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Abstract In the present paper, a long thick-walled piezo-thermoelastic hollow cylinder with double layers is
studied. The effects of temperature on the performance of the cylinder are obtained. Based on the theory of
elasticity, the exact solutions of the cylinder under some coupled loadings are found. In the present paper,
differences of a piezoelectric parameter between the two layers is taken into account. For comparison, numer-
ical results have been carried out for both double-layered and graded cylinders. At the end of the present paper
some discussions are addressed.

Keywords Piezo-thermoelastic material · Thick-walled hollow cylinder · Elastic analysis · FGM · Transducer ·
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1 Introduction

Since the Curie brothers discovered the piezoelectric effect in 1880, piezoelectric materials and structures have
received considerable attention because of their potential for designing adaptive structures with control capa-
bilities. Piezoelectric symmetric structures always play an important role in this field. To date, a large number
of investigations have been completed, on a variety of these structures, such as studies on the static behav-
iors of an elastic cylinder [1] and piezoelectric tube [2,3], the dynamic properties of a hollow piezoelectric
sphere/cylinder [4,5] and a piezo-thermoelastic cylindrical panel [6], and so on.

In recent years, it has been realized that temperature loading is sometimes so high that it is the predominant
reason for failure of smart structures. Therefore the mechanical response of structures excited by thermal load-
ing is of increasing interest in engineering research and a large number of investigations have been made on
these subjects. For example, theoretical analysis of the control of displacement was developed for a composite
rectangular plate constructed from an isotropic elastic layer and a piezoelectric layer due to nonuniform heat
supply [7], and the thermal stress distribution in a particle-reinforced functionally gradient material (FGM)
[8] or piezo-thermoelastic plate [9,10] was obtained. On the other hand, the investigation of the effects of
temperature on piezoelectric sensors found that even moderate fluctuations of temperature within 200◦C could
significantly change the voltage reading from the sensors [11]. In this investigation the geometric nonlinearity
of the material was considered and the numerical results were presented [12].

As well-known piezoelectric ceramic transducers are often designed as a hollow cylinder with multilayers.
In the present paper, a long piezo-thermoelastic thick-walled hollow cylinder with double layers is analyzed.
The effects of temperature on the performance of the cylinder are studied. Based on the theory of elasticity
and using the mixed solving method, the exact solutions for the cylinder submitted to some coupled loadings
are obtained. In the present investigation, differences in the material parameter g31 in different layers are taken
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into account. For comparison, numerical results have been carried out for both double-layered and graded
cylinders subjected to two different kinds of loadings. At the end of the present paper, some inherent properties
and discussions have been addressed.

2 Basic equations for piezo-thermoelastic materials under plane-strain conditions

For a long thick-walled hollow cylinder poled in the radial direction and submitted to a symmetric loading on
any cross section, the problem can be considered under plane-strain condition. A polar coordinate system (r , θ )
is used in the present analysis. Let εij , σij , Di , Ei denote the components of strain, stress, induction and elec-
tric field strength of the piezoelectric media, respectively. The constitutive equations of a piezo-thermoelastic
material under plane-strain conditions can be expressed in the habitual form as [13]






εθ = s11σθ + s13σr + g31Dr − µ11T
εr = s13σθ + s33σr + g33Dr − µ33T
γrθ = s44τrθ + g15Dθ

{
Eθ = −g15τrθ + ζ11Dθ

Er = −g31σθ − g33σr + ζ33Dr − q3T
(1)

where sij , gij and ζij are the coefficients of the effective elastic compliance, piezoelectric and dielectric imper-
meability, respectively; T is the temperature rise; µii and q3 are the thermal strain and pyroelectric coefficients
of the material, respectively. Without consideration of body force and body charge, the equilibrium equations
can be given as

{
∂σr

∂r
+ 1

r

∂τrθ

∂θ
+ σr−σθ

r
= 0

∂τrθ

∂r
+ 1

r

∂σθ

∂θ
+ 2τrθ

r
= 0

1

r

∂Dθ

∂θ
+ ∂Dr

∂r
+ Dr

r
= 0 (2)

In steady state, the temperature field is governed by Fourier’s heat conduction equation

∂2T

∂r2
+ 1

r

∂T

∂r
+ 1

r2

∂2T

∂θ2
= 0 (3)

