

PHOTONICS TECHNOLOGY LETTERS

A PUBLICATION OF THE IEEE LASERS AND ELECTRO-OPTICS SOCIETY

This Print Collection Contains the Following Issues:

AUGUST 15, 2007	VOLUME 19	NUMBER 16	IPTLEL	(ISSN 1041-1135)
JULY 15, 2007	VOLUME 19	NUMBER 14		
AUGUST 1, 2007	VOLUME 19	NUMBER 15		
AUGUST 15, 2007	VOLUME 19	NUMBER 16		
-				

A photonic microwave channel selective filter incorporating a 1×2 switch based on two tunable polymeric cascaded ring resonators with different free-spectral ranges has been demonstrated, as seen in "Photonic Microwave Channel Selective Filter Incorporating a Thermooptic Switch Based on Tunable Ring Resonators," by G.-D. Kim *et al.*, p. 1008.

For the July 1, 2007 issue, see p. 949 for Table of Contents For the July 15, 2007 issue, see p. 1025 for Table of Contents For the August 1, 2007 issue, see p. 1107 for Table of Contents For the August 15, 2007 issue, see p. 1189 for Table of Contents

PHOTONICS TECHNOLOGY LETTERS

AUGUST 15, 2007

VOLUME 19

NUMBER 16

R 16 IPTLEL

(ISSN 1041-1135)

Semiconductor Lasers and Amplifiers	
10-GHz 8.7-ps Pulse Generation From a Single-Mode Gain-Switched AlGaAs VCSEL at 850 nm	
Highly Uniform Eight-Channel SOA-Gate Array With High Saturation Output Power and Low Noise Figure	1251
S. Tanaka, S. Tomabechi, A. Uetake, M. Ekawa, and K. Morito Enhancement of Flip-Chip Light-Emitting Diodes With Omni-Directional Reflector and Textured Micropillar Arrays CE. Lee, YJ. Lee, HC. Kuo, MR. Tsai, B. S. Cheng, TC. Lu, SC. Wang, and CT. Kuo	1275 1200
Fiber and Waveguide Amplifiers and Lasers	
Greater Than 20-dB Supermode Noise Suppression and Timing Jitter Reduction Via CW Injection of a Harmonically Mode-Locked Laser F. Quinlan, S. Gee, S. Ozharar, and P. J. Delfyett	1221
Modulators and Switches	
Zn-Diffused 1 × 2 Balanced-Bridge Optical Switch in a Y-Cut Lithium Niobate RC. Twu	1269
Propagation and Waveguiding	
Mode Coupling in Plastic Optical Fiber Enables 40-Gb/s Performance	1254
Q. Fang, Z. Wang, G. Kai, L. Jin, Y. Yue, J. Du, Q. Shi, Z. Liu, B. Liu, Y. Liu, S. Yuan, and X. Dong Bend Loss, Tapering, and Cladding-Mode Coupling in Single-Mode Fibers J. D. Love and C. Durniak	1239 1257
Passive Components	
The Design and Optimization of an Ion-Exchanged Polarization Converter Using a Genetic Algorithm	
	1218
Arbitrary-Order Ultrabroadband All-Optical Differentiators Based on Fiber Bragg Gratings	1197
L. M. Rivas, K. Singh, A. Carballar, and J. Azaña	1209
Active Components	
Multichannel Differential Group Delay Emulation and Compensation via a Phase Pulse Shaper	1203

(Contents Continued on Page 1190)

