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An advanced iterative algorithm is presented to extract phase distribution from randomly and spatially
nonuniform phase-shifted interferograms. The proposed algorithm divides the interferograms into small
blocks and retrieves local phase shifts accurately by iterations. Therefore, the phase distribution can be
calculated with high precision by eliminating the effect of tilts occurring during phase shifting. Simulated
results and experiments demonstrate that the proposed algorithm exhibits high precision and converges
faster than previous algorithms even when the tilt errors are up to 27.6% of the normal phase

step. © 2008 Optical Society of America
OCIS codes:

1. Introduction

Among automated interferogram analysis methods,
the temporal phase-shifting (TPS) technique is rec-
ognized as the one providing the most accurate wave-
front extraction [1,2]. The measurement accuracy of
the TPS depends on practical limitations, such as
the phase shifter performance and measurement
environment instabilities. Therefore, numerous algo-
rithms have been proposed for dealing with phase-
retrieving errors. In 1991, Okada et al. [3] proposed a
least-squares-based iterative algorithm that solves
the approximate linear equations iteratively to de-
termine phase-shift amounts and phase distribution
simultaneously. Wang and Han [4] proposed an im-
proved iterative algorithm for phase extraction of
randomly phase-shifted interferograms that does not
require an accurate initial estimation of phase shifts.

All the iterative methods cited above assume that
every pixel in an interferogram must have the same
amount of shifted phase. However, due to an unbal-
anced piezoelectric effect in the phase shifter or in-
stability of the optical platform, for example, some
phase shifters may introduce a significant tilt. As a
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consequence the phase-shift steps are no longer the
same at all points but vary with a linear function
across the field defined as a phase-shift plane.

To eliminate the tilt-shift errors, Hibino et al. [5]
developed a systematic method by which compensa-
tion algorithms can be generated if the phase shifts
obey a polynomial behavior. Such algorithms are un-
able to compensate for the effects of tilts if the angles
and orientations of those tilts have random values or
do not follow a polynomial rule. Chen et al. [6] pro-
posed an algorithm that is immune to both transi-
tional and tilt-shift errors. Its operation is based on
an iterative alternate adjustment of phase distribu-
tion and local phase shifts by a first-order Taylor
series expansion of the phase-shift errors (including
both translational and tilt-shift errors). Dobroiu et al.
[7] proposed an algorithm to globally adjust the
phase-shift planes and compensate both transla-
tional and tilt-shift errors by using calculated con-
trast maps. Its operation is based on blockwise
processing of interferograms divided into small re-
gions with uniform phase steps. However, the sup-
posed phase shifts should be known to calculate the
contrast maps.

In this paper, an improved iterative algorithm is
proposed to cope with random and spatially nonuni-
form phase shifts. First we ignore tilt errors and es-
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timate the phase using the algorithm of Wang and
Han, and then divide the interferograms into small
blocks and retrieve local phase shifts. Finally, the
phase distributions and phase-shift plane with tilt
information are determined and updated after itera-
tions. The proposed algorithm needs only four ran-
domly phase-shifted (including both translational
and tilt-shift errors) interferograms and gives an ac-
curate phase map in which the effects of translational
and tilt-shift errors are both canceled. We first dis-
cuss the principles of the algorithm and then give its
verification by computer simulations and experi-
ments.

2. Principle

A. lterative Algorithm Determination of the Phase
Distribution

If the piezoelectric transducer (PZT) device of the test
optical element in the interferometer has orientation
errors during the shift, the test surface of the element
will be tilted. In this case the intensity at pixel (x, y)
of the nth interferogram can be represented as

L'(x, y) =A(x, y) + B(x, y)cos[P(x, y) + kx
thyy +d,], (1)

where I is the intensity of the interferogram, the
superscript ¢ denotes the theoretical value, and x and
y denote spatial coordinates in the interferogram. In
the equation, A(x, y) is the background or mean in-
tensity; B(x,y) is the modulation of the fringe pat-
tern; ®(x, y) is the phase distribution under test; k.,,,
k,,, and d, denote the gradients of the phase-shift
plane along the x and y directions and the phase shift
value of the center pixel in the nth phase-shifted
interferogram (n = 1, 2, .. ., N), respectively; and N
is the total number of frames.

