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This paper is concerned with minimal norm least squares solution to general linear matrix equations
including the well-known Lyapunov matrix equation and Sylvester matrix equation as special cases. Two
iterative algorithms are proposed to solve this problem. The first method is based on the gradient search
principle for solving optimization problem and the second one can be regarded as its dual form. For
both algorithms, necessary and sufficient conditions guaranteeing the convergence of the algorithms are
presented. The optimal step sizes such that the convergence rates of the algorithms are maximized are
established in terms of the singular values of some coefficient matrix. It is believed that the proposed
methods can perform important functions in many analysis and design problems in systems theory.

Keywords: minimal norm least squares solution; iterative solutions; linear matrix equations; Lyapunov
matrix equations; Sylvester matrix equations
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1. Introduction

The general linear matrix equation in the form of

A1XB1 + A2XB2 + · · · + ArXBr = C, (1)

including the well-known Lyapunov matrix equation and Sylvester matrix equation as special
cases, plays an important role in control system theory [2,4,14–16,23]. For example, solutions
to the Sylvester matrix equation AX − XB = C, where A, B, and C are known, can be used to
parameterize the feedback gains in pole assignment problem for linear systems [2].A more general
case, AX − EXF = C, can also be used to achieve pole assignment, robust pole assignment, and
observer design for descriptor linear systems [5,6,20,26]. Due to their wide applications, over the
past several decades, the problem of searching for both analytical and numerical solutions to the
Lyapunov and Sylvester matrix equations has been well investigated in the literature. For sample
examples, see [1,7,8,10,22,24–26].

On the other hand, if solution to the linear matrix equation (1) is not unique or does not exist,
only least squares and/or minimal norm solutions can be found. In fact, the minimal norm least
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squares solution to linear matrix equations has many applications in control system theory, for
example, model reduction and system identification [8,18]. However, few results are available in
the literature to deal with this problem. Only some special cases of Equation (1) are considered by
some investigators. For instance, Ding et al. constructed an iterative algorithm to obtain the min-
imal norm least squares solution to the linear matrix equation AX = C by using the hierarchical
identification principle [7,8].

The linear matrix equation (1) can be converted to the simple vector form

ϒx = c, (2)

by using the Kronecker product [3] and then solved by some methods that can be applied on
Equation (2) (for example [9,11,12,17]). However, such transformation is not recommended in
practice for the reason that the dimensions of the associated coefficient matrix ϒ are very high
when the dimensions of Ai and Bi are large, which leads to computational difficulties as excessive
computer memory is required to compute the inversion of a matrix of high dimensions. See [3,7] for
detailed analysis. Moreover, when finding minimal norm least squares solutions to Equation (2)
by using the methods mentioned in the above references, an augmentation on Equation (2) is
generally required [18].

In this paper, we consider the problem of finding the minimal norm least squares solution to
the linear matrix equation (1). Especially, we are interested in using the iterative algorithm to
approximate the exact minimal norm least squares solution to such linear matrix equation. Using
iteration to approximate exact solution to equations (linear or nonlinear) is popular in the literature
(see, for example, [8,19,21] and the monograph [13]). In this paper, we present two methods. Our
first method dealing with the case that ϒ (see Equation (2) or (7) defined later) is of full column
rank is based on the gradient search principle for solving optimization problem, as the gradient
of the objective function defined in this paper is easy to compute. The second method dealing
with the case that ϒ is of full row rank can be regarded as the dual form of the first one. For both
cases, we have analysed the convergence properties of the iterations, which allow one to obtain
necessary and sufficient conditions. Furthermore, we have provided the optimal step size such that
the convergence rate of the iteration, which is properly defined in this paper, is maximized. Both
of these two methods are also able to produce the unique solution to the matrix equation (1) if ϒ is
non-singular which implies that our results are generalizations of those given in [28]. Numerical
examples show that the proposed algorithms are very effective. It is believed that the proposed
method can perform important functions in many analysis and design problems in systems theory.

The remainder of this paper is organized as follows. In Section 2, we give the problem for-
mulation and some necessary preliminary results. Especially, the convergence rate of a general
linear iteration is defined. In Section 3, we present two iterative algorithms to produce iterative
minimal norm least squares solution to the linear matrix equation (1). Convergence properties are
studied and the optimal step sizes such that the convergence rates of the iterations are maximized
are presented. Examples are given in Section 4 to illustrate the effectiveness of the proposed
algorithms. Section 5 concludes the paper.