IEEE PHOTONICS TECHNOLOGY LETTERS (ISSN 1041–1135) is published semimonthly by the Institute of Electrical and Electronics Engineers, Inc. Responsibility for the contents rests upon the authors and not upon the IEEE, the Society/Council, or its members. **IEEE Corporate Office:** 3 Park Avenue, 17th Floor, New York, NY 10016-5997. **IEEE Operations Center:** 445 Hoes Lane, P.O. Box 1331, Piscataway, NJ 08855-1331. **NJ Telephone:** +1 732 981 0060. **Price/Publication Information:** Individual copies: IEEE Members \$20.00 (first copy only), nonmembers \$164.00 per copy. (Note: Postage and handling charge not included.) Member and nonmember subscription prices available upon request. Available in microfiche and microfilm. **Copyright and Reprint Permissions:** Abstracting is permitted with credit to the source. Libraries are permitted to photocopy for private use of patrons, provided the per-copy fee indicated in the code at the bottom of the first page is paid through the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923. For all other copying, reprint, or republication permission, write to Copyrights and Permissions Department, IEEE Publications Administration, 445 Hoes Lane, P.O. Box 1331, Piscataway, NJ 08855-1331. Copyright © 2007 by the Institute of Electrical and Electronics Engineers, Inc. All rights reserved. Periodicals Postage Paid at New York, NY and at additional mailing offices. **Postmaster:** Send address changes to IEEE PHOTONICS TECHNOLOGY LETTERS, IEEE, 445 Hoes Lane, P.O. Box 1331, Piscataway, NJ 08855-1331. GST Registration No. 125634188. Printed in U.S.A.

