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In this paper, a modified single-index signal regression (mSISR) method is proposed to construct a non-
linear and practical model with high-accuracy. The mSISR method defines the optimal penalty tuning
parameter in P-spline signal regression (PSR) as initial tuning parameter and chooses the number of
cycles based on minimizing root mean squared error of cross-validation (RMSECV). mSISR is superior
to single-index signal regression (SISR) in terms of accuracy, computation time and convergency. And
it can provide the character of the non-linearity between spectra and responses in a more precise manner
than SISR. Two spectra data sets from basic research experiments, including plant chlorophyll nonde-
structive measurement and human blood glucose noninvasive measurement, are employed to illustrate
the advantages of mSISR. The results indicate that the mSISR method (i) obtains the smooth and helpful
regression coefficient vector, (ii) explicitly exhibits the type and amount of the non-linearity, (iii) can take
advantage of nonlinear features of the signals to improve prediction performance and (iv) has distinct
adaptability for the complex spectra model by comparing with other calibration methods. It is validated
that mSISR is a promising nonlinear modeling strategy for multivariate calibration.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

It is well known that high-accuracy quantitative calibration is
beneficial to improve prediction accuracy in chemometrics [1].
Accordingly, quantitative calibration is a key point to extract ana-
lyte information by building a relationship of response variable
(property) and predictor variables (wavelength). Linear model such
as partial least squares (PLS) regression is often used in some re-
searches. Whereas it is known that non-linearity is an inherent
trait for systems, and linear model is inappropriate to describe
the underlying data structure with significant nonlinear character-
istics. For example, in the leaf chlorophyll nondestructive measure-
ment using Vis–NIR spectroscopy, differences in species, healthy
state, growing state and so on complicate the leaf spectrum and in-
duce additional mendacious and nonlinear factors; in the noninva-
sive measurement of human blood glucose with NIR spectroscopy,
the linear relationship based on Lambert–Beer Law is not tenable
due to many factors, such as the complexity of blood components,
the interaction between components, the distribution irregularity
of blood components because of macromolecules (protein, fats,
etc.), the effect of colored noise, baseline drift and so on [2–8].

Single-index signal regression (SISR) is a nonlinear method that
combines ideas of projection pursuit regression [9] with P-spline
signal regression (PSR) [10]. SISR is related to the problem of esti-
mating an explicit link function between linear prediction and re-
sponse in the spirit of single-index models. Like the vector of
calibration coefficients, the unknown link function is estimated
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using P-splines [11]. To exploit and explore an explicit nonlinear
effect is the added benefit provided using SISR. However, using a
large value of initial tuning parameter in SISR falls into a local min-
imum, and prediction performance is poor. And it is very difficult
to attain convergence for SISR. Additionally, SISR is time
consuming.

Correspondingly, a modified single-index signal regression
(mSISR) that defines the optimal penalty tuning parameter in the
method of PSR as initial tuning parameter and chooses the number
of cycles based on cross-validation is proposed in this paper. The
approach outperforms SISR in terms of precision and computa-
tional speed, and it can avoid the problem of being hard to con-
verge. Moreover, unlike ‘‘black box’’ approach, e.g. kernel partial
least squares (KPLS) [12,13], the approach explicitly and accurately
models the non-linearity, allowing us to learn something about its
features, while enhancing insight into the measurement process.
Two spectra data sets from basic research experiments, namely
plant chlorophyll nondestructive measurement and human blood
glucose noninvasive measurement, are adopted to evaluate the
performance of the proposed strategy. The regression coefficients
and prediction performance of the models constructed by different
methods are analyzed in this paper. And the adaptability of the
proposed method to the complex spectra model with many uncer-
tain factors is discussed. In this research, a feasible nonlinear mod-
el with optimal parameters is selected for multivariate calibration.

2. Method

Since P-spline signal regression and single-index signal regres-
sion are the basis for the proposed method, they are described be-
fore the proposed method in order to make the reader understand
the proposed method in depth.

2.1. P-spline signal regression (PSR)

Consider a standard regression approach:

EðyÞ ¼ Xm�pbp�1 ð1Þ

where y is the realization of the response, X is the spectra matrix
and b is the unknown regression coefficient vector. Typically the
number p of regressors far exceeds the number m of observations.

