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Abstract. Let R be a ring and g(z) a polynomial in C[z], where C' = C(R) denotes the
center of R. Camillo and Simén called the ring g(x)-clean if every element of R can be
written as the sum of a unit and a root of g(z). In this paper, we prove that for a,b € C,
the ring R is clean and b — a is invertible in R if and only if R is gi(z)-clean, where
g1(z) = (x — a)(z — b). This implies that in some sense the notion of g(z)-clean rings in
the Nicholson—Zhou Theorem and in the Camillo-Simén Theorem is indeed equivalent to
the notion of clean rings.
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1 Introduction

A ring R is called clean if every element of R is the sum of a unit and an idempotent.
This notion was introduced by Nicholson in [4] as a sufficient condition for a ring to
have the exchange property. Later, Camillo and Yu proved in [2] that all semiperfect
rings and unit-regular rings are clean.

Generally, if C = C(R) denotes the center of a ring R, and if g(x) is a polynomial
in C[z], Camillo and Simén [1] called the ring g(x)-clean if every element of R can
be written as the sum of a unit and a root of g(z). If V' is a vector space of countable
dimension over a division ring D, they proved that End(pV) is g(x)-clean provided
that g(z) has two toots in C'(D). Nicholson and Zhou [6] took a fixed polynomial
g(x) € (x —a)(x —b)C[z], where a,b € C(R) such that b and b— a are both units in
R, and proved that End(gM) is g(x)-clean if g M is a semisimple module over R.

Let ¢1(z) = (z — a)(z — b) with a,b € C. In this paper, we prove that R
is g1(x)-clean if and only if R is clean and b — a is invertible. Furthermore, for
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g2(x) € (x — a)(z — b)C[z], where a,b € C and b — a is a unit in R, if R is clean,
then it is go(z)-clean; and if R is go(x)-clean for any ga2(x) € (z — a)(z — b)C|x],
then it is clean. Finally, we construct an example which is g(z)-clean but not clean.

Throughout this paper, rings are associative with identity and modules are uni-
tary. Let J(R) and U(R) denote the Jacobson radical and the group of units of R,
respectively. We write C),, and RC,, for the cyclic group of order n and its group
ring over R, respectively.

2 g(x)-Clean Rings and Clean Rings

In this section, we will investigate the relations between g(z)-clean rings and clean
rings. The following result is simple but useful.

Theorem 2.1. Let g1(z) = (z —a)(x — b) with a,b € C. Then R is g1(x)-clean if
and only if R is clean and b — a is invertible.

Proof. Suppose r € R. Since R is g;(x)-clean, there exist a unit u; and a root s;
of g1(x) such that b = s1 + uy. Since ¢g1(s1) = (s1 — a)(s1 — b) = 0, we have s; = a.
This implies that b — a is invertible. Again by hypothesis, there exist a unit uo
and a root sp of g1(z) such that (b—a)r +a = sa + uz. Set e = (b—a)~1(sy — a),
ie., s = (b —a)e +a. Then we get 7 = e + (b — a)"luy. Note that g;(s2) =
(s —a)(sy—b) = (b—a)e[(b—a)e+a—bl=(b—a)?(e?—e)=0by b—ac C(R).
Since b — a € U(R), we have €% = e, as required.

Conversely, for any r € R, by hypothesis we may write (b—a)~'(r —a) = e +u,
where €2 = ¢ € R and u € U(R). Thus, we have r = [(b — a)e + a] + (b — a)u.
Note that (b — a)u is a unit since b —a € U(R). Now we have ¢1((b — a)e +a) =
(b—a)e[(b—a)e+a—b = (b—a)?e(e—1)=0. So (b—a)e+ a is a root of g;(z).
This completes the proof. O

In fact, the condition a,b € C(R) in Theorem 2.1 can be replaced by b — a €
C(R).

In [2], Camillo and Yu showed that if 2 € U(R), then R is clean if and only if
every element of R is the sum of a unit and a square root of 1. In fact, the condition
2 € U(R) is necessary.

Corollary 2.2. A ring R is clean and 2 € U(R) if and only if every element of R
is the sum of a unit and a square root of 1.

Proof. Let gi(z) = (z+ 1)(x — 1) = 22 — 1. Note that the condition that every
element of R is the sum of a unit and a square root of 1 is equivalent to R being
g1(x)-clean. Hence, by Theorem 2.1, the proof is immediate. O

Remark 2.3. Let g1(x) = (x — a)(z — b) and g2(x) € (z — a)(x — b)C[z], where
a,b € C and b—a € U(R). Then R is clean if and only if R is g;(x)-clean, and
in this case, R is also ga(x)-clean. On the other hand, if R is go(x)-clean for any
g2(x) € (x — a)(z — b)Cz], then R is clean.