As in the conventional phase-shifting algorithm, it
is assumed that the background intensity and the
modulation amplitude do not have frame-to-frame
variation; i.e., they are only functions of pixels. Under
the assumption, we define a new set of variables as
alx,y) = Alx,y), b(x,y) = Blx,y)cos[®(x,y)], and
cx,y) = —B(x, y)sin[®(x, y)], and Eq. (1) is rewrit-
ten as

L'(x, y)=a(x, ¥) + b(x, y)cos(k,x + &,y +d,)
+c(x, y)sin(k,x + kyy +d,). (2)

For the pixel (x, y), if k,,, k,,, and d, are known, there
are three unknowns and N equations. The unknowns
can be solved by use of the overdetermined least-
squares method if N = 3. The least-squares error
between theoretical and experimental interferogram
S(x,y), which is accumulated from all the images
described by Eq. (2), can be written as

SRR N IR ) S C)
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where I,°(x, y) is the experimentally measured inten-
sity of the interferogram. The least-squares criteria
required for three unknowns [a(x,y), b(x,y), and
c(x, y)] can be expressed as

aS(x, y)
da(x, y) -

aS(x, y) B
©oab(x, y)

aS(x, ¥) 3

de(x, y) @
Defining random and spatially nonuniform phase
shifts as 3, = k,x + k,y + d, (for notation brevity
their dependence on spatial coordinates x, y has been
omitted), from Eq. (4) we can obtain that

N N -1
N > cos B, > sin d,

a(x’ y) . r;;l N n=1

b(x, y) | =X cos 3, > cos? s, > cos §, sin §,
n=1 n=1 n=1

c(x, ¥) N N N
> sind, > sind, cos 3, > sin? 3§,
n=1 n=1 n=1

N
nglln"’(x, ¥)
L*(x, y)cos 3, |. (5)

N
>
n=1
N

21 L*(x, y)sin 3,
From Eq. (5), the unknowns a(x, y), b(x, ), and c(x, y)

can be solved. Then the phase distribution can be
determined as

O(x, y) =tan [—c(x, ¥)/b(x, ¥)]- (6)

B. Iterative Algorithm Determination of the Phase-Shift
Plane

Using the wuniversal phase-shifting algorithm,
phase distribution can be extracted if the phase-
shift planes are known. If phase distribution is
known, the phase-shift planes can be determined by
a similar method but in an inverse way. In the
inverse algorithm, we divide the interferogram
space into several blocks and retrieve local phase
shifts. If the blocks are sufficiently small, we may
consider that the background intensities, modulation
amplitudes, and phase shifts in each block do not
have pixel-to-pixel variation and can be assumed as
constants. In the kth block, defining another set of
variables for the nth frame as a,(k) = A(k), b,(k)
= B(k)cos(d,;), and c,(k) = —B(k)sin(d,;), Eq. (1) is
rewritten as

Ly (x, ¥) = an(k) + b,(k)cos P(x, ) + ¢, (k)sin P(x, y).
(7)

If ®(x,y) is known, there are 3N unknowns and
XYN/K equations, where X, Y denote the total num-
ber of pixels in the x and y directions, respectively,
and K is the number of blocks in the full field of the
interferogram. Therefore, if the number of pixel in
each block XY /K is larger than 3, the unknowns can
be solved again by use of the overdetermined least-



squares method in the same way as step A (spatial
coordinates x, y has been omitted):

XY/K >cos P Ssind !
an(k) k k
b.(k) | = ; cos O % cos® ® Ek‘, sin @ cos ®
ca(k) >sin® D sin @ cos > sin? @
k k k
>I
k
1 )
x |21 cos 8)
%‘, I sin ®

where >, denotes the sum in the kth block. Then the
amount of phase shift in each block can be deter-
mined from

d. = tan"[—c,(k)/b.(k)]. 9)

The unwrapped K phase shifts in each nth frame can
be fitted to a phase-shift plane by a linear least-
squares method; thus, the tilts %,,, £, and average
phase shift amounts d, are obtained. This procedure
can adjust the input of the phase-shift planes in step
A and increase the accuracy of phase extractions.

