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Abstract. Let R be a ring and g(x) a polynomial in C[x], where C = C(R) denotes the
center of R. Camillo and Simón called the ring g(x)-clean if every element of R can be
written as the sum of a unit and a root of g(x). In this paper, we prove that for a, b ∈ C,
the ring R is clean and b − a is invertible in R if and only if R is g1(x)-clean, where
g1(x) = (x − a)(x − b). This implies that in some sense the notion of g(x)-clean rings in
the Nicholson–Zhou Theorem and in the Camillo–Simón Theorem is indeed equivalent to
the notion of clean rings.
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1 Introduction

A ring R is called clean if every element of R is the sum of a unit and an idempotent.
This notion was introduced by Nicholson in [4] as a sufficient condition for a ring to
have the exchange property. Later, Camillo and Yu proved in [2] that all semiperfect
rings and unit-regular rings are clean.

Generally, if C = C(R) denotes the center of a ring R, and if g(x) is a polynomial
in C[x], Camillo and Simón [1] called the ring g(x)-clean if every element of R can
be written as the sum of a unit and a root of g(x). If V is a vector space of countable
dimension over a division ring D, they proved that End(DV ) is g(x)-clean provided
that g(x) has two toots in C(D). Nicholson and Zhou [6] took a fixed polynomial
g(x) ∈ (x−a)(x− b)C[x], where a, b ∈ C(R) such that b and b−a are both units in
R, and proved that End(RM) is g(x)-clean if RM is a semisimple module over R.

Let g1(x) = (x − a)(x − b) with a, b ∈ C. In this paper, we prove that R
is g1(x)-clean if and only if R is clean and b − a is invertible. Furthermore, for
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g2(x) ∈ (x − a)(x − b)C[x], where a, b ∈ C and b − a is a unit in R, if R is clean,
then it is g2(x)-clean; and if R is g2(x)-clean for any g2(x) ∈ (x − a)(x − b)C[x],
then it is clean. Finally, we construct an example which is g(x)-clean but not clean.

Throughout this paper, rings are associative with identity and modules are uni-
tary. Let J(R) and U(R) denote the Jacobson radical and the group of units of R,
respectively. We write Cn and RCn for the cyclic group of order n and its group
ring over R, respectively.

2 g(x)-Clean Rings and Clean Rings

In this section, we will investigate the relations between g(x)-clean rings and clean
rings. The following result is simple but useful.

Theorem 2.1. Let g1(x) = (x− a)(x− b) with a, b ∈ C. Then R is g1(x)-clean if
and only if R is clean and b− a is invertible.

Proof. Suppose r ∈ R. Since R is g1(x)-clean, there exist a unit u1 and a root s1

of g1(x) such that b = s1 + u1. Since g1(s1) = (s1 − a)(s1 − b) = 0, we have s1 = a.
This implies that b − a is invertible. Again by hypothesis, there exist a unit u2

and a root s2 of g1(x) such that (b− a)r + a = s2 + u2. Set e = (b− a)−1(s2 − a),
i.e., s2 = (b − a)e + a. Then we get r = e + (b − a)−1u2. Note that g1(s2) =
(s2 − a)(s2 − b) = (b− a)e[(b− a)e + a− b] = (b− a)2(e2 − e) = 0 by b− a ∈ C(R).
Since b− a ∈ U(R), we have e2 = e, as required.

Conversely, for any r ∈ R, by hypothesis we may write (b− a)−1(r− a) = e + u,
where e2 = e ∈ R and u ∈ U(R). Thus, we have r = [(b − a)e + a] + (b − a)u.
Note that (b − a)u is a unit since b − a ∈ U(R). Now we have g1((b − a)e + a) =
(b− a)e[(b− a)e + a− b] = (b− a)2e(e− 1) = 0. So (b− a)e + a is a root of g1(x).
This completes the proof. 2

In fact, the condition a, b ∈ C(R) in Theorem 2.1 can be replaced by b − a ∈
C(R).

In [2], Camillo and Yu showed that if 2 ∈ U(R), then R is clean if and only if
every element of R is the sum of a unit and a square root of 1. In fact, the condition
2 ∈ U(R) is necessary.

Corollary 2.2. A ring R is clean and 2 ∈ U(R) if and only if every element of R
is the sum of a unit and a square root of 1.

Proof. Let g1(x) = (x + 1)(x − 1) = x2 − 1. Note that the condition that every
element of R is the sum of a unit and a square root of 1 is equivalent to R being
g1(x)-clean. Hence, by Theorem 2.1, the proof is immediate. 2

Remark 2.3. Let g1(x) = (x − a)(x − b) and g2(x) ∈ (x − a)(x − b)C[x], where
a, b ∈ C and b − a ∈ U(R). Then R is clean if and only if R is g1(x)-clean, and
in this case, R is also g2(x)-clean. On the other hand, if R is g2(x)-clean for any
g2(x) ∈ (x− a)(x− b)C[x], then R is clean.