Notations. Throughout this paper, we use tr(A), ρ(A), AT, rank(A), σmax(A), and σmin(A) to
denote the trace, the spectral radius, the transpose, the rank, the maximal singular value, and
the minimal singular value of matrix A, respectively. The notation ‖A‖F and ‖A‖2 refer to the
Frobenius norm and 2-norm of the matrix A and 1m×n refers to a matrix whose elements are 1.
The Kronecker product of two matrices A and B are denoted by A ⊗ B. The stretching function
vec(A) where A = [a1 a2 · · · am] is defined as vec(A) = [aT

1 aT
2 · · · aT

m]T. Moreover, we
use cond(A) to denote the condition number of a full row and/or column rank matrix A, i.e.,
cond(A) = σmax(A)/σmin(A).
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2554 Z.-Y. Li and Y. Wang

2. Problem formulation and preliminaries

Consider a general linear matrix equation

A1XB1 + A2XB2 + · · · + ArXBr = C, (3)

where Ai ∈ R
p×m, Bi ∈ R

n×q, i = 1, 2, . . . , r, are known matrices and X ∈ R
m×n is a matrix to

be determined. The problem studied in this paper is stated as follows.

Problem 1 Let

a = min
X∈Rm×n

{∥∥∥∥∥
r∑

i=1

AiXBi − C

∥∥∥∥∥
F

}
.

Find a matrix X ∈ R
m×n such that ‖X‖F is minimized and∥∥∥∥∥

r∑
i=1

AiXBi − C

∥∥∥∥∥
F

= a. (4)

Note that for arbitrary X ∈ R
m×n,

‖X‖F = ‖vec(X)‖F = ‖vec(X)‖2. (5)

Let

f (X) = ‖
r∑

i=1

AiXBi − C‖F.

Then by using the Kronecker product and the following well-known formulation [3]

vec(AXB) = (BT ⊗ A)vec(X), (6)

the function f (X) can be converted to

f (X) = ‖ϒvec(X) − vec(C)‖F

= ‖ϒvec(X) − vec(C)‖2,

where ϒ is defined as

ϒ =
r∑

i=1

(BT
i ⊗ Ai) ∈ R

pq×mn. (7)

Therefore, Problem 1 can be transformed into the following equivalent problem.

Problem 2 Let

b = min
x∈Rmn

{f̃ (x)}
= min

x∈Rmn
{‖ϒx − vec(C)‖2}.

Find a vector x ∈ R
mn such that ‖x‖2 is minimized and

‖ϒx − vec(C)‖2 = b.
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Recall that for arbitrary matrix P ∈ R
m×n, the Moore–Penrose inverse of P is a matrix X

satisfying the following four equations

PXP = P, XPX = X, (PX)T = PX, (XP )T = XP.

Denote P + = X. It is known that P + is unique and moreover,

P + =
{

(P TP)−1P T, P is of full column rank,

P T(PP T)−1, P is of full row rank.
(8)

Then regarding solution to Problem 2, we have the following well-known result.

Lemma 1 ([18]) The unique solution x∗ to Problem 2 is given by

x∗ = ϒ+vec(C),

where ϒ+ is the Moore–Penrose inverse of matrix ϒ.

In view of (8), we have the following corollary of Lemma 1.

Corollary 1 The following two statements hold.

(1) If ϒ is of full column rank, then the unique solution to Problem 2 is given by

x∗ = (ϒTϒ)−1ϒTvec(C). (9)

(2) If ϒ is of full row rank, then the unique solution to Problem 2 is given by

x∗ = ϒT(ϒϒT)−1vec(C). (10)

We next consider the convergence rate of a general linear iteration

X(k) =
p∑

i=1

AiX(k − 1)Bi + C, X(k) ∈ R
m×n, (11)

where Ai and Bi , i = 1, 2, . . . , p, are constant matrices with appropriate dimensions. By means
of the Kronecker product, Iteration (11) can be written as the following vector form

vec(X(k)) = �vec(X(k − 1)) + vec(C), � =
p∑

i=1

(BT
i ⊗ Ai ) ∈ R

mn×mn. (12)

It is well known that Iteration (12) converges for arbitrary initial condition if and only if ρ(�) < 1
[3,13,17]. Moreover, the smaller the ρ(�), the faster the iteration converges. For this reason, the
number − log(ρ(�)) is usually used to denote the convergence rate of Iteration (12) [13]. For
clarity, we first give the following definition of convergence rate for Iteration (11) (or 12).