C. lterative Strategy for Random and Spatial Nonuniform
Phase Shifting

The proposed iterative algorithm includes three steps
in each iteration cycle. In the ith iteration cycle the
steps are step l—calculating phase distribution
based on phase-shift planes obtained in the sec-
ond step of the previous iteration cycle, step 2—
determining the updated phase-shift planes from the
phase distribution obtained in the first step of this
cycle, step 3—checking to see whether the iteration
results satisfy the convergence criteria. It is the rel-
ative phase-shift plane that will converge, so the con-
vergence criteria can be expressed as

|(dnl _ dli) _ (dni—l _ dli—1)| < &
| (kxnl - kxlt) - (kxnl_1 - kxll_l)l 5 (10)
+ | (kynl - kyll) B (kynl_l - kyll_l) | <ég

where i represents the number of iterations and &,
and &, are the predefined threshold of accuracy.
The proposed iterative algorithm contains a non-
linear iterative process. If the estimated initial phase
shift planes in step 1 deviate from the actual ones
greatly, the phase distribution ®(x, y) obtained from
the first iteration will be far from the actual phase.
Consequently, the phase shift planes obtained in the
second iteration, mainly the tilts %,, and k,,, may
deviate from the actual ones further and result in
instability in the iteration. Therefore, we first ignore
the tilt errors and degrade the proposed algorithm
similar to the iterative algorithm of Wang and Han.
After a few iterations until Eq. (10) meets a given
accuracy, e.g., &; = 0.5, the phase distribution is ob-

(a) (b)
(c)

(d)

Fig. 1. Interferograms with different phase-shift values and tilts:
(@)d; =0,k =0,k =0;((b)dy =15,k =0.167, kyy, = 0.67; (c)
d3 = 3.1, ks =0.167,k; = 1.33; (d) dy, = 4.8, ky = 0.167, b,y =
—-1.33.

tained and is approximate to the actual one. Then we
substitute the approximate phase into the proposed
iterative algorithm. The iteration will not stop until
the criteria are met (e.g., &, = 107°, &, = 107°). Fi-
nally, the phase distributions and phase-shift planes
with tilt information are updated and determined
after iterations.

During iteration, the proposed method converges
faster than the algorithm of Wang and Han because
the local phase shifts are compensated in every pixel.
However, the algorithm described is limited to the
number of blocks K, which affects the accuracy of the
tilt values. For interferograms with small tilts and
high signal-to-noise ratios, dividing the field into
2 X 2 blocks is sufficient, whereas larger tilts and low
signal-to-noise ratios require dividing the field into
more blocks; otherwise, the calculated tilts deviate
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Fig. 2. (Color online) Simulation results: (a) Phase extracted by
the iterative algorithm of Wang and Han, (b) residual error of (a),
(c) phase extracted by the proposed iterative algorithm, (d) resid-
ual error of (c).
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Table 1. lterative Results of the Phase-Shift Planes for

Four Different Sets and Corresponding Residual Errors®

Case 1 Case 2 Case 3 Case 4
Real Calculated Real Calculated Real Calculated Real Calculated

d, 1 1.0185 1.5 1.5169 1.5 1.5122 1.5 1.5396
dq 2 2.0514 2 2.0401 2 2.0381 2 2.0738
dy 3 3.0857 2.5 2.5669 2.5 2.5672 2.5 2.6106
ko —0.0011 —-0.0105 -0.1 —0.0921 -0.2 —0.1818 -0.4 —0.3753
ks 0.005 0.0051 0.05 0.0553 0.1 0.1147 0.2 0.2094
ks 0.015 0.0156 0.15 0.1553 0.3 0.3141 0.4 0.4205
kyo -0.012 -0.0119 -0.1 —0.0968 -0.2 —0.1957 -04 —-0.3951
kys 0.016 0.0162 0.16 0.1681 0.3 0.3143 0.5 0.5049
kya 0.002 0.0021 0.02 0.0217 0.1 0.1067 0.2 0.2090
Error PV rms PV rms PV rms PV rms