The goal of PSR is smoothness in b, and this is achieved through
dimension reduction by first projecting b onto a rich B-spline basis
using moderate number of equally spaced knots (n-dimensional,
n < p), i.e. bp�1 = Bp�nan�1. Some specifics of the B-spline basis see
Ref. [14]. The vector a is the unknown vector of basis coefficients
of modest dimension. Notice that Eq. (1) can be rewritten as:

EðyÞ ¼ Um�nan�1 ð2Þ

where U = XB. Then PSR further increases smoothness by imposing a
difference penalty on adjacent B-spline coefficients in the a vector
[10,15].

The penalized least-squares solution simplifies as [10,15]

PSRðU; y; k;d;nÞ ¼ â ¼ ðUT U þ kDT
dDdÞ

�1
UT y ð3Þ

where Dd is a (n–d) � n banded matrix of contrasts resulting from
differencing adjacent rows of the identity matrix (In) d times. The
order d of the difference penalty can moderate smoothing. The
non-negative tuning parameter k regularizes the penalty and can
be chosen through a logarithmic grid search.

PSR typically uses between 10 and 200 equally spaced cubic B-
splines. The order of the difference penalty can vary (d = 3 to 0). For
fixed d, increasing k makes a smoother and optimal k is searched
for systematically by monitoring cross-validation prediction error.
Results of these optima can be directly compared over the various
d = 0, 1, 2, 3. Given choice of d and k, then the p-dimensional
regression coefficient vector can be constructed, b̂ ¼ Bâ[11].
2.2. Single-index signal regression (SISR)

The SISR model has the form E(y) = f(Ua), where the function f(�)
is assumed to be smooth and is estimated from the data using P-
splines, having its own additional tuning parameter. SISR is extre-
mely flexible: even minor departures in f from the identity function
can lead to relatively dramatic changes in the estimated coefficient
vector, while significantly improving prediction. The model fitting
algorithm [11] is described below.

Firstly, SISR carries out a PSR with the response y on U, and the
basis coefficient estimates â can be calculated through a
PSRðU; y; k0; d1; n1Þ, where k0 is the initial tuning parameter, d1 is
the penalty order, and n1 is the number of B-splines.

Secondly, a cubic P-spline scatter smoother is employed to ob-
tain the estimation of function f, which driven by â. The penalty on
c ensures a smooth f; recall that c is the vector of B-spline coeffi-
cients with equally-spaced knots placed along estimated linear
predictor Uâ. For simplicity in notation, denote SðUâ; y; k2; d2;n2Þ
as the operation of fitting a cubic P-spline scatter smoother on
Uâ (the input variable) and y (the response) using the penalty tun-
ing parameter k2 and difference order d2 on the n2 equally-spaced
B-splines. Apparently, f and its derivative f0 can be estimated from
SðUâ; y; k2; d2;n2Þ .

Thirdly, the basis coefficient estimates â can be updated using a
first-order Taylor series approximation of the function f (about the
current estimate a0 for a), i.e., with fixed f, the optimal value for a
can be obtained through a PSRðU�; y�; k1; d1;n1Þ, where k1 is also the
penalty tuning parameter, y⁄ = y–f(Ua0) + diag{f0(Ua0)}Ua0 and
U⁄ = diag{f0(Ua0)}U.

To simultaneously estimate the final coefficient vector and non-
linear relationship, the estimation between f and a is iterative,
which is extremely tractable, essentially boiling down to repeated
alternate applications of PSR and P-spline smoothing on ‘‘working’’
responses and predictors. Eilers et al. [11] proposed to cycle back
and forth between PSR and P-spline smoothing until convergence
of â .
2.3. Modified single-index signal regression (mSISR)

For SISR, using a large value of k0 falls into a local minimum, and
prediction performance is poor. Additionally, it is computationally
intensive to try several different initial values of k0 to avoid the
solution falls into a local minimum. Therefore we propose to define
the optimal k in the method of PSR (see Section 2.1) as the initial
tuning parameter k0 in mSISR, which can avoid falling into a local
minimum, provide more chance for the algorithm to find the opti-
mal a and f, and as a consequence improve prediction performance
of quantitative calibration model.