Definition 1 Assume that Iteration (11) converges to the unique matrix X∞ for arbitrary initial
condition X(0). The α-convergence rate for Iteration (11) is a scalar γ = − log β with 0 < β < 1
such that

‖X(k) − X∞‖α ≤ κβk‖X(0) − X∞‖α, k ≥ 0, (13)

and there exists at least one X(0) 	= X∞ such that ‘=’ hold in Equation (13). In Equation (13),
κ is a positive scalar independent of k and β, and α denotes a suitable matrix norm (e.g., α = 2
or α = F).
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2556 Z.-Y. Li and Y. Wang

Our next lemma shows that − log(ρ(�)) can indeed be used to denote the F-convergence rate
of iteration (11) in the sense of Definition 1 in a special case.

Lemma 2 Assume that � ∈ R
mn×mn is a real symmetric matrix with ρ(�) < 1. Then the

F-convergence rate of Iteration (11) in the sense of Definition 1 is − log(ρ(�)). Moreover, let
limk→∞ X(k) = X∞, then for arbitrary initial condition X(0), there holds

‖X(k) − X∞‖F ≤ ρk(�)‖X(0) − X∞‖F. (14)

The proof of the above lemma is given in Appendix A.1. We further give another technical
lemma that will be used later. The proof is simple and thus omitted.

Lemma 3 Assume that mi, i = 1, 2, . . . , n, are some given positive scalars. Denote mmax =
max1≤i≤n{mi} and mmin = min1≤i≤n{mi}. Then

min
0<u<(2/mmax)

max
1≤i≤n

{|1 − umi |} = mmax − mmin

mmax + mmin
. (15)

Moreover, the unique uopt such that the above relation holds is

uopt = 2

mmax + mmin
.

3. Main results

3.1 Iterative solution to Problem 1: ϒ is of full column rank

Denote a new objective function

J (X) = 1

2

∥∥∥∥∥
r∑

i=1

AiXBi − C

∥∥∥∥∥
2

F

.

Note that J (X) = f 2(X). Therefore, f (X) is minimized if and only if J (X) is minimized. The
idea of our method is to use the gradient search method to find the optimal solution such that
J (X) is minimized. This can be done because of the fact that the gradient of the objective function
J (X) is easy to compute. The result is given as follows and the proof is provided in Appendix
A.2.

Lemma 4 The gradient (∂/∂X)J (X) is given by

∂J (X)

∂X
=

r∑
i=1

AT
i

⎛⎝ r∑
j=1

AjXBj − C

⎞⎠ BT
i .

Therefore, the gradient-based iterative algorithm can be constructed as follows

X(k) = X(k − 1) − μ

r∑
i=1

AT
i

⎛⎝ r∑
j=1

AjX(k − 1)Bj − C

⎞⎠ BT
i , (16)

where μ is the step size specified later.
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Theorem 1 Assume that ϒ is of full column rank. Let X∗ be the unique solution to Problem 1.

(1) Iteration (16) converges to a constant matrix X∞ for arbitrary initial condition X(0) if and
only if

0 < μ <
2

σ 2
max(ϒ)

. (17)

Furthermore, if Equation (17) is satisfied, then the minimal norm least squares solution
X∗ = X∞.

(2) For arbitrary μ satisfying Equation (17), the F-convergence rate of Iteration (16) in the sense
of Definition 1 is given by

γ = − log(ρ(I − μϒTϒ)).

Moreover, there holds

‖X(k) − X∗‖F ≤ ρk(I − μϒTϒ)‖X(0) − X∗‖F. (18)

(3) The F-convergence rate of Iteration (16) is maximized when

μ = μopt = 2

σ 2
max(ϒ) + σ 2

min(ϒ)
. (19)

In this case, the maximal F-convergence rate is given by

γopt = − log

(
cond2(ϒ) − 1

cond2(ϒ) + 1

)
. (20)

Proof (1) It follows from Equation (16) that

X(k) = X(k − 1) − μ

r∑
i=1

r∑
j=1

AT
i AjX(k − 1)BjB

T
i − μ

r∑
i=1

AT
i CBT

i . (21)

Taking vec on both sides of Equation (21) and using Equation (6), we get

vec(X(k)) = �vec(X(k − 1)) + μϒTvec(C), (22)

where

� = I − μ

r∑
i=1

r∑
j=1

(BiB
T
j ⊗ AT

i Aj )

= I − μ

r∑
i=1

r∑
j=1

(Bi ⊗ AT
i )(BT

j ⊗ Aj)

= I − μ

r∑
i=1

(Bi ⊗ AT
i )

r∑
j=1

(BT
j ⊗ Aj)

= I − μϒTϒ. (23)

Therefore, Iteration (16) converges to a finite matrix X∞ for arbitrary initial condition X(0) if
and only if � is Schur stable, i.e., ρ(I − μϒTϒ) < 1. We note that I − μϒTϒ is a symmetric
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2558 Z.-Y. Li and Y. Wang

matrix and ϒ is of full column rank. Then

ρ(I − μϒTϒ) = max
1≤i≤mn

{|1 − μσ 2
i (ϒ)|}.