Next we will construct an example to show that a g(z)-clean ring is not neces-
sarily clean. First, we need a lemma which extends [7, Proposition 3.2].
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Lemma 2.4. Let R be a commutative ring and let C, be a cyclic group of order
n—1

n generated by g. Then an element x =) . k;g' € RC,, is invertible if and only
if det A € R is invertible, where k; € R and
ko kn—1 -+ ki
A ki ko ks

kp—1 kn—2 -+ ko

Proof. The element z is invertible if and only if there exists y = S 7' l;g° such
that zy = 1 = yz, i.e.,

ko kp—1 - k1 lo 1
kq ko -+ ko l1 0
kn_1 kn_o - ko ln1 0

Let B be the matrix just as A replaced k; by ;. Then zy = 1 = yz if and only if
AB =1 = BA.
If vy =1 = yx, then det A - det B=1 = det B - det A and so det A € U(R).
Conversely, since R is a commutative ring, det A € U(R) implies that A is
an invertible matrix, i.e., the above matrix equation has a solution. Hence, z €
U(RCy). O

Theorem 2.5. Let R be a commutative local ring with 2 € U(R) and let Cs be a
cyclic group of order 3 generated by g. Then RCs is (x5 — 1)-clean.

Proof. Let a = k4 mg + lg?, where k,m,l € R. Write

a=1+[k—1)+mg+1g*]= -1+ [(k+1)+mg+ lg?]
g+[k+(m—-1)g+1g’] = =g+ [k + (m+1)g +1g°]
=@ +k+mg+(1-1)gY=-g*>+[k+mg+ (+1)g%.

The elements 41, +¢ and 4¢? are the roots of the equation 26 = 1. In order to
show that « is (% — 1)-clean, by Lemma 2.4, we only need to show that at least
one of the following six elements is a unit in R:

(1) (E=134+m?>+13-3k—-1Dml, (2) (k+1)3+m?+13—-3(k+1)ml,

B) 2+ (m—1)34+1=3k(m—11, (4)k>+ (m+1)3+13—3k(m+ 1),

(5) k3 4+m?+ (1 —1)3=3km(—1), (6)k>+m>+(1+1)3—3km(l+1).
Suppose it is not true, i.e., all (1)—(6) belong to J(R) since R is a commutative

local ring.
By (1) and (2), we have 6k + 2 — 6ml € J(R). Since 2 is a unit in R, we have

3k* —3ml+1 € J(R). (%)

If 3 € J(R), then 1 € J(R) by (x), a contradiction. So 3 € U(R). From (x), we
have 3k® — 3kml + k € J(R). Similarly, 3m3 — 3kml + m, 313 — 3kml +1 € J(R).
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Thus, we obtain 3(k® +m3 + 13 — 3kml) + (k +m +1) € J(R). Since 3 € U(R),
E*4+m3 + 13— 3kml+ 3" k+m+1) € J(R). (%)

By (1), (2) and (*x), we have 3k — 37'(k +m + 1) € J(R). Similarly, we have
3m—3"Yk+m+1),3—3Yk+m+1) € J(R). So3(k+m+1)—(k+m+1)
=2(k+m+1) € J(R). From 2 € U(R), it is true that k+m + [ € J(R). Hence,
3k € J(R), this implies k € J(R). Similarly, m,l € J(R). By (x), 1 € J(R), a
contradiction. Thus, « is (2% — 1)-clean, as required. m|

Corollary 2.6. Let R be a commutative semiperfect ring with 2 € U(R) and let
C3 be a cyclic group of order 3. Then RCs is (x° — 1)-clean.

Proof. Since R is semiperfect, there exist orthogonal local idempotents ey, ..., ¢en,
such that 1 = e; +---+¢€,,. So R =e1Rey X --- X e, Re,, is a direct product of
commutative local rings. Note that RC3 = (eyRe1)C3 X « -+ X (e Rep,)Cs, so RC3
is (2% — 1)-clean by Theorem 2.5. O

Ezample 2.7. Let Z¢zy = {m/n|m,n € Z, gcd(7,n) = 1} (which is a commutative
local ring) and let C3 be a cyclic group of order 3. Note that 2 € U(Z7)). Let
g2(x) = 2% =1 = (& — 1)(z 4+ 1)(2* + 2> + 1). Then by Theorem 2.5, Z)Cs is
g2(x)-clean. However, Han and Nicholson [3] showed that Z7)C3 is not clean. Thus,
we obtain an example which is g(z)-clean but not clean.

Remark 2.8. Let g(x) = (z—a)h(z) € Clx]. If the equation h(x) = 0 has no solution
in R, then R cannot be g(z)-clean. In fact, suppose R is g(x)-clean, then there exist
a unit v and a root s of g(z) such that a = s+ u. Since ¢g(s) = (s —a)h(s) =0 and
s —a € U(R), we get h(s) = 0. This is a contradiction.
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