On the other hand, it is very difficult to attain convergence of â
for SISR. Accordingly, the number of cycles in the mSISR method is
chosen based on minimizing root mean squared error of cross-val-
idation (RMSECV). This prevents underfitting and overfitting, so
the coefficient vector and the nonlinear function of linear predic-
tion can be accurately estimated and, furthermore, a reliable pre-
diction can be obtained.

Besides, the mSISR model is also driven by the non-negative
penalty regularization parameters k ¼ ðk1; k2Þ, which drive the con-
tinuous control over smoothness. Generally, we perform a two
dimensional linear grid search, where each element of ðk1; k2Þ is
varied on a logarithm scale. And the optimal values for ðk1; k2Þ
are determined by minimizing RMSECV. Since several model
parameters need to be determined by cross-validation, which is
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computationally intensive, for the sake of convenience, we use the
optimal n and d in the PSR method as n1 and d1, respectively.

In theory, the proposed strategy has four advantages for multi-
variate calibration: (i) a more practical calibration model can be
constructed, because the selection of model parameters requires
less computational time and the problem that it is very difficult
to attain convergence of â will not occur; (ii) under the B-spline
trick, a more parsimonious model can be got, because only a matrix
U of size m � n1 is employed through dimension reduction; (iii) the
prediction accuracy can be improved greatly, because an accurate
nonlinear relationship of response variable and wavelength vari-
ables are constructed for extracting the useful information suffi-
ciently; (iv) because f is estimated more precisely, the character
of the non-linearity between spectra and responses can be exhib-
ited in a more precise manner, which can give more insights into
the physical and chemical process underlying the measurements.
3. Experimental

3.1. Vis–NIR experiment of leaf chlorophyll nondestructive
measurement

Leaf biochemical parameter such as chlorophyll content can
provide valuable insight into the physiological performance of
plants. Epipremnum aureum was used as a representative plant be-
cause the thickness of different locations for the same leaf de-
creases gradually from leaf root to leaf apex. It is theorized that
the chlorophyll content is symmetrically distributed for the same
leaf. Six E. aureum leaves with different green and sapless levels
were selected. All of them were healthy and homogeneous in color
without anthocyanin pigmentation or visible symptoms of dam-
age. Spectra of six different locations per sample were measured,
and 36 sample spectra were obtained as predictor variables for
the response variable, i.e., chlorophyll content. So in this study,
only the nonlinear effect caused by thickness difference of the
same species is taken into account to avoid alternating influence.

An Ocean Optics (Dunedin, Florida) spectrometer and diffuse
reflectance sample accessories Y style fiber were used for spectra
measurement. The light source was a white light. A white panel
(Spectralon, Labsphere, North Sutton, New Hampshire) was used
as a 100% reflectance standard for all measurements. The parame-
ters of the spectrometer were as follows: spectrum scanning range,
350–1050 nm; number of pixels, 3648; integration time, 15 ms;
average time, 20 ms; width of smooth window, 3. The data were
stored in the form of reflectance. Due to the low spectral intensity
of the halogen lamp used below 450 nm and the resulting noise in
the measured spectra, only reflectance data above 450 nm were
considered.

To obtain reference values of chlorophyll content, each leaf was
cut into fragments and extracted with 80% aqueous solution with
acetone and then centrifuged. The absorption spectra of the ace-
tone extract were measured with the same spectrophotometer.
The concentration of chlorophyll was calculated based on the
absorbance measured at 646.6, 663.6, and 750 nm according to
the Porra formula [16].
3.2. NIR experiment of human blood glucose noninvasive
measurement

Body oral glucose tolerance test (OGTT) is a kind of glucose bur-
den adjustability test for diagnosis of diabetes in clinic. For the
healthy person, under this test, a varying scope of glucose concen-
tration can be obtained in a short period of time [17,18]. It can be
used as a special experiment method for getting a calibration mod-
el with a certain concentration variety, which gives a novel way for
the research of constructing calibration model in blood glucose
noninvasive measurement using NIR spectroscopy. Because of the
human individual difference, it is impossible to build a universal
prediction model by the current NIR spectroscopy technology for
blood glucose noninvasive measurement. But the personal knowl-
edge base is utilized usually. So in this paper, the experiment only
included one volunteer. All the modeling is aiming to this one. Of
course, the method can be repeated similarly for the other people.