Accordingly, ρ(I − μϒTϒ) < 1 if and only if |1 − μσ 2
i (ϒ)| < 1 which is equivalent to

Equation (17). Now let Iteration (16) converge to X∞ as k approaches to infinity, i.e.,
limk→∞ X(k) = X∞. Then it follows from Equation (22) that

vec(X∞) = (I − μϒTϒ)vec(X∞) + μϒTvec(C), (24)

which in turn implies

vec(X∞) = (ϒTϒ)−1ϒTvec(C).

Therefore, it follows from Corollary 1 that vec(X∞) is the solution to Problem 2. Hence, X∞ is
the solution to Problem 1.

(2). Notice that Iterations (21) and (22) are, respectively, in the form of Equations (11) and
(12). Moreover, the matrix � = I − μϒTϒ is real symmetric. Then the F-convergence rate of
Iteration (16) is − log(ρ(I − μϒTϒ)) in accordance with Lemma 2. As a result, Inequality (18)
follows directly from Inequality (13).

(3). According to the above item, the F-convergence rate of Iteration (16) is maximized if and
only if − log(ρ(I − μϒTϒ)) is maximized, or equivalently, ρ(I − μϒTϒ) is minimized. By
definition,

min
0<μ< 2

σ2
max(ϒ)

ρ(I − μϒTϒ) = min
0<μ< 2

σ2
max(ϒ)

max
1≤i≤mn

{|1 − μσ 2
i (ϒ)|}. (25)

We notice that Equation (25) is in the form of Equation (15). Therefore, according to Lemma 3,
ρ(I − μϒTϒ) is minimized if μ is chosen as in Equation (19). Moreover,

ρ(I − μoptϒ
Tϒ) = σ 2

max(ϒ) − σ 2
min(ϒ)

σ 2
max(ϒ) + σ 2

min(ϒ)

= cond2(ϒ) − 1

cond2(ϒ) + 1
, (26)

which implies Equation (20). At last, we show that μ = μopt satisfies Condition (17). Since ϒ is
of full column rank, we have σmin(ϒ) 	= 0, that is μopt < μmax. This proves Theorem 1. �

The following corollary can be immediately obtained from Theorem 1.

Corollary 2 Consider the following linear matrix equation

AX = B. (27)

If A is a non-square p × m full column rank matrix, then the iteration

X(k) = X(k − 1) + μAT(B − AX) (28)

converges to the minimal norm least squares solution X∗ = (ATA)−1ATB to the linear matrix
equation (27) for arbitrary initial condition X(0) if and only if

0 < μ <
2

σ 2
max(A)

.

Moreover, if μ = 2/σ 2
max(A) + σ 2

min(A), then the F-convergence rate of Iteration (28) is
maximized.

D
ow

nl
oa

de
d 

by
 [

T
he

 U
ni

ve
rs

ity
 o

f 
M

an
ch

es
te

r 
L

ib
ra

ry
] 

at
 1

4:
46

 0
8 

O
ct

ob
er

 2
01

4 



International Journal of Computer Mathematics 2559

Remark 1 Under the condition of Corollary 2, the following iteration

X(k) = X(k − 1) + μ(ATA)−1AT(B − AX), 0 < μ < 2, (29)

is used in [8] to obtain the minimal norm least squares solution X∗ to the linear matrix
equation (27). Note that matrix inversion is required in Equation (29) which may lead to numerical
problems. In fact, if (ATA)−1AT has been computed, we need not to use the iteration (29) but the
formulation X∗ = (ATA)−1ATB to compute the minimal norm least squares solution X∗ directly.

Remark 2 We see from Theorem 1 that the algorithm converges exponentially and depends on
the number ρ(I − μϒTϒ). Though Item 3 of Theorem 1 provides a method to select the optimal
value μ such that the convergence of the algorithm is maximized, the convergence is generally fast
(Example 2 in this paper) and sometimes can be rather slow (Example 1 in this paper). Our further
study should focus on improving the convergence performances in general case. A possible way
is to use the pre-conditioned technique [3].