The components of strain and electric field strength are related to the displacement (uθ , ur ) and electrical
potential φ by the following equations

{
εθ = ur

r
+ 1

r

∂uθ

∂θ
, εr = ∂ur

∂r

γrθ = 1
r

∂ur

∂θ
+ ∂uθ

∂r
− uθ

r

{
Eθ = − 1

r

∂φ

∂θ

Er = − ∂φ

∂r

(4)

Based on the theory of elasticity, the compatibility equation expressed by the components of strain can be
obtained as

(
∂2

∂r2
+ 2

r

∂

∂r

)

εθ +
(

1

r2

∂2

∂θ2
− 1

r

∂

∂r

)

εr =
(

1

r2

∂

∂θ
+ 1

r

∂2

∂r∂θ

)

γrθ (5)

In the following sections these basic equations will be used to study the behavior of a double-layered piezo-
thermoelastic hollow cylinder.

3 Exact analysis of a double-layered piezo-thermoelastic hollow cylinder

Piezoelectric materials have been widely used to produce sensors and actuators in engineering. Besides, piezo-
electric materials (such as piezoelectric ceramics) are also a class of transducer materials [14,15].As mentioned
above, piezoelectric ceramic transducers are often designed as a hollow cylinder with multilayers. In the pres-
ent paper, an exact analysis of a double-layered piezo-thermoelastic hollow cylinder will be presented and the
effects of temperature on the performance of the cylinder will be studied. It should be noted that the dielectric
and elastic coefficients depend on the degree of polling. However, as demonstrated by some experimental
investigations, this dependence is less pronounced than that of the piezoelectric coefficients g31 in type-g or
d31 in type-d constitutive equations [16,17]. Therefore, for simplicity, except the piezoelectric coefficient g31,
the dielectric and elastic coefficients are assumed to be constant for all the layers in the present investigation.
In detail, the piezoelectric parameter g31 of the material will be denoted by g31i for layer i(i = 1, 2), and the
other corresponding parameters of the material as well as the coefficient of thermal conductivity in each layer
are assumed to be the same. The thickness of layer i is determined by the inner radius Ri and the outer radius
Ri+1, as shown in Fig. 1. The temperature rise of layer i at the inner and outer surfaces are denoted by T1i and
T2i , respectively.
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R1 R2

R3

Fig. 1 Cross section of a hollow cylinder with double layers

3.1 Solutions of a piezo-thermoelastic monolayer cylinder

For the piezo-thermoelastic hollow cylinder with double layers shown in Fig. 1 the exact solutions can be
found based on the theory of elasticity when the cylinder is subjected symmetrically to some coupled thermal
and mechanical as well as electric loadings. First the general solution of a random monolayer is studied. To
find the mechanical field of the piezo-thermoelastic hollow cylinder, the Airy stress function method is used.
The stress function and the electric potential of layer i are denoted by ϕi and φi , respectively. For symmetry,
the components of stress and electric field strength can be expressed as

σθi = ϕ′′
i (r), σri = 1

r
ϕ′

i (r), τrθi = 0 (6)

Eθi = 0, Eri = −φ′
i (r) (7)

By using Eq. (1), we obtain

Dθi = 0, γrθi = 0 (8)

It is easily found from Eq. (3) that the temperature field is related to the temperature change only. Therefore,
the temperature field can be solved first. Supposing that the piezoelectric hollow cylinder is homogeneously
heated at the surface, the temperature rise of the inner and outer surfaces of each sub-cylinder remains constant
at T1i and T2i , respectively. This means we have the following thermal boundary conditions

Ti(r = Ri) = T1i , Ti(r = Ri+1) = T2i (9)

By symmetry, the heat conduction equation (3) can be simplified to

T ′′
i (r) + 1

r
T ′

i (r) = 0 (10)

The solution of above equation can be found as

Ti(r) = t1i ln r + t0i (11)

where

t0i = T1i ln Ri+1 − T2i ln Ri

ln Ri+1 − ln Ri

, t1i = T2i − T1i

ln Ri+1 − ln Ri

(12)

Having obtained the distribution of temperature field, we will try to find the mechanical and electrical fields.
Substituting Eqs. (6) and (7) into Eq. (2), yields

dDri

dr
+ Dri

r
= 0 (13)
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The general solution of this equation is