NIR spectra were obtained by using Nicolet FTIR 6700 Spec-
trometer (Thermo scientific, America) with InGaAs 2.6 lm detec-
tor, CaF2 beam splitter and white light source. An integrating
sphere sampling accessory was used in this experiment. The One
Touch� Ultra�2 Blood Glucose Meter (LifeScan, Inc., America) was
used for getting reference values of blood glucose concentration.

Experiment procedure is described here. A healthy volunteer
had been fasted for 8 h before the experiment began. Then he
drank 100 mL solution with 75 g glucose within 5 min, and the
NIR diffuse reflection spectra were collected from the finger pulp.
At the time of sampling, the measurement position, measurement
pressure as well as the psychology of the volunteer kept invariable-
ness as far as possible. At meantime, the corresponding blood glu-
cose reference values were obtained by using One Touch� Ultra�2
Blood Glucose Meter. In the course of this experiment, the human
blood glucose concentration value increased gradually to the peak
value 217.8 mg dL�1, and then decreased. The experiment was over
when the concentration value was down to the normal level
84.6 mg dL�1. The whole time cost in this experiment was 3 h.

There are twenty-one samples got by this experiment. The
blood glucose concentration scope is 84.6–217.8 mg dL�1. The
spectra scan scope is 1000–2500 nm with 3112 variables.
3.3. Calculation and software

Because of the limit of experiment condition, such as glucose
concentration only changed in 3 h for OGTT experiment, pricking
the finger several times is painful and the position that can be
pricked is also a limited region, there are many variables and fewer
observations for these two data sets. So the root mean squared er-
ror of prediction (RMSEP) of cross-validation is employed as an
evaluation criterion for the predictive ability of calibration model.
All further calculations are performed with Matlab 7.6.0 (The
Mathworks, Inc., Natick, MA, USA). The convergence of â in SISR
cannot be obtained for these two data sets, so the SISR results
and comparisons to SISR have not been displayed in this paper.
4. Results

4.1. Model for Vis–NIR data of plant leaf samples

Fig. 1 presents the raw spectra of plant leaf samples. mSISR is
employed to construct a nonlinear model for the raw spectra
which is used as the regressor. The nonlinear response is obtained
by generating a linear response and a nonlinear function. The lin-
ear response is constructed using the raw spectra from the plant
leaf experiment and a linearly estimated coefficient vector. From
Section 2.3, this paper chooses the optimal model parameters (ex-
cept k0, d1 and n1) in mSISR based on minimizing RMSECV. The
coefficient vector is determined using standard PSR with 58
equally-spaced B-splines, a zero order difference penalty and a
tuning parameter 105 (initial value 105). The nonlinear function
is determined using 5 equally-spaced B-splines, a third order dif-
ference penalty and a tuning parameter 10�6. Note that 26 cycles
are needed in mSISR.

The unique contribution of mSISR, i.e. the explicit and accurate
estimation of the nonlinear link function, is highlighted. Since all



Fig. 1. Original spectra of plant leaf experiment.

Fig. 2. Estimated nonlinear function (solid line) for plant leaf experiment.

Fig. 3. Original spectra of OGTT experiment.

Fig. 4. Estimated nonlinear function (solid line) for OGTT experiment.
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nonlinear functions generated during the cross-validation cannot
be listed one by one due to limitations of space, without loss of
generality, a nonlinear function f estimated using all leaf data
and optimal model parameters is displayed. Fig. 2 shows f, pointing
towards saturation, relative to the dashed identity line. The result
suggests two quite sharp bends near ten and thirty in an otherwise
quite smooth function for leaf chlorophyll. We expect that mSISR
can capture explicit and accurate nonlinearity caused by thickness
difference through the estimation of nonlinear function, while
have a smaller RMSEP than other counterparts.