To apply Theorem 1, we need to compute the singular value of matrix ϒ which is difficult in
practice. To overcome this shortcoming, by using the method in [28], we can provide the following
corollary.

Corollary 3 Algorithm (16) converges to the unique solution to Problem 1 provided

0 < μ <
2

r
∑r

i=1 σ 2
max(Ai)σ 2

max(Bi)
. (30)

Proof By using the norm inequality ‖A + B‖2 ≤ ‖A‖2 + ‖B‖2, we obtain

σ 2
max(ϒ) =

∥∥∥∥∥
r∑

k=1

(BT
k ⊗ Ak)

∥∥∥∥∥
2

2

≤
(

r∑
k=1

‖BT
k ⊗ Ak‖2

)2

. (31)

It is easy to verify that

‖A ⊗ B‖2 = σmax(A ⊗ B)

= σmax(A)σmax(B).

By using this fact and the Hölder inequality(
r∑

i=1

ai

)2

≤ r

r∑
i=1

a2
i ,

Inequality (31) can be simplified as

σ 2
max(ϒ) ≤

(
r∑

i=1

(σmax(Ai)σmax(B
T
i ))

)2

≤ r

r∑
i=1

σ 2
max(Ai)σ

2
max(B

T
i ).
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2560 Z.-Y. Li and Y. Wang

Then we have

2

σ 2
max(ϒ)

≥ 2

r
∑r

i=1 σ 2
max(Ai)σ 2

max(B
T
i )

.

The proof is completed by using Theorem 1. �

3.2 Iterative solution to Problem 1: ϒ is of full row rank

We next consider the case that ϒ is of full row rank. In this case, Iteration (16) fails to converge
as ρ(I − μϒTϒ) ≥ 1 no mater what μ is. Alternatively, we present another iterative algorithm
to solve Problem 1.

Construct the following iteration

Y (k) = Y (k − 1) − μ

r∑
i=1

Ai

⎛⎝ r∑
j=1

AT
j Y (k − 1)BT

j

⎞⎠ Bi + μC, (32)

with initial condition Y (0) and step size μ which is to be determined later. Iteration (32) can be
regarded as the dual form of Iteration (16).

Theorem 2 Assume that ϒ is of full row rank. Let X∗ be the unique solution to Problem 1.

(1) Iteration (32) converges to a finite matrix Y∞ for arbitrary initial condition if and only if

0 < μ <
2

σ 2
max(ϒ)

. (33)

Furthermore, if Equation (33) is satisfied and limk→∞ Y (k) = Y∞, then

X∗ =
r∑

i=1

AT
i Y∞BT

i . (34)

(2) For arbitrary μ satisfying Equation (33), the F-convergence rate of Iteration (32) is given by

γ = − log(ρ(I − μϒϒT)).

Moreover, there holds

‖Y (k) − Y∞‖F ≤ ρk(I − μϒϒT)‖Y (0) − Y∞‖F.

(3) The F-convergence rate of Iteration (32) is maximized when μ = μopt which is given by
Equation (19). In this case, the maximal F-convergence rate of Iteration (32) is given by
Equation (20).
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Proof Proof of Item 1. Taking vec on both sides of Equation (32) gives

vec(Y (k)) = vec(Y (k − 1)) − μ�vec(Y (k − 1)) + μvec(C), (35)

where

� =
r∑

i=1

r∑
j=1

BT
i Bj ⊗ AiA

T
j

=
r∑

i=1

r∑
j=1

(BT
i ⊗ Ai)(Bj ⊗ AT

j )

= ϒϒT.

Then Iteration (35) can be simplified as

vec(Y (k)) = (I − μϒϒT)vec(Y (k − 1)) + μvec(C). (36)

Therefore, limk→∞ Y (k) = Y∞ for arbitrary initial condition Y (0) if and only if ρ(I − μϒϒT) < 1
which is equivalent to Equation (33).

Taking limit on both sides of Equation (36) produces

vec(Y∞) = (I − μϒϒT)vec(Y∞) + μvec(C),

which in turn implies

vec(Y∞) = (ϒϒT)−1vec(C).

It follows from Corollary 1 and from the above equation that

vec(X∗) = ϒT(ϒϒT)−1vec(C) = ϒTvec(Y∞),

which is just Equation (34).