Dri = a0i

r
(14)

where a0i is an unknown constant to be determined. Keeping Eq. (1) in mind, the compatibility equation (5)
can be rewritten as

s11ϕ
(4)
i (r)r3 + 2s11ϕ

′′′
i (r)r2 − s33ϕ

′′
i (r)r + s33ϕ

′
i (r) + (µ33 − µ11)t1i r + g33a0i = 0 (15)

After integrating, the above equation becomes

ϕ′
i (r) = a1i r + bir ln r + c1i r

s + c2i r
−s + ci (16)

where

s =
√

s33

s11
, bi = t1i (µ33 − µ11)

s33 − s11
, ci = −g33

s33
a0i (17)

in which a1i , c1i and c2i are unknown constants to be determined. Substituting Eq. (16) into Eq. (6), the stress
components can be expressed as






σθi = a1i + bi ln r + bi + c1i sr
s−1 − c2i sr

−s−1

σri = a1i + bi ln r + c1i r
s−1 + c2i r

−s−1 + cir
−1

τrθi = 0
(18)

The strain components can be found from Eq. (1)1 as





εθi = (s11s + s13)c1i r
s−1 − (s11s − s13)c2i r

−s−1 + (s13ci + g31ia0i )r
−1

+[(s11 + s13)bi − µ11t1i] ln r + [(s11 + s13)a1i + s11bi − µ11t0i]
εri = (s13s + s33)c1i r

s−1 − (s13s − s33)c2i r
−s−1

+[(s13 + s33)bi − µ33t1i] ln r + [(s13 + s33)a1i + s13bi − µ33t0i]
γrθi = 0

(19)

Further, the displacement components can be obtained by the use of Eq. (4) as





uri = s13s+s33
s

c1i r
s + s13s−s33

s
c2i r

−s + (s13ci + g31ia0i )

+[(s13 + s33)bi − µ33t1i](ln r − 1)r + [(s13 + s33)a1i + s13bi − µ33t0i]r + A1i sin θ + A2i cos θ
uθi = A1i cos θ − A2i sin θ + Bir

(20)

where A1i , A2i and Bi are unknown constants. Taking the condition of single-valued displacement into account,
we obtain

a1i = (s33 + s11)bi + (µ33 − µ11)t0i − µ33t1i

s33 − s11
(21)

On the other hand, to find the electric potential, Eq. (1)2 is expressed as





Eθi = 0
Eri = −(g31i s + g33)c1i r

s−1 + (g31i s − g33)c2i r
−s−1 − (g33 − ς33a0i )r

−1

−[(g31i + g33)bi + q3t1i] ln r − (g31i + g33)a1i − g31ibi − q3t0i

(22)

By the use of Eq. (4), the electric potential can be obtained as follows:

φi = g31i s+g33

s
c1i r

s + g31i s−g33

s
c2i r

−s + (g33ci − ς33a0i ) ln r

+[(g31i + g33)bi + q3t1i](ln r − 1)r + [(g31i + g33)a1i + g31ibi + q3t0i]r + Fi
(23)

where Fi is another unknown constant.
It is obvious that once the unknown parameters a0i , ci , c1i , c2i , A1i , A2i , Bi and Fi are determined by using

some suitable boundary conditions, the distributions of all the mechanical and electrical components such as
the stress, electric field strength and displacement as well as electric potential in each layer can be found.
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3.2 Exact solutions of a double-layered hollow cylinder under different loadings

Now let us try to assemble the above solution to find the solutions of a double-layered hollow cylinder under
different loadings. Without loss of generality it is assumed that the double layers (with the same coefficient of
thermal conductivity k) are in complete contact at the interface. First the continuity conditions at the interface
(r = R2) can be considered as follows:

T12 = T21, k
∂T1

∂r
= k

∂T2

∂r
(241a)

σr1 = σr2, τrθ1 = τrθ2, ur1 = ur2, uθ1 = uθ2 (241b)

Dr1 = Dr2, φ1 = φ2 (241c)