In order to estimate effectiveness of quantitative calibration
models for leaf chlorophyll content nondestructive measurement
using Vis–NIR spectroscopy, different strategies, PLS, KPLS using
Gaussian kernel and PSR are introduced to compare with mSISR.
The model parameters and prediction results are given in Table 1
for this experiment.
Table 1
Comparison between different calibration methods for the Vis–NIR data of plant leaf sam

Method h r k0 k d n

PLS 5 � � � � �
KPLS 9 350 � � � �
PSR � � � 105 0 58
mSISR � � 105 (105, 10�6) (0, 3) (58, 5)
4.2. Model for NIR data of human OGTT samples

In this part, the raw spectra of human OGTT samples are pre-
sented in Fig. 3. The raw spectra are employed to construct a non-
linear mSISR model. Similarly, RMSECV is used for optimization of
model parameters (except k0, d1 and n1) in mSISR. The approach
takes 27 equally-spaced B-splines, a third order difference penalty
and a tuning parameter 10�6 (initial value 0.01) for the spectra
coefficient vector. To estimate the nonlinear function, 5 equally-
spaced B-splines are used with a third order difference penalty
and a tuning parameter 0.01. And only fourteen cycles are needed
in mSISR. A nonlinear function f is constructed using all human
OGTT data and optimal model parameters. The estimated link
function f, as shown in Fig. 4, is clearly monotonically increasing
and exhibits the recovery of some of the true underlying nonlinear
response features. Similar to Vis–NIR experiment of plant leaf,
Table 2 gives the model parameters and prediction results of
different calibration methods for the OGTT data set.
ples.

Number of cycles RMSEP (mg dL�1) Correlation coefficient

� 3.8 0.948
� 2.9 0.974
� 3.6 0.958
26 2.3 0.984



Table 2
Comparison between different calibration methods for the NIR data of human OGTT samples.

Method h r k0 k d n Number of cycles RMSEP ( mg dL�1) Correlation coefficient

PLS 8 � � � � � � 22.5 0.861
KPLS 11 4 � 105 � � � � � 21.9 0.864
PSR � � � 0.01 3 27 � 14.6 0.941
mSISR � � 0.01 (10�6, 0.01) (3, 3) (27, 5) 14 11.1 0.967

Fig. 5. Regression coefficient curves for the Vis–NIR data of leaf samples obtained
by (a) PLS and (b) mSISR.

Fig. 6. Regression coefficient curves for the NIR data of human OGTT samples
obtained by (a) PLS and (b) mSISR.
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5. Discussion

5.1. Model regression coefficient comparison and analysis

The regression coefficient is an important parameter of any cal-
ibration model. It is generated in the calibration process and is
used to predict the composition of the sample. A discussion about
regression coefficient curve of the model is necessary. The regres-
sion coefficient curve, with weak noise and obvious valleys and
peaks, is helpful not only for the interpretation of model, but also
for the improvement of prediction accuracy, because the tested
composition of sample suffers little interference. As a result,
smooth regression coefficients make more sense and have advan-
tages over extremely erratic coefficients. Constructing the model
based on the smooth regression coefficient curve with weak noise
and obvious valleys and peaks is very beneficial, and can improve
the predictive accuracy of model; the extremely erratic regression
coefficient curve with high noise and unconspicuous valleys and
peaks is adverse to the construction of high-accuracy model.
Like f, regression coefficients are estimated using all experimen-
tal data and optimal model parameters. The regression coefficient
curves of PLS and mSISR models for the leaf data are shown in
Fig. 5. It can be seen that the regression coefficient curve of PLS
has some noise. However, the regression coefficient curve of mSISR
is smooth without noise and the valley and peak positions are
obvious. This is mainly because mSISR automatically builds in
smooth structure associated with the coefficient index, by virtue
that a linear combination of smooth B-splines produces a smooth
curve, and smoothness is further increased by using a difference
penalty and a penalty tuning parameter; besides, the estimation
of nonlinear function and the choice for initial tuning parameter
and number of cycles in mSISR can lead to a more precise estima-
tion of coefficient vector. The smooth coefficients of mSISR method
have advantages over the PLS coefficients for Vis–NIR experiment
of plant leaf, which is consistent with the prediction results found
in Table 1.