Proofs of Items 2–3. We notice that Iterations (32) and (36) are, respectively, in the standard
form of Equations (11) and (12). The proof is thus similar to the proof of Theorem 1 and omitted
here. �

Similar to Corollary 2, we can obtain the following corollary of Theorem 2.

Corollary 4 Consider the linear matrix Equation (27). If A is a non-square p × m full row
rank matrix, then the iteration

Y (k) = Y (k − 1) − μAATY (k − 1) + μB (37)

converges to a finite matrix Y∞ as k approaches to infinity for arbitrary initial condition Y (0) if
and only if

0 < μ <
2

σ 2
max(A)

. (38)

Moreover, let Equation (38) be satisfied and limk→∞ Y (k) = Y∞. Then the minimal norm least
squares solution to the linear matrix Equation (27) is given by X∗ = ATY∞. Furthermore, if
μ = 2/(σ 2

max(A) + σ 2
min(A)), then the F-convergence rate of Iteration (37) is maximized.
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Remark 3 If ϒ is a square and non-singular matrix, then both Iterations (16) and (32) can be
used to construct the unique solution to the linear matrix Equation (3). However, both Iterations
(16) and (32) are invalid in the case that ϒ is neither of full column rank nor of full row rank.
How to deal with this case is still a project to be investigated.

Remark 4 Similar results for Algorithm (32) to Corollary 3 can be easily obtained.

4. Illustrative examples

Example 1 Consider the following linear matrix equation

A1XB1 + A2XB2 = C, (39)

where A1, A2, B1, B2, C, and the exact minimal norm least squares solution X∗ are, respectively,
given by

A1 =
⎡⎣ 1.0000 2.0000

−1.0000 0.5000
0 1.0000

⎤⎦ , A2 =
⎡⎣−1.0000 −2.0000

0 1.0000
2.0000 −1.0000

⎤⎦ , C =
⎡⎣−4.0000 2.0000

0 1.0000
−3.0000 2.0000

⎤⎦
B1 =

[
1.0000 −2.0000

−1.0000 1.0000

]
, B2 =

[
1.0000 0

−1.0000 1.0000

]
, X∗ =

[−0.5000 0.9000
−0.2000 1.2667

]
.

The exact solution X∗ in the above is obtained by using Equation (9). In this case, the matrix
ϒ ∈ R

6×4 is of full column rank. Therefore, we should apply Iteration (16) to compute X(k).

Taking the initial condition X(0) = 10−612×2. The results corresponding to μ = μopt are shown
in Table 1, where

ε(k) = ‖X(k) − X∗‖F

‖X∗‖F
(40)

is the relative iteration error. To demonstrate that μ = μopt can indeed guarantee better conver-
gence performance, several convergence curves are shown in Figure 1 where the y-axis denotes
the relative iteration error ε(k). Except for μopt, all the other step sizes are computed according to
Corollary 3. It is clear to see that the convergence performance associated with μ = μopt is better
than that associated with the other step sizes.

Example 2 Still consider the linear matrix Equation (39) but with the following parameters

A1 =
[

1.0000 0 −1.0000
0.50000 0 −3.0000

]
, B1 =

[
1.000 −2.000

−1.000 1.000

]
A2 =

[−2.000 2.000 0
−1.000 1.000 1.000

]
, B2 =

[
1.000 −3.000
2.000 1.000

]
XT

∗ =
[−0.0733 −0.6260 −0.2255

0.4734 −0.2031 0.1327

]
, C =

[−4.000 2.000
1.000 −3.000

]
.

The exact solution X∗ is obtained by using Equation (10) as the matrix ϒ ∈ R
4×6 is of full row

rank in this case. Hence, Iteration (32) should be used to construct iterative solutions to Problem 1.
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Table 1. The iterative solutions to the matrix Equation (39) with μ = μopt .