Design and Operation of a Monolithically Integrated Two-Stage Tunable All-Optical Wavelength Converter 12- All-Optical Techniques 12- Polarization-Insensitive Clock Recovery Operation in a Monolithic Passively Mode-Locked Distributed-Bragg-Reflector 12- Laser Integrated With a Tensile-Strained Multiple-Quantum-Well Saturable Absorber 12- Sensors S. Arahira, H. Takahashi, K. Nakamura, S. Miyamura, H. Yaegashi, and Y. Ogawa 120 Sensors Use of Fiber Bragg Grating Sensors for Determination of a Simply Supported Rectangular Plane Plate Deformation 12- Withy-Enhanced Fiber-Optic Strain Sensor Based on Interference of Higher Order Modes in Circular Fibers 121 Strain and Temperature Discrimination Using Concatenated High-Bireffringence Fiber Loop Mirrors 121 Optical Fiber Photomics 0. Frazão, J. L. Santos, and J. M. Baptista 122 Analog and RF Photonics 7. Wang, N. Duan, H. Chen, and J. C. Campbell 127 Analog and RF Photonics 7. Wang, W. Chu, and T. H. Cheng 122 Millimeter-Wave Signal Generation Using Two Cascaded Optical Modulators and FWM Effect in Semiconductor Optical Amplifier 7. Wang, M. Chen, H. Chen, J. Zhang, and S. Xie Multitap Complex-Coefficient Incoherent Microwave Photonic Filters Based on Stimulated Brillouin Scattering 119 Multitap Complex-Coefficient Incoherent Microwave Pho	Wavelength Converters	
J. A. Summers, M. L. Mašanović, V. Lal, and D. J. Blumenthal All-Optical Techniques Polarization-insensitive Clock Recovery Operation in a Monolithic Passively Mode-Locked Distributed-Bragg-Reflector Laser Integrated With a Tensile-Strained Multiple-Quantum-Well Saturable Absorber	Design and Operation of a Monolithically Integrated Two-Stage Tunable All-Optical Wavelength Converter	
All-Optical Techniques Polarization-Insensitive Clock Recovery Operation in a Monolithic Passively Mode-Locked Distributed-Bragg-Reflector Laser Integrated With a Tensile-Strained Multiple-Quantum-Well Saturable Absorber 120 Sensors Use of Fiber Bragg Grating Sensors for Determination of a Simply Supported Rectangular Plane Plate Deformation 121 Sensors East Operation of a Simply Supported Rectangular Plane Plate Deformation 122 Sensitivity-Enhanced Fiber-Optic Strain Sensor Based on Interference of Higher Order Modes in Circular Fibers 121 Strain and Temperature Discrimination Using Concatenated High-Birefringence Fiber Loop Mirrors E. Li 121 Photodetectors and Photoreceivers InGaAs-InP Photodiodes With High Responsivity and High Saturation Power 121 Coherent Optical Phase-Modulation Link T. R. Clark and M. L. Dennis 122 Optical Fiber Polarization Interferometer for Performance Improvement in Radio-Over-Fiber Systems 122 Multitap Complex-Coefficient Incoherent Microwave Photonic Filters Based on Stimulated Brillouin Scattering 123 Multitap Complex-Coefficient Incoherent Microwave Photonic Filters Based on Stimulated Brillouin Scattering 124 Multitap Complex-Coefficient Incoherent Microwave Photonic Filters Based on Stimulated Brillouin Scattering 124 Multitap Complex-Coefficient Incoherent Microwave Photonic Filters Based on Stimulated Brilloui		1248
Polarization-Insensitive Clock Recovery Operation in a Monolithic Passively Mode-Locked Distributed-Bragg-Reflector Laser Integrated With a Tensile-Strained Multiple-Quantum-Well Saturable Absorber 120 Sensors Use of Fiber Bragg Grating Sensors for Determination of a Simply Supported Rectangular Plane Plate Deformation 121 Sensors E.Li 122 Sensitivity-Enhanced Fiber-Optic Strain Sensor Based on Interference of Higher Order Modes in Circular Fibers E.Li Strain and Temperature Discrimination Using Concatenated High-Birefringence Fiber Loop Mirrors E.Li Strain and Temperature Discrimination Using Concatenated High-Birefringence Fiber Loop Mirrors E.Li Motodetectors and Photoreceivers InGaAs-InP Photodiodes With High Responsivity and High Saturation Power