Fig. 6 displays the regression coefficient curves of PLS and
mSISR models for the OGTT data. From this figure, it is observed



Fig. 7. Prediction vs. reference values for the Vis–NIR data of leaf samples obtained by (a) PLS, (b) KPLS, (c) PSR and (d) mSISR. The solid lines correspond to the ideal, unity
correlation between prediction and reference contents.
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that the regression coefficient curve of PLS has very high noise and
some non-smooth behavior (kinks, jumps, or narrow peaks), fur-
thermore, the peak and valley positions of the curve are concealed.
The general feature of Fig. 6a is that the PLS coefficients are extre-
mely erratic along the indexing domain. Calibration with mSISR
has a smooth and noiseless regression coefficient curve, and the
peak and valley regions could be divided obviously. Consequently,
the predictive accuracy of human blood glucose noninvasive mea-
surement using NIR spectroscopy can be further improved, which
is also consistent with the corresponding increase in RMSEP of
22.5 (PLS) compared to 11.1 (mSISR).

5.2. Model prediction capability comparison and analysis

The main objective of this article is to investigate whether the
model constructed using the mSISR method can be used in the ac-
tual measurement. We focus on a prediction performance study
that directly compares the mSISR model to the linear PLS and
PSR models and to the nonlinear KPLS model using Gaussian
kernel.

A good calibration model needs a relatively bigger correlation
coefficient and a smaller RMSEP. As shown in Table 1, calibration
with mSISR for the leaf data set obtains the best results, i.e., the
lowest RMSEP and the highest correlation. Under the nonlinear
modeling strategy of mSISR, the RMSEP is 2.3 lg cm�2, which is de-
creased 39% of one with PLS, 21% of one with KPLS using Gaussian
kernel and 36% of one with PSR. The differences between the
RMSEPs turn out to be pronounced. Fig. 7 shows prediction vs. ref-
erence values for all the samples in the Vis–NIR data set of plant
leaf. It is clearly visible from Fig. 7 that predictions made with
mSISR are more precise as with other methods. mSISR obtains an
overall good agreement between estimated and true contents.
The reasons are as follows: the choice for initial tuning parameter
k0 avoids falling into a local minimum, so the better a and f can be
obtained; the number of cycles and the optimal values for k1, k2, d2,
n2 can be determined by RMSECV, which prevents overfitting or
underfitting, and as a consequence helps in estimating a and f
accurately; a is further regularized by accounting for the nonlinear
effect caused by thickness difference, yielding stronger prediction
results with reasonable parameters; the smooth regression coeffi-
cient vector b is meaningful and beneficial to the chlorophyll con-
tent information extraction, so the prediction performance of
calibration model can be improved.

Table 2 illustrates that for the OGTT data set, the best prediction
accuracy is still obtained by the nonlinear mSISR method, and the
RMSEP is decreased 51% of one with PLS, 49% of one with KPLS
using Gaussian kernel and 24% of one with PSR. The correlation
coefficient between prediction and reference values is very distinct
for different calibration methods, and the calibration with mSISR
still has the best correlation. Under different calibration strategies,
the reference values and the prediction values of glucose concen-
tration are also shown in Fig. 8 for human OGTT experiment. From
Fig. 8, it is observed that the prediction made with mSISR obviously
outperforms the other methods. It can be concluded that when a



Fig. 8. Prediction vs. reference values for the NIR data of human OGTT samples obtained by (a) PLS, (b) KPLS, (c) PSR and (d) mSISR. The solid lines correspond to the ideal,
unity correlation between prediction and reference concentrations.
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non-linearity is present in the data, the mSISR algorithm is able to
reliably extract the relevant information and successfully identify
the underlying f and b, furthermore, excellent predictions of f
and b translate into the excellent prediction of glucose
concentration.

For Vis–NIR experiment of plant leaf, the RMSEP of PLS model
amounts to a relative gain of about 24% in comparison with that
of KPLS model based on Gaussian kernel; for the complex NIR data
of human noninvasive measurement experiment, the RMSEP of
KPLS model based on Gaussian kernel is decreased slightly by 3%
compared with PLS. However, the RMSEP of mSISR is substantially
lower than that of PLS obtained for these two data sets. From this
point of view, it is implied that mSISR has better robustness than
its nonlinear competitor KPLS, especially when employed to the
complex spectra data. It is encouraged that mSISR can be used as
a powerful tool for establishing a complex spectra model with good
robustness.