k x11 x12 x21 x22 ε × 100%

5 −0.4004487709 0.9185200988 −0.7261052752 0.5705864483 53.41313089
10 −0.2012802428 0.8243088396 −0.1012826980 0.8448172543 32.32933255
15 −0.4420345949 0.9381598416 −0.3962905996 1.018250031 19.70940151
20 −0.3860262644 0.8762270342 −0.1633303245 1.111181219 12.02025139
25 −0.4780414671 0.9148018845 −0.2730197057 1.174463497 7.330981693
30 −0.4575509502 0.8912417636 −0.1863612783 1.208859576 4.471066798
35 −0.4918246063 0.9055174485 −0.2271606631 1.232374450 2.726843443
40 −0.4842095202 0.8967438990 −0.1949269385 1.245165180 1.663065107
45 −0.4969589199 0.9020525047 −0.2101027261 1.253911353 1.014281021
50 −0.4941265275 0.8987888868 −0.1981130163 1.258668950 0.618596341
55 −0.4988688322 0.9007634573 −0.2037578261 1.261922181 0.377273581
60 −0.4978152934 0.8995495130 −0.1992981146 1.263691823 0.230094078
65 −0.4995792490 0.9002839769 −0.2013977670 1.264901900 0.140331281
70 −0.4991873731 0.8998324362 −0.1997389256 1.265560139 0.085586159
75 −0.4998434968 0.9001056285 −0.2005199156 1.266010241 0.052197846
80 −0.4996977340 0.8999376727 −0.1999028903 1.266255081 0.031834764

X∗ −0.5000000000 0.9000000000 −0.2000000000 1.266666667 0.000000000

Figure 1. Convergence performances with different step sizes in Example 1.

Take Y (0) = 10−613×2 and

X(k) =
2∑

i=1

AT
i Y (k)BT

i .

The relative iteration error is still defined as in Equation (40). When μ = μopt, the computing
results are given in Table 2 where X(k) = [xij ], i = 1, 2, 3, j = 1, 2. Shown in Figure 2 are the
convergence performances of the iteration with different step sizes. Again, except for μopt, all
the other step sizes are computed according to Corollary 3. We also clearly see that μ = μopt can
indeed lead to better convergence performances.
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Table 2. The iterative solutions to the matrix Equation (39) with μ = μopt .

k x11 x12 x21 x22 x31 x32 ε × 100%

5 −0.03906904 0.46957129 −0.63848802 −0.21989548 −0.19779809 0.12798626 5.737290787
10 −0.07320991 0.47064177 −0.62292707 −0.20547563 −0.22538354 0.13555974 0.648608966
15 −0.07281730 0.47332417 −0.62619757 −0.20334086 −0.22510011 0.13265467 0.073331691
20 −0.07325281 0.47333393 −0.62600348 −0.20315421 −0.22545437 0.13275495 0.008290877
25 −0.07324780 0.47336823 −0.62604527 −0.20312693 −0.22545074 0.13271780 0.000937366
30 −0.07325336 0.47336835 −0.62604279 −0.20312454 −0.22545527 0.13271909 0.000105978
35 −0.07325330 0.47336879 −0.62604332 −0.20312419 −0.22545522 0.13271861 0.000011981
40 −0.07325337 0.47336879 −0.62604329 −0.20312416 −0.22545528 0.13271863 0.000001354
45 −0.07325337 0.47336880 −0.62604330 −0.20312416 −0.22545528 0.13271862 0.000000153
50 −0.07325337 0.47336880 −0.62604330 −0.20312416 −0.22545528 0.13271862 0.000000017

X∗ −0.07325337 0.47336880 −0.62604330 −0.20312416 −0.22545528 0.13271862 0

Figure 2. Convergence performances with different step sizes in Example 2.

5. Conclusion

This paper is concerned with an iterative method for finding the minimal norm least squares
solution to linear matrix equation. We have achieved the following:

(1) Two iterative methods are proposed to solve this problem. These two methods deal with the
case that ϒ (see Equation (7)) is of full column rank and ϒ is of full row rank, respectively.

(2) Necessary and sufficient conditions are provided to guarantee the convergence of the proposed
algorithms.

(3) The optimal step size such that the convergence rates of the proposed algorithms are
maximized is given explicitly in terms of the singular values of the matrix ϒ .

Our results regarding numerical solutions to minimal norm least squares problem may have
important applications in control system theory. Further study should focus on extending our
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methods to solve the problem of finding minimal norm least squares solutions to non-linear
matrix equations.
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Appendix

A.1 Proof of Lemma 2

Since ρ(�) < 1, Iteration (12) converges to a finite vector as k approaches to infinity with arbitrary initial condition.
Equivalently, Iteration (11) converges to X∞ as k approaches to infinity with arbitrary initial condition X(0), i.e.,

X∞ =
p∑

i=1

AiX∞Bi + C.

