
2 .

For any p ∈ ZK , let Bp(ǫ) = {x ∈ M : dg
TM

(x, p) ≤ ǫ} be the Riemannian ball centered at
p. We may take ǫ small enough so that each Bp(ǫ) does not contain points in ZK \ {p}.

Let S(TBp(ǫ)) = S+(TBp(ǫ)) ⊕ S−(TBp(ǫ)) be the Hermitian bundle of spinors associated
with (TBp(ǫ), g

TM |Bp(ǫ)). Let τ be the the involution on S(TBp(ǫ)) such that τ |S±(TBp(ǫ)) =
±Id|S±(TBp(ǫ)). Let c(·) denote the Clifford action on S(TBp(ǫ)).

2

2For a thorough treatment of spin geometry involved here, see [4].
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Let vK(p) : Γ(S+(TBp(ǫ))) → Γ(S−(TBp(ǫ))) be defined by

vK(p) = τc(ξ) +
√
−1c(η). (3.3)

Then one can prove (see Lemma 3.2 below) that the restriction of vK(p) on the sphere ∂Bp(ǫ)
is invertible. Thus it defines an integer deg(vK(p)|∂Bp(ǫ)) ∈ Z = K1(∂Bp(ǫ)).

We can now state the main result of this section as follows.

Theorem 3.1. Under the Basic Assumption 3.0, (i) If n≥ 2, then the following identity holds,

χ(M) = −
∑

p∈ZK

deg
(

vK(p)|∂Bp(ǫ)

)

. (3.4)

(ii) If n = 1, set ZK,+ = {x ∈ ZK : ξ(x), η(x) form an oriented frame at x}, then

χ(M) = −
∑

p∈ZK\ZK,+

deg
(

vK(p)|∂Bp(ǫ)

)

. (3.4)′

Proof. For simplicity, we first assume that M is spin and denote by S(TM) = S+(TM) ⊕
S−(TM) the bundle of spinors associated with (TM, gTM ).

Let vK = τc(ξ) +
√
−1c(η) : S+(TM) → S−(TM) be defined similarly as in (3.3), only that

now it is defined on the whole manifold M .
Let Z(vK) denote the set of points at which vK is not invertible.

Lemma 3.2. One has, (i) If n ≥ 2, then Z(vK) = ZK ; (ii) If n = 1, then Z(vK) = ZK \ZK,+.
Proof. From (3.1) and (3.2), it is clear that p ∈ ZK if and only if |ξ| = |η| and 〈ξ, η〉 = 0.

Let v∗K : S−(TM) → S+(TM) be the adjoint of vK with respect to the natural Hermitian
metrics on S±(TM). Set VK = vK + v∗K : S(TM) → S(TM). Then vK is not invertible if and
only if V 2

K is not strictly positive.
Clearly,

VK = τc(ξ) +
√
−1c(η) : S(TM) → S(TM). (3.5)

From (3.5), one finds

V 2
K = |ξ|2 + |η|2 +

√
−1τ(c(ξ)c(η) − c(η)c(ξ)). (3.6)

Now if at some x ∈ M , |ξ| = |η| and 〈ξ, η〉 = 0, then V 2
K = 2|ξ|2 + 2

√
−1τc(ξ)c(η) which is

clearly seen not invertible if n ≥ 2 or if n = 1 but ξ and η do not form an oriented frame at x.3

Thus, one gets ZK \ ZK,+ ⊂ Z(vK).
On the other hand, observe that if |ξ| 6= |η|, then |ξ|2 + |η|2 > 2|ξ| · |η|, while it is clear that

2|ξ| · |η|+
√
−1τ(c(ξ)c(η) − c(η)c(ξ)) ≥ 0.

Thus if |ξ(x)| 6= |η(x)|, then x is not in Z(vK).

3As one verifies in this case that either ξ = η = 0, or c(ξ)−
√
−1τc(η) 6= 0 while (|ξ|2 +

√
−1τc(ξ)c(η))(c(ξ)−√

−1τc(η)) = 0.
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Now if at some x ∈ M , |ξ| = |η| and 〈ξ, η〉 6= 0, one has

c(ξ)c(η) − c(η)c(ξ) = c(ξ)c

(

η − 〈η, ξ〉
|ξ|2 ξ

)

− c

(

η − 〈η, ξ〉
|ξ|2 ξ

)

c(ξ), (3.7)

with
∣

∣

∣

∣

η − 〈η, ξ〉
|ξ|2 ξ

∣

∣

∣

∣

< |η|. (3.8)

From (3.6)-(3.8), one finds that if at some x ∈ M , |ξ| = |η| and 〈ξ, η〉 6= 0, then V 2
K > 0.