5.3. Adaptability discussion for complex spectra model

The spectra model of human blood glucose noninvasive mea-
surement is more complex than the spectra model of plant chloro-
phyll nondestructive measurement. The complexity is mainly from
two aspects: on the one hand, the sample components in human
OGTT experiment are more complex than those in plant leaf exper-
iment; on the other hand, the spectra model obtained by plant leaf
experiment is steady comparatively because components in the
leaf sample are invariable, but the spectra model of human blood
glucose measurement can be affected by many factors, such as
measurement position, measurement time, measurement pressure
and human physiological state, which are strongly uncertain and
cannot be estimated [1]. The adaptability to complex spectra mod-
el is a very important part. It is an appraisement item for the mul-
tivariate calibration method. The prediction results of different
calibration methods for the two spectra data indicate that:

(i) Under the method of mSISR, it can be seen that the RMSEP is
decreased 39% from 3.8 to 2.3 lg cm�2 for the experimental
data of plant leaf; and the RMSEP is decreased 51% from 22.5
to 11.1 mg dL�1 for the experimental data of OGTT. It is val-
idated that this method is adapted to the complex OGTT
spectra model, in which the improvement of prediction
accuracy of human blood glucose noninvasive measurement
is better than that of plant leaf experiment.

(ii) For the spectra data with certain element like as leaf samples
experiment, the RMSEP of KPLS model based on Gaussian
kernel is decreased compared with PLS. Whereas the predic-
tion performance of KPLS model using Gaussian kernel is
close to that of PLS model for the complex spectra of blood
glucose noninvasive measurement. These results demon-
strate that the prediction by using KPLS is worse for complex
spectra data. Conversely, the best prediction accuracy is got by
using mSISR for these two spectra data, and the predictions
of mSISR are both by far superior to those of PLS. Accord-
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ingly, comparing mSISR with its nonlinear competitor KPLS
gives a clear outcome: mSISR also has better adaptability
to complex spectra model. In this regard, mSISR is a better
alternative for multivariate calibration.

(iii) Under different calibration strategies, the correlations for
different spectra data sets are calculated respectively. It is
clear that, for the spectra model of plant leaf, the correlation
coefficients of different calibration methods are about 0.97,
which means that different modeling strategies utilized for
this experimental spectra model all have very similar corre-
lation. However, for the more complex spectra model, which
is obtained by OGTT experiment, the correlation is very dif-
ferent for different calibration methods, and calibration with
the mSISR method has the best correlation. These phenom-
ena provide convincing evidence that the mSISR method
has distinct adaptability and robustness to the complex
spectra model, which has a very important application
meaning for multivariate calibration.

6. Conclusion

A modified single-index signal regression is proposed in this pa-
per for nonlinear modeling. We have shown how to estimate non-
linear relationship in multivariate calibration with mSISR, by the
appropriate selection of model parameters. The basic appeal of
mSISR is its simplicity. mSISR is straight-forward to use: it uses
the entire (‘‘raw’’) signal and works without any data preprocess-
ing. It is superior to SISR in terms of accuracy, computation time
and convergency. Besides, it picks up the type and amount of the
non-linearity in a more precise manner compared with SISR. mSISR
quantification is successfully applied to two experimental spectra
data sets for analysis of biochemical parameter. We stress that
our mSISR approach is not only a competitor, but has some clear
advantages: since it can capture the smooth and accurate nonlin-
ear function and regression coefficient information, for these two
data sets it performs much better than PLS, KPLS using Gaussian
kernel and PSR in terms of precision; the nonlinearity between
spectra and responses is clearly estimated with a smooth function,
and the explicit estimation of nonlinearity can provide some in-
sights into the physical and chemical process underlying the mea-
surements, which we view as a contribution over ‘‘black box’’
approaches; it has better adaptability for complex spectra model,
which possesses potential capability to multivariate calibration.
It is expected that the optimal prediction accuracy can be obtained
when the most informative wavelength bands, the fitting pretreat-
ment method and the mSISR calibration are all used in the study.
Therefore mSISR is a promising method. The excellent performance
by mSISR for biochemical parameter determination can be ex-
panded and more stable for future practical applications.
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