These connecting conditions result in





t01 = t02 = t0, t11 = t12 = t1

b1 = b2 = b = t1(µ11−µ33)

s11−s33

a11 = a12 = a1 = (s11+s33)b+(µ33−µ11)t0−µ33t1
s33−s11

(c11 − c12)R
s−1
2 + (c21 − c22)R

−s−1
2 = 0

s13s+s33
s

(c11 − c12)R
s
2 + s13s−s33

s
(c21 − c22)R

−s
2 + �[g31]12a0 = 0

A11 = A12 = A1,
A21 = A22 = A2,
B1 = B2 = B
a01 = a02 = a0,
c1 = c2 = c

F1 − F2 =
2∑

i=1

2∑

j=1
(−1)i

g31i s−(−1)j g33

s
cjiR

−(−1)j s
2 − �[g31]12(a1 + b ln R2)R2

(25)

where the symbols t0, t1, b, a0, a1 and c are introduced, and �[g31]12 = g311 −g312. To determine the unknown
constants, the piezo-thermoelastic hollow cylinder subjected to three kinds of coupled loadings will be studied
separately.

Case I—Subjected to a thermal loading only

In this case, the temperature rise at the inner and outer surfaces of the cylinder is assumed to be T1 and T2
respectively. So the parameters t0 and t1 can be obtained from Eqs. (9), (11) and (25) as:

{
t1 = T2−T1

ln R3−ln R1

t0 = T1 ln R3−T2 ln R1
ln R3−ln R1

(26)

Thus the distribution of temperature field can be determined by Eq. (11). On the other hand, let us consider
the following electrical and mechanical boundary conditions.

{
Dr1(r = R1) = Dr2(r = R3) = 0
φ1(r = R1) = 0 ,

{
σr1(r = R1) = σr2(r = R3) = 0
τrθ1(r = R1) = τrθ2(r = R3) = 0 (27)

With the aid of Eq. (25), all the unknown constants relating the stress and electric fields can be given as





a0 = 0, c1 = c2 = c = 0

c11 = c12 = ĉ1 = N̂1

N̂
, c21 = c22 = ĉ2 = N̂2

N̂

F1 = −
2∑

j=1

g311s−(−1)j g33

s
ĉjR

−(−1)j s
1 − [(g311 + g33)b + q3t1](ln R1 − 1)R1

−[(g311 + g33)a1 + g311b + q3t0]R1

F2 = −
2∑

i=1

2∑

j=1

g31i s−(−1)j g33

s
ĉj�[R−(−1)i s](i)(4−2i) + �[g31]12(a1 + b ln R2)R2

−[(g311 + g33)b + q3t1](ln R1 − 1)R1 − [(g311 + g33)a1 + g311b + q3t0]R1

(28)
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T2

Q2

Q1
T1

Fig. 2 The cylinder subjected to thermal and mechanical loadings

in which

N̂ =
∣
∣
∣
∣
Rs−1

1 R−s−1
1

Rs−1
3 R−s−1

3

∣
∣
∣
∣ , N̂1 =

∣
∣
∣
∣
−a1 − b ln R1 R−s−1

1
−a1 − b ln R3 R−s−1

3

∣
∣
∣
∣ , N̂2 =

∣
∣
∣
∣
Rs−1

1 −a1 − b ln R1

Rs−1
3 −a1 − b ln R3

∣
∣
∣
∣ (29)

Here and in the following we introduce the notations �[f (R)]ij = f (Ri) − f (Rj ) and let R0 = 0, R4 = R1,

such as �[g31]ij = g31i − g31j , �[R−(−1)j s](i)(4−2i) = R
−(−1)j s
i − R

−(−1)j s
4−2i .

Case II—Subjected to thermal and mechanical loading

For the case of a piezo-thermoelastic cylinder subjected to a thermal and mechanical loading simultaneously,
as shown in Fig. 2, the uniform pressures on the inner and outer surfaces will be denoted by Q1 and Q2,
respectively. The temperature field in this case is the same as in case I. The electric boundary conditions
expressed by Eq. (27)1 are also valid. Besides, the mechanical boundary conditions can be expressed by






σr1(r = R1) = −Q1
σr2(r = R3) = −Q2
τrθ1(r = R1) = τrθ2(r = R3) = 0

(30)