Substituting this equation into Equation (11) gives

X(k) − X∞ =
p∑

i=1

Ai (X(k − 1) − X∞)Bi ,

which, by using the Kronecker product, is equivalent to

vec(X(k) − X∞) = �vec(X(k − 1) − X∞), (A1)

where � is defined in Equation (12). Since � is real and symmetric, we have ‖�‖2 = ρ(�). Therefore, it follows from
Equation (A1) that

‖vec(X(k) − X∞)‖2 ≤ ‖�‖2‖vec(X(k − 1) − X∞)‖2

= ρ(�)‖vec(X(k − 1) − X∞)‖2

≤ ρk(�)‖vec(X(0) − X∞)‖2,

which in turn implies Equation (14) in view of Equation (5). To complete the proof, we need only to show that there exists
at least one initial condition X(0) such that the ‘=’ holds in Equation (14). Since � is real and symmetric, there exists a
unitary matrix U such that

UT�U =

⎡⎢⎢⎢⎣
σ1Iv1 0 · · · 0

0 σ2Iv2 · · · 0
.
.
.

.

.

.
. . .

.

.

.

0 0 · · · σhIvh

⎤⎥⎥⎥⎦ := 
 ∈ R
mn×mn, (A2)

where σi , i = 1, 2, . . . , h, are the real eigenvalues of � and �h
i=1vi = mn. Assume that |σ1| > |σ2| > · · · > |σh|. Then

we clearly have ρ(�) = |σ1|. It follows from Equation (A1) and (A2) that

vec(X(k) − X∞) = �kvec(X(0) − X∞)

= U
kUTvec(X(0) − X∞),

or equivalently,

UTvec(X(k) − X∞) = 
kUTvec(X(0) − X∞). (A3)

Now we choose the initial condition X#(0) such that

vec(X#(0)) = U

⎡⎢⎢⎢⎣
x#
0
.
.
.

0

⎤⎥⎥⎥⎦ + vec(X∞), (A4)

where x# is a non-zero scalar. Then we clearly have X#(0) 	= X∞. By using Equation (A3), we can obtain

UTvec(X(k) − X∞) =

⎡⎢⎢⎢⎣
σk

1 Iv1 0 · · · 0
0 σk

2 Iv2 · · · 0
.
.
.

.

.

.
. . .

.

.

.

0 0 · · · σk
h Ivh

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

x#
0
.
.
.

0

⎤⎥⎥⎥⎦

=

⎡⎢⎢⎢⎣
σk

1 x#
0
.
.
.

0

⎤⎥⎥⎥⎦ .
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Equation (A4) clearly implies that ‖vec(X#(0) − X∞)‖2 = |x#|. Therefore,

‖vec(X(k) − X∞)‖2 = ‖UTvec(X(k) − X∞)‖2

= |σk
1 ||x#| = ρk(�)|x#|

= ρk(�)‖vec(X#(0) − X∞)‖2.

That is to say

‖X(k) − X∞‖F = ρk(�)‖X#(0) − X∞‖F.

The above equation and Inequality (14) complete the proof. �

A.2 Proof of Lemma 4

We first introduce the following lemma.

Lemma 5 ([27]) Let A, B, and X be some matrices with appropriate dimensions. Then

∂tr(AXB)

∂X
= ATBT,

∂tr(AXTB)

∂X
= BA (A5)

∂tr(AXBXT)

∂X
= ATXBT + AXB. (A6)

Now we start to prove the lemma. Note that

J (X) = 1

2

∥∥∥∥∥
r∑

i=1

AiXBi − C

∥∥∥∥∥
2

F

= 1

2
tr

(
r∑

i=1

BT
i XTAT

i − CT

)⎛⎝ r∑
j=1

AjXBj − C

⎞⎠
= 1

2
tr

⎛⎝ r∑
i=1

r∑
j=1

BT
i XTAT

i AjXBj

⎞⎠ − tr

⎛⎝CT
r∑

j=1

AjXBj

⎞⎠ + tr(CTC).

Therefore, in view of Equation (A5), (A6), and the formulation tr(AB) = tr(BA), we have

∂J (X)

∂X
= 1

2

r∑
i=1

r∑
j=1

∂

∂X
tr(BT

i XTAT
i AjXBj ) −

r∑
j=1

∂

∂X
tr(CTAjXBj )

= 1

2

r∑
i=1

r∑
j=1

∂

∂X
tr(AT

i AjXBjB
T
i XT) −

r∑
j=1

∂

∂X
tr(CTAjXBj )

=
r∑

i=1

r∑
j=1

AT
i AjXBjB

T
i −

r∑
j=1

AT
j CBT

j

=
r∑

j=1

AT
j

(
r∑

i=1

AiXBi − C

)
BT

j .

This completes the proof of Lemma 4. �
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