T. R. Clark and M. L. Dennis Notical Fiber Polarization Interferometer for Performance Improvement in Radio-Over-Fiber Systems 122 Millimeter-Wave Signal Generation Using Two Cascaded Optical Modulators and FWM Efforg. and S. Xie 119 118 Multilay Complex-Coefficient Incoherent Microwave Photonic Filters Based on Stimulated Brillouin Scattering 118 Multilay Complex-Coefficient In-Line-Type Bidirectional Optical Subassembly X. Sagues, A. Loayssa, and J. Capmary 119 Subsystems A Novel Low-Cost Fiber In-Line-Type Bidirectional Optical Subassembly 122 Networks and Systems 122 </th <th>All-Optical Techniques</th> <th></th>	All-Optical Techniques	
S. Arahira, H. Takahashi, K. Nakamura, S. Miyamura, H. Yaegashi, and Y. Ogawa Sensors Use of Fiber Bragg Grating Sensors for Determination of a Simply Supported Rectangular Plane Plate Deformation Y. Wang, N. Chen, B. Yun, and Y. Cui 22. Sensitivity-Enhanced Fiber-Optic Strain Sensor Based on Interference of Higher Order Modes in Circular Fibers E. Li 23. Strain and Temperature Discrimination Using Concatenated High-Birefringence Fiber Loop Mirrors E. Li 24. Strain and Temperature Discrimination Using Concatenated High-Birefringence Fiber Loop Mirrors E. Li 25. Concent Detectors and Photoreceivers Concent Optical Phase-Modulation Link T. R. Clark and M. L. Dennis 26. Coherent Optical Phase-Modulation Link T. R. Clark and M. L. Dennis 27. 28. 29. 20. 20. 20. 20. 20. 20. 20. 20. 20. 20	Polarization-Insensitive Clock Recovery Operation in a Monolithic Passively Mode-Locked Distributed-Bragg-Reflector Laser Integrated With a Tensile-Strained Multiple-Quantum-Well Saturable Absorber	
Sensors Use of Fiber Bragg Grating Sensors for Determination of a Simply Supported Rectangular Plane Plate Deformation Y Wang, N. Chen, B. Yun, and Y. Cui 12: Sensitivity-Enhanced Fiber-Optic Strain Sensor Based on Interference of Higher Order Modes in Circular Fibers 12: Strain and Temperature Discrimination Using Concatenated High-Birefringence Fiber Loop Mirrors E. Li 12: Strain and Temperature Discrimination Using Concatenated High-Birefringence Fiber Loop Mirrors E. Li 12: InGaAs-InP Photodiodes With High Responsivity and High Saturation Power	S. Arahira, H. Takahashi, K. Nakamura, S. Miyamura, H. Yaegashi, and Y. Ogawa	1263
Use of Fiber Bragg Grating Sensors for Determination of a Simply Supported Rectangular Plane Plate Deformation Y. Wang, N. Chen, B. Yun, and Y. Cui 28- Sensitivity-Enhanced Fiber-Optic Strain Sensor Based on Interference of Higher Order Modes in Circular Fibers	Sensors	
Sensitivity-Enhanced Fiber-Optic Strain Sensor Based on Interference of Higher Order Modes in Circular Fibers 120 Strain and Temperature Discrimination Using Concatenated High-Birefringence Fiber Loop Mirrors 121 Million and Temperature Discrimination Using Concatenated High-Birefringence Fiber Loop Mirrors 121 Photodetectors and Photoreceivers 123 InGaAs-InP Photodiodes With High Responsivity and High Saturation Power 122 Analog and RF Photonics T. R. Clark and M. L. Dennis Coherent Optical Phase-Modulation Link T. R. Clark and M. L. Dennis Optical Fiber Polarization Interferometer for Performance Improvement in Radio-Over-Fiber Systems 122 Millimeter-Wave Signal Generation Using Two Cascaded Optical Modulators and FWM Effect in Semiconductor Optical Amplifier 124 Multitap Complex-Coefficient Incoherent Microwave Photonic Filters Based on Stimulated Brillouin Scattering 115 Subsystems KS. Lim, J. J. Lee, S. Lee, S. Yoon, C. H. Yu, IB. Sohn, and H. S. Kang 122 Networks and Systems C. A. Chan, M. Attrgalle, and A. Nirmalathas 12 Hybrid Multicast Mode in All-Optical Networks N. Lee, S. Lee, S. Yoon, C. H. Yu, IB. Sohn, and H. S. Kang 12 Networks and Systems C. Calabretta, M. Presi, R. Proietti, G. Contestabile, and A. Nirmalathas 12 Hybrid Multi	Use of Fiber Bragg Grating Sensors for Determination of a Simply Supported Rectangular Plane Plate Deformation <i>Y. Wang, N. Chen, B. Yun, and Y. Cui</i>	1242