Keeping Eq. (25) in mind, all the unknown constants can be determined as follows:





a0 = 0, c1 = c2 = c = 0

c11 = c12 = ĉ1 = Ĵ1

N̂
, c21 = c22 = ĉ2 = Ĵ2

N̂

F1 = −
2∑

j=1

g311s−(−1)j g33

s
ĉjR

−(−1)j s
1 − [(g311 + g33)b + q3t1](ln R1 − 1)R1

−[(g311 + g33)a1 + g311b + q3t0]R1

F2 = −
2∑

i=1

2∑

j=1

g31i s−(−1)j g33

s
ĉj�[R−(−1)i s](i)(4−2i) + �[g31]12(a1 + b ln R2)R2

−[(g311 + g33)b + q3t1](ln R1 − 1)R1 − [(g311 + g33)a1 + g311b + q3t0]R1

(31)

where

Ĵ1 =
∣
∣
∣
∣
−(Q1 + b ln R1 + a1) R−s−1

1
−(Q2 + b ln R3 + a1) R−s−1

3

∣
∣
∣
∣ , Ĵ2 =

∣
∣
∣
∣
Rs−1

1 −(Q1 + b ln R1 + a1)

Rs−1
3 −(Q2 + b ln R3 + a1)

∣
∣
∣
∣ (32)

Case III—Subjected to thermal and electric loading

For the case of a piezo-thermoelastic cylinder subjected to a thermal and electric loading simultaneously, as
shown in Fig. 3, the solution of temperature field is the same as in case I. The electric boundary conditions can
be expressed as follows:

{
φ2(r = R3) = V0
φ1(r = R1) = 0 (33)
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T2

V0

T1

Fig. 3 The cylinder subjected to thermal and electric loadings

The mechanical boundary conditions are the same as Eq. (27)2. By the use of Eq. (25), all the unknown
constants can be determined as follows:






a0 = s33(V0+ξ̂ )

g33ξ
, c1 = c2 = c = −V0+ξ̂

ξ
, cji = ξjic + ξ̂j i (i, j = 1, 2)

F1 = −
2∑

j=1

g311s−(−1)j g33

s
cj1R

−(−1)j s
1 − (g33 + ς33s33

g33
)c ln R1

−[(g311 + g33)b + q3t1](ln R1 − 1)R1 − [(g311 + g33)a1 + g311b + q3t0]R1

F2 = −
2∑

i=1

2∑

j=1

g31i s−(−1)j g33

s
cji�[R−(−1)j s](i)(4−2i) − (g33 + ς33s33

g33
)c ln R1

−[(g311 + g33)b + q3t1](ln R1 − 1)R1 − [(g311 + g33)a1 + g311b + q3t0]R1
+�[g31]12(a1 + b ln R2)R2

(34)

where the following denotations are introduced:

b1 = b2 = 0, b3 = b, g313 = −g33, q1 = q2 = 0

ξji =
2∑

i=1

2∑

j−1

{
(−1)j − 1

2
R−s

(2i−1) − [R−2s
(2i−1)]

2−j

�[R−2s]23

[

�[R−s]13 − (−1)j�g31

2g33
sRs

2�[R−2s](3−i)(4−i)

]}

ξ̂j i =
2∑

i=1

2∑

j−1

{
(−1)j − 1

2
[a1 + b ln R(2i−1)]R

−s+1
(2i−1) − [R−2s

(2i−1)]
2−j

�[R−2s]23
�[(a1 + b ln R)R]13

}

(35)

ξ =
2∑

i=1

2∑

j−1

g31i s − (−1)jg33

s
ξji�[R−(−1)j s](i+1)(i+2) + g33�[ln R]13]

ξ̂ =
2∑

i=1

2∑

j−1

g31i s − (−1)jg33

s
ξ̂ji�[R−(−1)j s]i(i+1) +

3∑

i=1

(bg31i − qit1)�[(ln R − 1)R]i(i+1)

+
3∑

i=1

[(a1 + b − bi)g31i − qit0]�[R]i(i+1)

The unknown constants for a double-layered thick-walled hollow cylinder subjected to some coupled
loadings have now been determined. Given these constants, all the distributions of stress, strain, displacement
and electric potential of the hollow cylinder can be found by the use of Eqs. (18), (19), (20) and (23), respectively.