Thus, Z(vK) ⊂ ZK . Moreover, if n = 1, then one verifies directly that Z(vK) ⊂ ZK \ ZK,+.
The proof of Lemma 3.2 is completed. Q.E.D.

Back to the proof of Theorem 3.1. By Lemma 3.2, we know that the Basic Assumption 0.1
holds for vK : S+(TM) → S−(TM). Thus one may apply Theorem 1.1 to it to get

〈ch (S+(TM))− ch (S−(TM)) , [M ]〉 = (−1)n−1
∑

p∈Z(vK)

deg
(

vK(p)|∂Bp(ǫ)

)

. (3.9)

On the other hand, it is standard that (cf. [4])

〈ch (S+(TM))− ch (S−(TM)) , [M ]〉 = (−1)nχ(M). (3.10)

From (3.9) and (3.10), one gets (3.4).
Thus we have proved Theorem 3.1 in the case where M is spin.
For the general case where M need not be spin, we may consider the Signature complex

(cf. [4]) associated with (TM, gTM ) instead. Then the same argument above leads to formulas
similar to (3.9) and (3.10), with the right hand sides both be multiplied by a factor 2n, while
in the left hand sides the Spin complex be replaced by the Signature complex. Thus one gets
again (3.4). We leave the details to the interested reader.

The proof of Theorem 3.1 is completed. Q.E.D.

Remark 3.3. If ZK = ∅, then one recovers (and at the same time gives a new proof of) the
vanishing result of Jacobowitz [3] which has been stated in Proposition 1.2.

Remark 3.4. Theorem 3.1, in its most general form, should be regarded as a geometric result.
As a simple amazing consequence (actually a consequence of Proposition 1.2), if χ(M) 6= 0 and
K = ξ +

√
−1η ∈ Γ(TCM) is nowhere zero over M , then for any Riemannian metric gTM on

TM , there is at least one point x ∈ M , at which one has |ξ|gTM = |η|gTM and 〈ξ, η〉gTM = 0.
Moreover, if n = 1, then there exists at least two such points.4

Remark 3.5. One may also extend Theorem 3.1 to the case where TM is replaced by an
arbitrary oriented Euclidean vector bundle. We leave the details to the interested reader.

4This is because one can switch ξ and η.
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Next, we show that Theorem 3.1 is indeed a generalization of the original Poincaré-Hopf
index formula (cf. [1, Theorem 11.25]).

To do so, we take ξ = 0, then ZK is the zero set of η, which we have assumed to consist of
isolated points.

Without loss of generality we also assume that |η| = 1 on each ∂Bp(ǫ), p ∈ ZK .
In view of the last equality in the proof of Lemma 2.2, one has

deg
(

vK(p)|∂Bp(ǫ)

)

=
1

(2π
√
−1)n

(n − 1)!

(2n− 1)!

∫

∂Bp(ǫ)
trS+(TM)

[

(

v−1dv
)2n−1

]

, (3.11)

with
v =

√
−1c

(

η|∂Bp(ǫ)

)

. (3.12)

Let f1, · · · , f2n−1 be an orthonormal basis of T (∂Bp(ǫ)), let f
∗
1 , · · · , f∗

2n−1 be the metric dual
basis of T ∗(∂Bp(ǫ)).

From (3.12), one deduces that (compare with [6, (27)])

trS+(TM)

[

(

v−1dv
)2n−1

]

= −2n−1(2n− 1)!(
√
−1)nf∗

1∧· · ·∧f∗
2n−1

∫ B

η∗∧
(

∇TM
f1

η
)∗
∧· · ·∧

(

∇TM
f2n−1

η
)∗

,

(3.13)
where ∇TM is the Levi-Civita connection of gTM and where

∫ B η∗ ∧ (∇TM
f1

η)∗ ∧ · · · ∧ (∇TM
f2n−1

η)∗

is the function on ∂Bp(ǫ) such that

η∗ ∧
(

∇TM
f1

η
)∗

∧ · · · ∧
(

∇TM
f2n−1

η
)∗

=
(

dvolgTM

)