E. Li 121 Strain and Temperature Discrimination Using Concatenated High-Birefringence Fiber Loop Mirrors 120 Photodetectors and Photoreceivers 121 InGaAs-InP Photodiodes With High Responsivity and High Saturation Power 121 Analog and RF Photonics 122 Coherent Optical Phase-Modulation Link T. R. Clark and M. L. Dennis Optical Fiber Polarization Interferometer for Performance Improvement in Radio-Over-Fiber Systems 122 Millimeter-Wave Signal Generation Using Two Cascaded Optical Modulators and FWM Effect in Semiconductor Optical Amplifier 123 Multitap Complex-Coefficient Incoherent Microwave Photonic Filters Based on Stimulated Brillouin Scattering 119 Subsystems M. Sagues, A. Loayssa, and J. Capmany 119 Subsystems KS. Lim, J. J. Lee, S. Lee, S. Yoon, C. H. Yu, IB. Sohn, and H. S. Kang 122 Networks and Systems C. A. Chan, M. Atrygalle, and A. Nirmalathas 12 Multicast Mode in All-Optical Networks N. Calabretta, M. Presi, R. Proietti, G. Contestabile, and E. Ciaramella 122 Performance Evaluation of Trellis Code Modulated opDPSK Using the KLSE Method 124 124 Multicast Mode in All-Optical Networks N. Calabretta, M. Presi, R. Proietti, G. Contestabile, and E. Ciaramella 125	Sensitivity-Enhanced Fiber-Optic Strain Sensor Based on Interference of Higher Order Modes in Circular Fibers	
Strain and Temperature Discrimination Using Concatenated Fligh-Biteringence Floer Loop Mintors 124 Photodetectors and Photoreceivers 127 InGaAs-InP Photodiodes With High Responsivity and High Saturation Power 127 Analog and RF Photonics 128 Coherent Optical Phase-Modulation Link T. R. Clark and M. L. Dennis Optical Fiber Polarization Interferometer for Performance Improvement in Radio-Over-Fiber Systems 126 Millimeter-Wave Signal Generation Using Two Cascaded Optical Modulators and FWM Effect in Semiconductor Optical 118 Amplifier T. Wang, M. Chen, I. Cheng, J. Zhang, and S. Xie 119 Multitap Complex-Coefficient Incoherent Microwave Photonic Filters Based on Stimulated Brillouin Scattering 119 Subsystems KS. Lim, J. J. Lee, S. Lee, S. Yoon, C. H. Yu, IB. Sohn, and H. S. Kang 122 Networks and Systems 128 124 Generation and Separation of Closely Separated Dual Baseband Channels for Provisioning of Independent Services in WDM-PON N. Calabretta, M. Presi, R. Proietti, G. Contestabile, and E. Ciaramella Performance Evaluation of Trellis Code Modulated oDQPSK Using the KLSE Method 122 A Bidirectional WDM/TDM-PON Using DPSK Downstream Signals and a Narrowband AWG 122 Multicast Mode in All-Optical Networks M. S. Kumar, H. Yoon, and N. Park	E. Li	1266
Photodetectors and Photoreceivers InGaAs-InP Photodides With High Responsivity and High Saturation Power X. Wang, N. Duan, H. Chen, and J. C. Campbell 12' Analog and RF Photonics Coherent Optical Phase-Modulation Link T. R. Clark and M. L. Dennis 120 Optical Fiber Polarization Interferometer for Performance Improvement in Radio-Over-Fiber Systems 121 Millimeter-Wave Signal Generation Using Two Cascaded Optical Modulators and FWM Effect in Semiconductor Optical Amplifier 122 Multitap Complex-Coefficient Incoherent Microwave Photonic Filters Based on Stimulated Brillouin Scattering 119 Subsystems M. Novel Low-Cost Fiber In-Line-Type Bidirectional Optical Subassembly 123 Mutricast Mode in All-Optical Networks KS. Lim, J. J. Lee, S. Lee, S. Yoon, C. H. Yu, IB. Sohn, and H. S. Kang 124 Performance Evaluation of Closely Separated Dual Baseband Channels for Provisioning of Independent Services in WDM-PON N. Calabretta, M. Presi, R. Proietti, G. Contestabile, and A. Nirmalathas 12 Performance Evaluation of Trellis Code Modulated oDQPSK Using the KLSE Method M. S. Kumar, H. Yoon, and N. Park 124 Lapertimental Study of MLSE Receivers in the Presence of Narrowband and Vestigial Sideband Optical Filtering 125 125 Log-Haul Optically Uncompensated IMDD Transmission With MLSE Using the		1260