Next we will construct an example to show that a g(x)-clean ring is not neces-
sarily clean. First, we need a lemma which extends [7, Proposition 3.2].
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Lemma 2.4. Let R be a commutative ring and let Cn be a cyclic group of order
n generated by g. Then an element x =

∑n−1
i=0 kig

i ∈ RCn is invertible if and only
if det A ∈ R is invertible, where ki ∈ R and

A =




k0 kn−1 · · · k1

k1 k0 · · · k2
. . .

kn−1 kn−2 · · · k0


 .

Proof. The element x is invertible if and only if there exists y =
∑n−1

i=0 lig
i such

that xy = 1 = yx, i.e.,



k0 kn−1 · · · k1

k1 k0 · · · k2
. . .

kn−1 kn−2 · · · k0







l0
l1
...

ln−1


 =




1
0
...
0


 .

Let B be the matrix just as A replaced ki by li. Then xy = 1 = yx if and only if
AB = I = BA.

If xy = 1 = yx, then detA · det B = 1 = detB · detA and so det A ∈ U(R).
Conversely, since R is a commutative ring, detA ∈ U(R) implies that A is

an invertible matrix, i.e., the above matrix equation has a solution. Hence, x ∈
U(RCn). 2

Theorem 2.5. Let R be a commutative local ring with 2 ∈ U(R) and let C3 be a
cyclic group of order 3 generated by g. Then RC3 is (x6 − 1)-clean.

Proof. Let α = k + mg + lg2, where k, m, l ∈ R. Write

α = 1 + [(k − 1) + mg + lg2] = −1 + [(k + 1) + mg + lg2]
= g + [k + (m− 1)g + lg2] = −g + [k + (m + 1)g + lg2]
= g2 + [k + mg + (l − 1)g2] = −g2 + [k + mg + (l + 1)g2].

The elements ±1, ±g and ±g2 are the roots of the equation x6 = 1. In order to
show that α is (x6 − 1)-clean, by Lemma 2.4, we only need to show that at least
one of the following six elements is a unit in R:

(1) (k − 1)3 + m3 + l3 − 3(k − 1)ml, (2) (k + 1)3 + m3 + l3 − 3(k + 1)ml,
(3) k3 + (m− 1)3 + l3 − 3k(m− 1)l, (4) k3 + (m + 1)3 + l3 − 3k(m + 1)l,
(5) k3 + m3 + (l − 1)3 − 3km(l − 1), (6) k3 + m3 + (l + 1)3 − 3km(l + 1).

Suppose it is not true, i.e., all (1)–(6) belong to J(R) since R is a commutative
local ring.

By (1) and (2), we have 6k2 + 2− 6ml ∈ J(R). Since 2 is a unit in R, we have

3k2 − 3ml + 1 ∈ J(R). (∗)
If 3 ∈ J(R), then 1 ∈ J(R) by (∗), a contradiction. So 3 ∈ U(R). From (∗), we
have 3k3 − 3kml + k ∈ J(R). Similarly, 3m3 − 3kml + m, 3l3 − 3kml + l ∈ J(R).
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Thus, we obtain 3(k3 + m3 + l3 − 3kml) + (k + m + l) ∈ J(R). Since 3 ∈ U(R),

k3 + m3 + l3 − 3kml + 3−1(k + m + l) ∈ J(R). (∗∗)

By (1), (2) and (∗∗), we have 3k − 3−1(k + m + l) ∈ J(R). Similarly, we have
3m − 3−1(k + m + l), 3l − 3−1(k + m + l) ∈ J(R). So 3(k + m + l) − (k + m + l)
= 2(k + m + l) ∈ J(R). From 2 ∈ U(R), it is true that k + m + l ∈ J(R). Hence,
3k ∈ J(R), this implies k ∈ J(R). Similarly, m, l ∈ J(R). By (∗), 1 ∈ J(R), a
contradiction. Thus, α is (x6 − 1)-clean, as required. 2

Corollary 2.6. Let R be a commutative semiperfect ring with 2 ∈ U(R) and let
C3 be a cyclic group of order 3. Then RC3 is (x6 − 1)-clean.

Proof. Since R is semiperfect, there exist orthogonal local idempotents e1, . . . , em

such that 1 = e1 + · · · + em. So R = e1Re1 × · · · × emRem is a direct product of
commutative local rings. Note that RC3

∼= (e1Re1)C3 × · · · × (emRem)C3, so RC3

is (x6 − 1)-clean by Theorem 2.5. 2

Example 2.7. Let Z(7) = {m/n |m,n ∈ Z, gcd(7, n) = 1} (which is a commutative
local ring) and let C3 be a cyclic group of order 3. Note that 2 ∈ U(Z(7)). Let
g2(x) = x6 − 1 = (x − 1)(x + 1)(x4 + x2 + 1). Then by Theorem 2.5, Z(7)C3 is
g2(x)-clean. However, Han and Nicholson [3] showed that Z(7)C3 is not clean. Thus,
we obtain an example which is g(x)-clean but not clean.

Remark 2.8. Let g(x) = (x−a)h(x) ∈ C[x]. If the equation h(x) = 0 has no solution
in R, then R cannot be g(x)-clean. In fact, suppose R is g(x)-clean, then there exist
a unit u and a root s of g(x) such that a = s + u. Since g(s) = (s− a)h(s) = 0 and
s− a ∈ U(R), we get h(s) = 0. This is a contradiction.
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