Ours 0.0359 0.0124 0.0760 0.0181 0.1280 0.0229 0.2087 0.0298
Wang and Han 0.0506 0.0128 0.4979 0.0698 1.4333 0.1598 1.8546 0.1780

“Assuming that the first phase-shift planes are zero, e.g.,d; = 0, k&

k., and k,,, are 2/X rad/pixel, where X = 128.

from the actual ones so much that the iterative cri-
teria will not converge.

3. Performance of the Iterative Algorithm

Since the exact expression of an actual object surface
is hard to know due to many practical factors, a series
of computer simulations have been carried out to ver-
ify the effectiveness of the proposed algorithm. To
test its accuracy, we define the actual phase map
as F(x,y) = 0.1m(x*> + y* + 2y, the background as
A(x,y) = 150 exp[—0.2(x* + y?)], and the modulation
amplitude as B(x, y) = 100 exp[—0.1(x* + y?)], where
-1=x=1, -1 =y =1, and the total number of
pixels in the x and y directions both equal 128. By
changing the phase shift value d, and tilts %,,, k,,, a
set of four phase-shifted interferograms is obtained
as shown in Fig. 1. Let the predefined thresholds &
and &, both equal to 10 ™°, and then the phase is
extracted by the proposed iterative algorithm. Figure
2 shows the phases extracted by the algorithm of
Wang and Han and the proposed iterative algorithm
and their residual errors. It is evident that the pro-
posed iterative algorithm effectively reduces the wav-
iness existing in the iterative algorithm of Wang and

Chen's algorithm

Proposed algorithm

Residual errorPV (rad)

10
Number of iterations

(a)
Fig. 3.
errors.
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> Mxl

=0, and k,, = 0, the units for d,, are radians and the units for tilts

Han caused by tilt-shift errors. On the other hand,
the iterative results are shown in Table 1, including
phase-shift planes and residual phase errors [peak-
to-valley (PV) and rms values]. It shows that the
residual errors of the proposed algorithm increase
with increasing tilt-shift errors. Compared with the
algorithm of Wang and Han, our algorithm can cal-
culate the phase-shift planes and phase distribution
with higher accuracy. The residual errors of our al-
gorithm are less than 0.21 rad (PV) and 0.03 rad
(rms) even when the tilt error is up to 20% of the
nominal phase step (in case 4), which is much smaller
than that of the algorithm of Wang and Han (1.8546
and 0.1780 rad).

Obviously, our algorithm makes the iteration con-
verge faster than the algorithm of Wang and Han
because the tilt errors are compensated. To compare
with the algorithm of Chen et al., the common condi-
tions are met, including the same interferograms and
the same initial estimated phase-shift planes. After
15 iterations, the residual errors are recorded every
iteration and presented in Fig. 3. The curves show
that the proposed algorithm also converges much
faster than the algorithm of Chen et al.

Chen's algorithm

%

proposed algorithm

)

o

0
Number of iterations

(b)

(Color online) Relationship between residual errors and number of iterations: (a) PV of the residual errors, (b) rms of the residual



@
Fig. 4.

(k)

(Color online) Comparison among the phases extracted by Zygo’s software, the conventional four-frame algorithm, the

algorithm of Wang and Han, and the proposed algorithm. (a)-(d) Four randomly and spatially nonuniform phase-shifted interfero-
grams. (e)—(h) Phase map extracted by Zygo’s software, the conventional four-frame algorithm, the algorithm of Wang and Han, and
the proposed algorithm, respectively. (i)—(k) Residual errors of the conventional four-frame algorithm, the algorithm of Wang and Han,
and the proposed algorithm compared with Zygo’s software. (1) The difference in result between the algorithm of Wang and Han and

the proposed algorithm.