4 Numerical results and discussions

To give a clear explanation, numerical results are reported in this section. A cylinder made of cadmium selenide
will be considered and both layers of the cylinder are assumed to have the same thickness. The radius of the
inner and outer surfaces of the cylinder is taken to be 10 and 20 mm, respectively. The piezoelectric parameter
g31 of the inner and outer layers is taken to be −41.66 × 10−3 m2/C and −70.00 × 10−3 m2/C, respectively.
The other material parameters of the cylinder are listed in Table 1.
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Table 1 Some material parameters of cadmium selenide [18]

Elastic constant Piezoelectric constant Dielectric impermeability Thermal strain Pyroelectric coefficient
(×10−12 m2/N) (×10−3 m2/C) constant (×109 m/F) constant (×10−7 1/K) (×103) N/(K·C)
s11 s13 s33 s44 g33 g15 ζ11 ζ33 µ11 µ33 q3

23.20 −5.38 16.68 74.62 83.25 −12.48 11.91 10.62 −42.50 −27.49 −37.10
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For the cylinder subjected to temperature rise only, the distributions of normal stresses σr , σθ and the
relative displacement �ur as well as the electric potential �φ are plotted in Figs. 4–7, respectively. It is easily
found that, with increasing temperature rise, the output of the mentioned components will increase. The effect
of the temperature rise on the electric potential output in the double-layered cylinder is consistent with that
found in the investigations on the piezo-thermoelastic plate and shell [9,18].

On the other hand, some analytical methods and theoretical solutions of functionally graded piezoelectric
cantilevers were presented in our previous works [19–23]. To make a comparison, a piezo-thermoelastic hollow
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cylinder with a linearly graded parameter g31 is also studied in the present paper. The geometrical size of the
graded cylinder is the same as the double-layered cylinder. That is to say that the expression g31 = m1r +m0 is
considered, in which the two coefficients mi are determined as m1 = −28.33×10−1 and m0 = −13.33×10−3

so that g31 has the value −41.66×10−3 m2/C and −70.00×10−3 m2/C at the inner and outer surfaces, respec-
tively. The other material parameters of the cylinder are the same as given in Table 1. By the use of the same
method as used in Sect. 3, the exact solutions for the cylinder submitted to thermal loading and some coupled
loadings have been obtained, such as

σθ = â + b̂ ln r + b̂ + ĉ1sr
s−1 − ĉ2sr

−s−1, σr = â + b̂ ln r + ĉ1r
s−1 + ĉ2r

−s−1 + ĉr−1 (36)

where â, b̂, ĉ1, ĉ2 and ĉ are constants to be determined by using boundary conditions. When the FGM cylinder
is subjected to an electric potential V0 between the inner and outer surfaces only, these unknown constants can
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be found as

â = 1

s33 − s11

H3

H
m1, ĉ1 = H1

H
, ĉ2 = H2

H
, ĉ = −g33

s33

H3

H
, b̂ = 0 (37)

in which

H1 = V0

∣
∣
∣
∣
R−s−1

1 Y1

R−s−1
2 Y2

∣
∣
∣
∣ , H2 = −V0

∣
∣
∣
∣
Rs−1

1 Y1

Rs−1
2 Y2

∣
∣
∣
∣ , H3 = V0

∣
∣
∣
∣
Rs−1

1 R−s−1
1

Rs−1
2 R−s−1

2

∣
∣
∣
∣ ,
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∣
∣
∣
∣
∣

Rs−1
1 R−s−1

1 Y1

Rs−1
2 R−s−1

2 Y2
W1 W2 W3

∣
∣
∣
∣
∣
∣
, Yi = m1

s33 − s11
− g33

s33
R−1

i (i = 1, 2),

W1 =
1∑

i=0

mis + di

s + i
�[Rs+i]21, W2 = −

1∑

i=0

mis − di

−s + i
�[R−s+i]21,

W3 =
1∑

i=0

1

i + 1

m1

s33 − s11
(mi + di)�[Ri+1]21 +

(
g2

33

s33
− ς33

)

�[ln R]21, (38)

where

d0 = g33, d1 = 0

Figure 8 shows the difference between the electric potential in the double-layered cylinder and in the graded
cylinder under the same temperature rise of T = 1 K. For both cylinders subjected to an electric potential
V0 = 100V, the distributions of normal stresses σr and σθ are plotted in Fig. 9 and 10, respectively. These
figures show that the internal stresses are drastically reduced in materials and devices with functionally graded
properties.

5 Conclusions

Based on the theory of elasticity, the present analysis provides some exact solutions for a double-layered piezo-
thermoelastic hollow cylinder under some coupled loadings. It is found that, with an increasing temperature
rise, the amplitudes of the mechanical and electric components of the cylinder will increase, and the internal
stresses can be drastically reduced in functionally graded materials and structures.
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