∫ B

η∗ ∧
(

∇TM
f1

η∗
)

∧ · · · ∧
(

∇TM
f2n−1

η
)∗

(3.14)

on Λ2n(T ∗M)|∂Bp(ǫ).
Let ηp : ∂Bp(ǫ) → S2n−1(1) denote the canonical map induced by η|∂Bp(ǫ).
By (3.14), one finds

f∗
1 ∧ · · · ∧ f∗

2n−1

∫ B

η∗ ∧
(

∇TM
f1

η
)∗

∧ · · · ∧
(

∇TM
f2n−1

η
)∗

= η∗p ω, (3.15)

where ω is the volume form on S2n−1(1).
From (3.11), (3.13) and (3.15), one gets

deg
(

vK(p)|∂Bp(ǫ)

)

= − 1

(2π
√
−1)n

(n− 1)!

(2n− 1)!
2n−1(2n− 1)!(

√
−1)n

∫

∂Bp(ǫ)
η∗p ω

=
−(n− 1)!

2πn

∫

∂Bp(ǫ)
η∗p ω = −deg (ηp) , (3.16)

where deg(ηp) denotes the Brouwer degree (cf. [1]) of the map ηp : ∂Bp(ǫ) → S2n−1(1).
From (3.4) and (3.16), one gets

χ(M) =
∑

p∈zero set of η

deg (ηp) ,

which is exactly the original Poincaré-Hopf index formula (cf. [1, Theorem 11.25]).
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Remark 3.6. Continuing Remark 3.4 and assume n ≥ 2. Let K = ξ +
√
−1η be such that

the zero set of ξ is discrete and that p ∈ M is a zero point of ξ such that deg(ξp) 6= χ(M),
while η vanishes on a closed ball of a sufficiently small positive radius around p and is nowhere
zero outside this closed ball.5 Then according to (3.16), −deg(vK(p)) = deg(ξp) 6= χ(M).
Combining this with Theorem 3.1, we see that for any Riemannian metric gTM , there is x ∈ M

such that |ξ|gTM = |η|gTM 6= 0 and 〈ξ, η〉gTM = 0. This extends Remark 3.4 to the case where

K = ξ +
√
−1η might vanish on M .

Now we exhibit an example to illustrate the last line in Remark 3.4.

Example 3.7. Let S2 = {(x, y, z) : x2+y2+z2 = 1} be the standard two sphere in the Euclidean
space R3. Set ξ = (−y, x, 0) and η = (z, 0,−x). Clearly, as x2 + y2 + z2 = 1, ξ +

√
−1η is

nowhere zero on S2. Now |ξ| = |η| together with 〈ξ, η〉 = 0 imply that x = ±1, y = z = 0.
Thus, ZK consists of two points p = (1, 0, 0), q = (−1, 0, 0). One then verifies that at q ∈ S2,
ξ = (0,−1, 0) and η = (0, 0, 1) form an oriented frame of TpS

2. Thus, by (3.4), one sees that the
degree at p equals to −2, as the Euler number of S2 is 2.

Finally, with the help of Example 3.7, we exhibit an application of Theorem 1.1 in the higher
dimensional case.

Example 3.8. We take a product M = S2 × · · · × S2 with m ≥ 2 copies of S2. We use a
subscript to denote the corresponding factor of S2. So now let ξi, ηi, 1 ≤ i ≤ m, be the vector
fields constructed in Example 3.7 on the i-th factor S2 (denoted by S2

i ). Let vK,i be the lifting
to M of the corresponding map defined as in the proof of Theorem 3.1 on S2

i . Then each vK,i

maps Γ(S+(TM)) to Γ(S−(TM)). Set vK =
∑m

i=1 vK,i, then one verifies directly that vK is
singular only at the point (p1, · · · , pm) ∈ S2 × · · · × S2. By combining Theorem 1.1 with (3.9)
and (3.10), one then gets that the degree of vK at (p1, · · · , pm) equals to −2m, as the Euler
number of S2 × · · · × S2 equals to 2m. Conversely, one can compute the degree at (p1, · · · , pm)
first, and then get the Euler number of S2 × · · · × S2 by using Theorem 1.1.
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