4. Experiments and Discussion

For further verification of the performance of the pro-
posed algorithm, we apply it to the practical inter-
ferograms presented in Figs. 4(a)-4(d), the phase
shifts of which are introduced by moving the PZT of
the test optical element rotating around an axis on
the test surface. Four randomly and spatially non-
uniform phase-shifted interferograms are recorded,
and the conventional four-frame algorithm [8], the
algorithm of Wang and Han, and the proposed algo-
rithm are used to extract the phase distribution, the
results of which are shown in Figs. 4(f)-4(h). On
the other hand, the test surface is also measured by
Zygo’s interferometer with a vibration-isolating plat-
form and a calibrated PZT, and the phase of the test
surface is extracted by Zygo’s software, the result of
which is shown in Fig. 4(e). Therefore, the differences
in the results between Zygo’s software and the other
algorithms are defined as their relative errors shown
in Figs. 4(i)—4(k). Furthermore, the difference in the
results between the algorithm of Wang and Han and

the proposed algorithm is also presented in Fig. 4(1).
The PV and rms of the phase extracted by all four
algorithms and the relative errors between them are
listed in Table 2. According to Fig. 4 and Table 2, the
following can be concluded: (1) The conventional four-
frame algorithm exhibits larger error and evident
waviness in the phase map because of the translation
and tilt-shift errors of the phase-shift plane shown in
Table 3. (2) The algorithm of Wang and Han calcu-
lates the phase-shifting amounts by a least-squares-
based iterative algorithm and thus deduces the error,
but there is visible waviness existing in the phase
map because of tilt-shift errors of the phase-shift
planes. (3) The proposed algorithm exhibits high pre-
cision with very weak waviness in the phase map by
compensating most of the translation and tilt-shift
errors and relative error between that and Zygo’s
MetroPro software mainly caused by the test envi-
ronment, such as temperature variety, air turbu-
lence, and so on. Table 3 also shows that the
maximum local phase shifts of interferomgrams

Table 2. PV and rms of the Phase Extracted by All Four Algorithms and Relative Errors between Them®

Errors  Fig. 4(e)  Fig. 4  Fig. 4(g)  Fig. 4  Fig. 40)  Fig. 4G)  Fig. 4k  Fig. 4@g-h)  Fig. 4Q)
PV 0.2455 0.2907 0.2679 0.2678 0.1107 0.0811 0.0650 0.0841 0.0550
rms 0.0444 0.0535 0.0515 0.0507 0.0963 0.0127 0.0102 0.0168 0.0081

“Units are radians.
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Table 3. Translation and Tilt Errors of the Phase-Shift Plane®

dlkxlkyl d2 d3 d4 kx2

kx3 kx4 k k

y3

k

v4

0 1.7906 2.8642 5.2429 —0.2910

v2
—0.5229 —0.8613 0.3352 0.4975 0.5854

“Units for d,, are radians and units for tilts %,,, and k,, are 2/X rad/pixel, where X = 256.

caused by tilt-shift errors are 0.6262, 1.0204, and
1.4467, which are 35.0%, 35.6%, and 27.6% of the
normal phase step, respectively.

5. Conclusion

To conclude, we have proposed a new generalized
iterative algorithm for extracting phase distribution
from randomly and spatially nonuniform phase-
shifted interferograms. The proposed algorithm
needs only four randomly phase-shifted (including
both translational and tilt-shift errors) interfero-
grams and gives an accurate phase map in which the
effects of transitional and tilt-shift errors are both
calculated and reduced. This is the reason why our
algorithm is advantageous over the conventional
four-frame algorithm and the algorithm of Wang and
Han. Simulated results and experiments demon-
strate the effectiveness of the proposed algorithm.
Simulations show that the proposed algorithm does
not require an accurate initial estimation of the
phase-shift plane and makes the iteration converge
faster than Chen’s algorithm. The proposed iterative
algorithm works well with a large-aperture inter-
ferometer shifting phase by PZT, especially for real-
time and dynamic measurements in an environment
with low frequency and high amplitude vibration.
With this method, costly and accurate phase-shifting
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devices are no longer required for steady-state mea-
surement.

We are grateful to D. Li for proofreading the paper.
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