InGaAs-InP Photodiodes With High Responsivity and High Saturation Power X. Wang, N. Duan, H. Chen, and J. C. Campbell 12' Analog and RF Photonics C. Coherent Optical Phase-Modulation Link T. R. Clark and M. L. Dennis 120' Optical Fiber Polarization Interferometer for Performance Improvement in Radio-Over-Fiber Systems 12' Millimeter-Wave Signal Generation Using Two Cascaded Optical Modulators and FWM Effect in Semiconductor Optical Amplifier 12' Multitap Complex-Coefficient Incoherent Microwave Photonic Filters Based on Stimulated Brillouin Scattering 11' Subsystems M. Sagues, A. Loayssa, and J. Capmany 11' Subsystems M. Novel Low-Cost Fiber In-Line-Type Bidirectional Optical Subassembly 12' Networks and Systems KS. Lim, J. J. Lee, S. Lee, S. Yoon, C. H. Yu, IB. Sohn, and H. S. Kang 12' Networks and Systems X. Liu, H. Wang, and Y. Ji 12 A Bidirectional Optical Networks X. Liu, H. Wang, and Y. Ji 12 A Bidirectional WDM/TDM-PON Using DPSK Downstream Signals and a Narrowband AWG 12' Performance Evaluation of Trellis Code Modulated oDQPSK Using the KLSE Method 12' Long-Haul Optical Vucompensated IMDD Transmission With MLSE Using the M-Method 12' Long-Haul Optically Uncompensated IMDD Transmission With MLSE Using the M-Method <t< td=""><td>Photodetectors and Photoreceivers</td><td></td></t<>	Photodetectors and Photoreceivers	
X. Wang, N. Duan, H. Chen, and J. C. Campbell 12 Analog and RF Photonics T. R. Clark and M. L. Dennis 120 Optical Fiber Polarization Interferometer for Performance Improvement in Radio-Over-Fiber Systems 121 Millimeter-Wave Signal Generation Using Two Cascaded Optical Modulators and FWM Effect in Semiconductor Optical Amplifier 121 Multitap Complex-Coefficient Incoherent Microwave Photonic Filters Based on Stimulated Brillouin Scattering 119 Multitap Complex-Coefficient Incoherent Microwave Photonic Filters Based on Stimulated Brillouin Scattering 119 Subsystems M. Sagues, A. Loayssa, and J. Capmany 119 Subsystems KS. Lim, J. J. Lee, S. Lee, S. Yoon, C. H. Yu, IB. Sohn, and H. S. Kang 122 Networks and Systems C. A. Chan, M. Attygalle, and A. Nirmalathas 122 Multitap Complex-Coefficient Incoherent Microwave Photonic Filters Based on Stimulated Brillouin Scattering 123 Nevel Low-Cost Fiber In-Line-Type Bidirectional Optical Subassembly 124 Multitap Complex-Coefficient Incoherent Microwave Photonic Filters Based on Stimulated Brillouin Scattering 125 Networks and Systems Generation and Separation of Closely Separated Dual Baseband Channels for Provisioning of Independent Services in 124 Hybrid Multicast Mode in All-Optical Networks X. Liu, H. Wang, and Y. Ji	InGaAs–InP Photodiodes With High Responsivity and High Saturation Power	1070
Analog and RF Photonics T. R. Clark and M. L. Dennis 120 Coherent Optical Phase-Modulation Link T. R. Clark and M. L. Dennis 121 Optical Fiber Polarization Interferometer for Performance Improvement in Radio-Over-Fiber Systems 121 Millimeter-Wave Signal Generation Using Two Cascaded Optical Modulators and FWM Effect in Semiconductor Optical Amplifier 121 Multitap Complex-Coefficient Incoherent Microwave Photonic Filters Based on Stimulated Brillouin Scattering 115 Subsystems M. Sagues, A. Loayssa, and J. Capmany 115 Subsystems Novel Low-Cost Fiber In-Line-Type Bidirectional Optical Subassembly 122 Multicast Mode in All-Optical Networks KS. Lim, J. J. Lee, S. Lee, S. Yoon, C. H. Yu, IB. Sohn, and H. S. Kang 122 Networks and Systems 124 125 125 Generation and Separation of Closely Separated Dual Baseband Channels for Provisioning of Independent Services in WDM-PON KS. Lim, J. J. Lee, S. Lee, S. Yoon, C. H. Yu, IB. Sohn, and H. S. Kang 125 Hybrid Multicast Mode in All-Optical Networks M. Atrygalle, and A. Nirmalathas 126 Multicast Mode in All-Optical Networks M. Presi, R. Proietti, G. Contestabile, and E. Ciaramella 127 Performance Evaluation of Trellis Code Modulated oDQPSK Using the KLSE Method M. S. Kumar, H. Yoon, and N. Park	X. Wang, N. Duan, H. Chen, and J. C. Campbell	1272
Coherent Optical Phase-Modulation Link T. R. Clark and M. L. Dennis 120 Optical Fiber Polarization Interferometer for Performance Improvement in Radio-Over-Fiber Systems 121 Millimeter-Wave Signal Generation Using Two Cascaded Optical Modulators and FWM Effect in Semiconductor Optical Amplifier 123 Multitap Complex-Coefficient Incoherent Microwave Photonic Filters Based on Stimulated Brillouin Scattering 119 Subsystems M. Sagues, A. Loayssa, and J. Capmany 119 Subsystems Novel Low-Cost Fiber In-Line-Type Bidirectional Optical Subassembly 119 A Novel Low-Cost Fiber In-Line-Type Bidirectional Optical Subassembly 123 Multicast And Systems 124 Generation and Separation of Closely Separated Dual Baseband Channels for Provisioning of Independent Services in WDM-PON 124 Mybrid Multicast Mode in All-Optical Networks N. Calabretta, M. Presi, R. Proietti, G. Contestabile, and A. Nirmalathas 125 Performance Evaluation of Trellis Code Modulated oDQPSK Using the KLSE Method M. S. Kumar, H. Yoon, and N. Park 124 Performance Evaluation of Trellis Code Modulated oDQPSK Using the M-Method 124 124 A Bidirectional WDM/TDM-PON Using DPSK Downstream Signals and a Narrowband AWG 125 Multicast Mode in All-Optical Networks M. S. Kumar, H. Yoon, and N. Park 124 </th <th>Analog and RF Photonics</th> <th></th>	Analog and RF Photonics	
Y. Dong, Z. Li, X. Tian, Q. Wang, H. He, C. Lu, Y. Wang, W. Hu, and T. H. Cheng 123 Millimeter-Wave Signal Generation Using Two Cascaded Optical Modulators and FWM Effect in Semiconductor Optical 119 Amplifier T. Wang, M. Chen, H. Chen, J. Zhang, and S. Xie 119 Multitap Complex-Coefficient Incoherent Microwave Photonic Filters Based on Stimulated Brillouin Scattering 119 Subsystems M. Sagues, A. Loayssa, and J. Capmany 119 Subsystems KS. Lim, J. J. Lee, S. Lee, S. Yoon, C. H. Yu, IB. Sohn, and H. S. Kang 122 Networks and Systems Generation of Closely Separated Dual Baseband Channels for Provisioning of Independent Services in WDM-PON 124 A Bidirectional WDM/TDM-PON Using DPSK Downstream Signals and a Narrowband AWG 124 M. Calabretta, M. Presi, R. Proietti, G. Contestabile, and E. Ciaramella 125 Performance Evaluation of Trellis Code Modulated ODQPSK Using the KLSE Method 124 Experimental Study of MLSE Receivers in the Presence of Narrowband and Vestigial Sideband Optical Filtering 124 Long-Haul Optically Uncompensated IMDD Transmission With MLSE Using the M-Method 124 ANNOUNCEMENTS ANNOUNCEMENTS	Coherent Optical Phase-Modulation Link	1206
Millimeter-Wave Signal Generation Using Two Cascaded Optical Modulators and FWM Effect in Semiconductor Optical 119 Multitap Complex-Coefficient Incoherent Microwave Photonic Filters Based on Stimulated Brillouin Scattering 119 Subsystems M. Sagues, A. Loayssa, and J. Capmany 119 Subsystems M. Novel Low-Cost Fiber In-Line-Type Bidirectional Optical Subassembly 119 Subsystems KS. Lim, J. J. Lee, S. Lee, S. Yoon, C. H. Yu, IB. Sohn, and H. S. Kang 122 Networks and Systems Generation of Closely Separated Dual Baseband Channels for Provisioning of Independent Services in 121 Hybrid Multicast Mode in All-Optical Networks X. Liu, H. Wang, and Y. Ji 122 Performance Evaluation of Trellis Code Modulated oDQPSK Using the KLSE Method 122 Performance Evaluation of MLSE Receivers in the Presence of Narrowband and Vestigial Sideband Optical Filtering 122 Long-Haul Optically Uncompensated IMDD Transmission With MLSE Using the M-Method 122 ANNOUNCEMENTS A. Nouncements 124		1236
Multitap Complex-Coefficient Incoherent Microwave Photonic Filters Based on Stimulated Brillouin Scattering 119 Subsystems M. Sagues, A. Loayssa, and J. Capmany 119 Subsystems Novel Low-Cost Fiber In-Line-Type Bidirectional Optical Subassembly 119 Multitap Complex-Coefficient Incoherent Microwave Photonic Filters Based on Stimulated Brillouin Scattering 119 Subsystems A Novel Low-Cost Fiber In-Line-Type Bidirectional Optical Subassembly 119 Multitap Complex-Coefficient Incoherent Microwave Photonic Filters Based on Stimulated Brillouin Scattering 119 Subsystems A Novel Low-Cost Fiber In-Line-Type Bidirectional Optical Subassembly 119 Multitap Complex-Coefficient Incoherent Microwave Photonic Filters Based on Stimulated Brillouin Scattering 119 Multitap Complex-Coefficient Incoherent Microwave Photonic Filters Based on Stimulated Brillouin Scattering 119 Subsystems 6 6 6 Generation and Separation of Closely Separated Dual Baseband Channels for Provisioning of Independent Services in WDM-PON 12 Hybrid Multicast Mode in All-Optical Networks X. Liu, H. Wang, and Y. Ji 12 A Bidirectional WDM/TDM-PON Using DPSK Downstream Signals and a Narrowband AWG 12 12 Performance Evaluation of Trellis Code Modulated oDQPSK Using the KLSE Method	Millimeter-Wave Signal Generation Using Two Cascaded Optical Modulators and FWM Effect in Semiconductor Optical	1101
M. Sagues, A. Loayssa, and J. Capmany 119 Subsystems A Novel Low-Cost Fiber In-Line-Type Bidirectional Optical Subassembly 121 M. Sagues, A. Loayssa, and J. Capmany 112 Networks and Systems 122 Generation and Separation of Closely Separated Dual Baseband Channels for Provisioning of Independent Services in 121 WDM-PON C. A. Chan, M. Attygalle, and A. Nirmalathas 122 A Bidirectional WDM/TDM-PON Using DPSK Downstream Signals and a Narrowband AWG 122 A Bidirectional WDM/TDM-PON Using DPSK Downstream Signals and a Narrowband AWG 122 M. Sagues, A. Loayssa, and J. Capmany 124 Performance Evaluation of Trellis Code Modulated oDQPSK Using the KLSE Method 125 M. S. Kumar; H. Yoon, and N. Park 124 Experimental Study of MLSE Receivers in the Presence of Narrowband and Vestigial Sideband Optical Filtering 124 Long-Haul Optically Uncompensated IMDD Transmission With MLSE Using the M-Method 125 ANNOUNCEMENTS A. Visintin, P. Poggiolini, and G. Bosco 125	Multitap Complex-Coefficient Incoherent Microwave Photonic Filters Based on Stimulated Brillouin Scattering	1191
Subsystems A Novel Low-Cost Fiber In-Line-Type Bidirectional Optical Subassembly		1194
A Novel Low-Cost Fiber In-Line-Type Bidirectional Optical Subassembly 12: Movel Low-Cost Fiber In-Line-Type Bidirectional Optical Subassembly 12: Networks and Systems 12: Generation and Separation of Closely Separated Dual Baseband Channels for Provisioning of Independent Services in 12: WDM-PON C. A. Chan, M. Attygalle, and A. Nirmalathas 12: Hybrid Multicast Mode in All-Optical Networks X. Liu, H. Wang, and Y. Ji 12: A Bidirectional WDM/TDM-PON Using DPSK Downstream Signals and a Narrowband AWG 12: Performance Evaluation of Trellis Code Modulated oDQPSK Using the KLSE Method 12: Experimental Study of MLSE Receivers in the Presence of Narrowband and Vestigial Sideband Optical Filtering 12: J. M. Gené, P. J. Winzer, RJ. Essiambre, S. Chandrasekhar, Y. Painchaud, and M. Guy 12: Long-Haul Optically Uncompensated IMDD Transmission With MLSE Using the M-Method 12: ANNOUNCEMENTS ANNOUNCEMENTS	Subsystems	
A Bidirectional WDM/TDM-PON Using DPSK Downstream Signals and a Narrowband AWG 12 Mybrid Multicast Mode in All-Optical Networks C. A. Chan, M. Attygalle, and A. Nirmalathas 12 A Bidirectional WDM/TDM-PON Using DPSK Downstream Signals and a Narrowband AWG 12 Performance Evaluation of Trellis Code Modulated oDQPSK Using the KLSE Method 12 M. S. Kumar, H. Yoon, and N. Park 12 Experimental Study of MLSE Receivers in the Presence of Narrowband and Vestigial Sideband Optical Filtering 12 J. M. Gené, P. J. Winzer, RJ. Essiambre, S. