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In this paper, by introducing some proper transformations, the applied range of the 
homogenous balance (HB) method is extended. With the help of Mathematica, we obtain 
three auto-B/icklund transformations (BT) for the generalized Fithugh-Nagumo equa- 
tion, the generalized Burgers-Fisher equation, the generalized Burgers-Huxley equation, 
respectively, by use of the extended HB method. From these BTs, some exact solutions 
for these equations are derived. 
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1 I n t r o d u c t i o n  

The B~klund transformations (BT) of nonlinear partial differential equations 
(PDEs) play an important role in soliton theory, which is an efficient method to 
obtain exact solutions of nonlinear PDEs [1,2]. In order to obtain the BT of the given 
nonlinear PDE, various methods, such as Painlevd method [3], Hirota method [4], 
homogenous balance (HB) method [5-12], have been presented. The HB method, 
which is a primary and concise method to seek exact solutions of nonlinear PDEs 
[5-9], is extended to search for B~cklund transformation and similarity reductions of 
nonlinear PDEs by Fan [9,10]. So, more solutions can be obtained by the improved 
HB method. But they only consider the cases where the balance constants are 
positive integers. In this paper, by introducing some proper transformations, we 
can deal with the cases where the balance constants are fractions. 

Now we briefly describe the HB method, for a given nonlinear PDE, say, in two 
variables, 

H(u,  ux, ut, u x x , "  ") = O. (1.1) 

We seek the BT of (1.1) in the form 

u = c9~O'~f[w(x, t)] + ~, (1.2) 
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where w(x ,  t), u = u(x ,  t) are undetermined functions, ~ = ~(x, t) is a seed solution 
of the given PDE and m, n are positive integers determined by balancing the 
highest derivative term with the nonlinear terms in (1.1) (see Refs. [9,10] for detail). 
However, we find that  the constants m, n need not be restricted to positive integers. 
In order to apply the HB method to obtain a BT for given PDE when m, n are 
not equal to positive integers, we must search for some proper transformations. In 
this paper, we succeed in obtaining three auto-B£cklund transformations for three 
nonlinear PDEs with nonlinear terms of any order by introducing three proper 
transformations. Then, based on these BTs, some exact solutions for these equations 
are obtained. 

The rest of the paper is organized as follows, In Sections 2-4, the BT and 
some exact solutions of the generalized Fithugh-Nagumo equation, the general- 
ized Burgers-Fisher equation and the generalized Burgers-Huxley equation, re- 
spectively, are found. Conclusions will be presented finally. 

2 The generalized F i t h u g h - N a g u m o  equation 

2.1 Auto-B/icklund transformation 

The generalized Fithugh-Nagumo equation [13,14] reads 

ut - c~uxx =/3u(1 - u6)(u  ~ - r), (2.1) 

where c~, /3, cl > 0 and r E [-I, i). Equation (2.1) is a generation of the Hux- 
ley equation for nerve propagation in neurophysics and wall propagation in liquid 
crystals. 

According to the idea of HB method [5-12], by balancing uxx with u 2~+I in 
(2.1), we obtain balance constants m = 1/~, n = 0. It is obvious that ra may be 
arbitrary constants. In order to apply the HB method under this condition, we 
make the transformation 

u(x ,  t) = vl /~(x ,  t), (2.2) 

and substituting it into (2.1) we obtain 

r/3 % 2 - (I + r)/3 %3 + + + - = o. (2.3) 

Then, by balancing v 4 with VVxx in (2.3), we get the value of the balance constants 
m = 1, n = 0. Therefore we seek the B~i~klund transformation of (2.3) in the form 

11/) v f ~ + ¢. (2.4) 

Here and in the following context ' := O/Ow, f (r)  = Or/Ow ~, and f = f(w),  
w = w(x ,  t) is undetermined function and ¢ = ¢(x, t) is a seed solution of (2.3). 

With the help of Mathematica, substituting (2.4) into (2.3) yields (because the 
formula is very long, just one part of it is shown here) 

[/3~2f,4 at_ 0~(--1 -'F ~ ) fu2  _ ~ f , f ( 3 ) ] w 4  + . . . .  O. (2.5) 
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a to zero yields an ordinary differential To simplify (2.5), setting the coefficient of w~ 
equation for f:  

~52ff 4 -{- a ( - 1  -t- 5)f  "2 - a S f ' f  (3) -- 0. (2.6) 

Solving (2.6) we obtain a solution 

f=:V In . (2.7) 

Setting A = -t-~/a(1 + 5)/(~52) 1), then substituting (2.7) into (2.5), formula (2.5) 
can be simplified to a linear polynomial of 1/w, then setting the coefficients of 1/w i 
(i = 0 , - . - ,  3) to zero yields a set of partial differential equations for w(x,  t): 

r#62¢ 2 - (1 + r)#~2¢ 3 -t- #62¢ 4 + a ( - 1  + 6)¢~ ÷ 6¢(¢t - aCxx) -- 0, (2.8) 

-3(1  ÷ r ) ~ 6 2 ¢ 2 w  x -}- 4~52¢3Wx + 6¢(2r/~6wx + wxt -- awxxx) 

+ Sweet + a(2(--1 -t- 5)wx~¢~ -- 5w~¢x~) = 0, (2.9) 

6A~52¢2w~ ÷ A a ( - 1  4- 5)w2~ - 5¢wx{wt  ÷ 3[A(1 ÷ r)DSwx - awxx]} 

A- ASwx(wxt  - aWxxx) -t- w2[Ar~52 - 2 a ( - 1  -t- 5)¢~] = 0, (2.10) 

w2{ASwt  + a[(1 -t- r)(1 + 5) - 2(2 + 5)¢]w~ - Aa(2  + 5)w~} = 0. (2.11) 

Therefore, from (2.2), (2.4) and (2.7), we obtain the desired auto-B/icklund trans- 
formation of (2.1) 

1/~ 
[~  / - ~  + 5) Wx + ¢] (2.12) 

where w satisfies (2.9)-(2.11), ¢ is a seed solution of (2.3) (or (2,8)). 

2.2 E x a c t  s o l u t i o n s  

Now we use the B~cklund transformation consisting of (2.12) and (2.8)-(2.11) to 
exploit some explicit exact solutions for (2.1). To solve Eqs. (2.8)-(2.11), we assume 
that  ¢(x, t) and w(x,  t) are of the form 

¢(x, t )  = B,  w (x , t )  = C ÷  H e x p [ k ( x -  M)], (2.13) 

where B, C ¢ 0, H ~ 0, k and A are constants to be determined. 
Substituting (2.13) into (2.8)-(2.11), we find that (2.13) satisfies Eqs. (2.8)- 

(2.11) under the following cases: 

Case 1. 
1 

B = O ,  k = - ~ ,  A =  
A~5(-1  + r + rS) 

1 + 5  

1) Note: in the rest of Section 2, A denotes =t=~c~(1 4- (f)/f~$ 2. 

(2.14) 
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Case 2. 

Case 3. 

Case 4. 

B = 0 ,  k = r ,  A=  A ~ 5 ( 1 - r + 5 )  (2.15) 
1 + 5  A 

1 A/?5(-1 + r + rS) (2.16) B - - l ,  k = - ~ ,  A=  ~r + ~ 

r A~5(1 - r + 5) (2.17) 
B = r ,  k = - - ~ ,  A= 1 + 5  

Therefore, from (2.12)-(2.17) we obtain the following solutions of the generalized 
Fithugh-Nagumo equation (2.1): 

Case 1. 

Case 2. 

Case 3. 

Case 4. 

} 1/6 
1 , , (2.18) 

u l =  l + ~ e x p C [ ( A ~ 5 ( - l + r - A 1  x- -~+rS)O] 

= r , (2.19) 

l + ~ e x p - - ~  x- 7-~5 

1/5  

{ -1  + 1 }  

1+  ~ e x p  x -  1 + 5  

(2.20) 

} ~/'~ 
= - r  + r , (2.21) 

1 + ~ exp x - 1 ~ 5 

If we set C = H and C = - H  in (2.18)-(2.21), respectively, we can obtain the 
kink-profile solitary wave solutions and blow-up solitary wave solutions for (2.1): 

Family I. From (2.18) and (2.20), we obtain the following solutions of (2.1): 

~tll = ~ Jr" ~ tanh +~--~ x - 1 + 5 , (2.22) 

i (2.23) 
i+5 ]jj • 
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Family 2. From (2.19) and (2.21), we obtain the following solutions of (2.1): 

r A~6(1 - r -4- 6) t (2.24) u21= l + t a n h  4-~-~ x -  1 ~ 6  

u22= 5 14-coth x -  1 ~ 6  . (2.25) 

R e m a r k  1: 
a) From the solutions (2.22)-(2.25), the solutions obtained in [13,14] can be 

recovered. Therefore, the solutions obtained in [13,14] are special cases of our solu- 
tions (2.18)-(2.21). 

b) When we set ¢(x, t) and w(x, t) to be following more general forms: 

¢(x, t) = B, w(x, t) = C(t) + g( t )  exp[xp(t) - q(t)], (2.26) 

where B is an arbitrary constant, C(t), H(t), p(t) and q(t) are arbitrary functions 
of t, we only obtain the same results as the results obtained in the paper. When we 
set ¢(x, t) and w(x, t) to be more complex forms than Eq. (2.13), we do not obtain 
anything besides a system of complex constraint PDEs. In order to make the work 
feasible, the way how to choose the forms of ¢(x, t) and w(x, t) needs to be further 
studied. 

c) We have a t ry  to use the solutions (2.18)-(2.21) as a new seed solution of 
(2.3), but we do not obtain any explicit exact solutions of (2.3) besides the complex 
constraint PDEs. 

3 The generalized Burgers -F i sher  equation 

3.1 Auto-B~icklund transformation 

The generalized Burgers-Fisher equation [13, 15-17] reads: 

m ~ ~ u ( 1  - u ' ) ,  (~ > 0) .  (3 .1)  Ut + O ~ U x  - -  - - ~ t  x - -  ¢ txx  -~ 
U 

Equation (3.1) includes the following two generalized Fisher equations [15]: 

m 2 ut - ux~ - - - u x  = u(1  - u~) ,  - 1  - 1 ~  u 2 < m < c ¢ ,  0 < ~ < ~ ,  (3.2) 

ut + au~ux - uxx = t3u(1 - u~). (3.3) 

If setting m = 0, ~ ---- 1, Eq. (3.2) will become the well-known Fisher equation, which 
shows a simple model for describing the interaction between reaction mechanism 
and diffusion transport in corresponding physical and biological systems. 

Proceeding as in Section 2, we obtain an auto-B/icklund transformation of (3.1) 
as follows. For simplicity, we omit the detailed steps in this section. 

l + m + 6 w =  + 
U ~- OZ~ W 
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where w = w(x , t )  satisfies the following equations (3.5)-(3.8); ¢ = ¢(z , t )  is a 
solution of (3.5). 

~62(~ 3 -~- ( - 1  - m + 6)¢2x + 6~b2(-/36 + aCx) + 6¢(¢t - Cxx) = 0, (3.5) 

- 6¢2(33&wz + aWxx) - 6w~¢t + 2Wxx¢~ + 2mwxxCx - 26wxx¢~ 

+ 6 ¢ ( - w x t  + w ~ x  + 2wx(36 - aCx)) + 6w~¢~ = 0, (3.6) 
2e2--2 2 2 2 - a o c) wx + ( l + 2m + m2 - 6 ) w ~  

- 6¢wx(a6wt + 33&(1 + m + 6)Wx + a(2 + 2m - 6)Wxx) 

- 6(1 + m + 6)Wx(Wzt - wzzx) + 6w~(36(1 + m + 6) + c~(1 + m - 36)¢z) = 0, (3.7) 

w2 (cu~(1 + m + 6)wt + 6(3(1 + m + 6) 2 

+ 2(1 + m)ot2¢)wx - (1 + re)a(1 + m + 6)wxx) = O. (3.8) 

8.2 Exact  s o l u t i o n s  

Now we use the Biicklund transformation consisting of (3.4) and (3.5)-(3.8) to 
exploit some explicit exact solutions for (3.1). To solve Eqs. (3.5)-(3.8), we assume 
that  ¢(x, t) and w(x, t) are of the form 

¢(x, t) = B,  w(x,  t) = C + H exp[k(x - At)I, (3.9) 

where B, C # 0, H # 0, k and A are constants to be determined. 
Substituting (3.9) into (3.5)-(3.8), we find that  (3.9) satisfies Eqs. (3.5)-(3.8) 

under the following two cases: 
Case 1. 

Case 2. 

B = 0 ,  k =  c~6 A =  ( l + m ) a  2 + / 3 ( 1 + m + 6 )  2 (3.10) 
l + m + 6 '  a(1 + m + 6 )  

B = I ,  k - -  ~6 X--- ( l + m ) a  2 + 3 ( 1 + m + 6 )  2 (3.11) 
1 + m + 6 '  a(l + m + 6 )  

Therefore, from (3.4), (3.9)-(3.11), we obtain two solutions of Eq. (3.1): 

Ul ~ C [ ~6 ( (1.4- m)~2 -4- ~(1 -t.- ~,l -.1-6)2t~ ] , (3.19.) 

- 1  

1 + ~ e x p  1 + m ' +  & x -  a(1 + m + & )  

+ 1  } l/g , 
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where C # 0, H # 0 are arbitrary constants. 
If we set C = H and C = - H  in (3.12) and (3.13), respectively, we obtain the 

following exact solitary wave solutions and blow-up solitary wave solutions of (3.1): 

{ ~ 1 [ a5 ( (l  + m)a2 + ~( l  + m + 5)2t)  ] l l/~ 
ul,2 = : t :~ t anh  q : 2 ( l + m + 5 )  x -  a ( l  + m + 5) 

(3.14) 

{ 1  1 [ o~5 ( ( l - ~ - m ) o z 2 - t - ~ ( l + m + 5 )  2 t ) ] }  1/5 
U3,4 = + ~ c o t h  q : 2 ( l + m + 5 )  x -  a ( l + m + 5 )  

(3.15) 
R e m a r k  2: It is easy to see that  (3.14) and (3.15) reproduce the solutions obtained 
in [13,15-17]. Therefore the solutions of (3.1) obtained in [13,15-17] are special cases 
of our solutions (3.12) and (3.13). 

4 T h e  gene ra l i z ed  B u r g e r s - - H u x l e y  e q u a t i o n  

4.1 Auto-B~icklund trans format ion  

The generalized Burgers-Huxley equation [13,17] reads: 

ut + auZux - m u 2  - D u , ,  = ~u(1 - u~)(u ~ - r). (4.1) 
U 

According to the steps in Section 2, we obtain an auto-B/icklund transformation of 
(4.1) as follows: 

+  /a2 + 4 (D + + D 'i + , (4.2/ 
u = 2~5 w 

where w = w(x, t )  satisfies the following equations (4.4)-(4.6); ¢ = ¢(x, t )  is a 
solution of (4.3): 2) 

5 ¢ ¢ t + a h ¢ 2 ¢ z + ( - D - m + D g ) ¢ 2 + 5 ¢ ( - ~ g ( r  - ¢ ) ( - 1  + ¢)¢ - D ¢ ~ )  = 0, (4.3) 

5¢wxt + ah¢2wxz - DhCw~x  - 2 D w ~ ¢ ~  - 2mwxxCx -4- 2Dhw~xCx 

+ 5wx(2r~5¢ - 3~5¢ 2 - 3r~5¢ 2 + 4~5¢ 3 + Ct + 2a¢¢= - D ¢ ~ )  = 0, (4.4) 

- 5¢wtw= + A ( - O  - m + 05)w2~ + 5wz[Aw~t + (2cA + 3 0 ) ¢ w ~  - AOwzxz] 

+ w~ {5[-a¢  2 + A~5(r - 3¢ - 3r¢ + 6¢2)] + [2m - 2 0 ( - 1  + 6) + cAb]C= } = 0, (4.5) 

w2 { - A h w t  - 5[A2j35(1 + r - 4¢) + 2aA¢ + 20¢]w~ 

+ A[2m + cA5 + 0(2  + 5)]w~} = 0, (4.6) 

Note: in the rest of Section 4, A -- [a -4- ~ a  2 + 4/3(D + m + 95)] /(2/35). 2) 
1 l 
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4.2 Exact  so lut ions  

Now we use the B~k lund  transformation consisting of (4.2) and (4.4)-(4.6) to 
search for some explicit exact solutions for (4.1). To solve Eqs. (4.3)-(4.6), we 
assume that ¢(x, t) and w(x, t) are of the form 

¢(x, t) = B, w(x, t) = C + H eXp[k(x - At)], (4.7) 

where B, C # 0, H # 0, k and ), are constants to be determined. 
Substituting (4.7) into (4.3)-(4.6), we find that (4.7) satisfies Eqs. (4.3)-(4.6) 

under the following cases 
Case 1. 

B = O, A = A2r/352 - (D + m)) k 1 (4.8) 
A5 ' = -A' 

Case 2. 

Case 3. 

Case 4. 

L B = O, A= A21352 - (D + m)r k = A,  (4.9) 
A5 

1 B = I, A = a + D + A2( - I  + r)~5 k = - -~ ,  (4.10) 
A 

r B = r ,  ) ~ = a r + D r - A 2 ( - l + r ) ~ 5  k -  A '  (4.11) 
A 

Therefore, from (4.2), (4.7)-(4.11), we obtain four solutions of the equation (4.1): 

} x/~ 
Ak 

ul,2 = I + ~ C  e x p [ - k ( x -  At)] 
(4.12) 

} 1/~ 
Ak 

u3 = C exp[ -k (x  - At)] + 1 , (4.13) 

Ak 
u4 = C + r , (4.14) 

1 + e x p [ - k ( x  - ,Xt)l 

where k, A in (4.12), (4.13), and (4.14) are determined by (4.8)-(4.9), (4.10), and 
(4.11), respectively, and C, H are arbitrary constants. 

If we set C = H and C = - H  in (4.12)-(4.14), respectively, we obtain the 
following exact solitary wave solutions and blow-up solitary wave solutions of the 
equation (4.1): 

~ tanh [_2~  ( x _  r~52A2 1/6 (4.15) 
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U 1 2  - -  ~ coth 1 r/~2A 2 - (D + M) 1/~, 

r r •52A 2 - r(D + M) t , (4.17) 
u21= - ~ t a n h  -~-~ x -  A5 

u22 = - 5 coth r ~52 A2 - r(D -{- M) 1/~ 

{~  1 [ 1  ( D + a A + ( _ I + r ) I ~ S A 2  ) ] } 1 / ~  
u31 = + 5 tanh ~-~ x - A t , (4.19) 

{1  1 [ 1 ( D + a A - b ( A I + r ) ~ S A 2 t ) ] } I / $  ' (4.20) u32= ~ + ~ c o t h  ~-~ x -  

u41 = + ~ tanh ~-~ x - A , (4.23) 

{ 2  r [ ~ A (  D r + a r A + ( 1 - r ) ~ A 2 t ) ] }  ~/~ 
U 4 2  = -[- ~ coth x - A , (4.24) 

R e m a r k  3: The solutions (4.15)-(4.18) cover the solutions obtained in [13,17]. 
Therefore the solutions of (4.1) obtained in [13,17] are special cases of our solutions 
(4.12). To our knowledge, the other solutions obtained here were not found before. 

5 Conc lus ions  

In this paper, by introducing some proper transformations, we derive three 
auto-B~klund transformations for three nonlinear PDEs with nonlinear terms of 
any order by use of the extended HB method. Based on these BTs, several fam- 
ilies of exact solutions for equations (2.1), (3.1), and (4.1) are obtained. These 
special solutions presented in this work can be effectively used to discuss the cor- 
responding phenomena and related problems in physics and biology. This method 
is computerizable, which allow us to perform complicated and tedious symbolic 
algebraic calculation on a computer. But in this paper we only consider ( l+ l ) -  
dimensional nonlinear PDEs and one of the two balance constants is equal to zero 
by use of the extended HB method. Can we find a B~k lund  transformation for 
(2+l)-dimensional or (3+l)-dimensional nonlinear PDEs with nonlinear terms of 
any order using this method? When the balance constants are all fractions, what 
transformations shall we seek in order that  the extended HB method be also effec- 
tive? These problems will be further studied in the following works. 
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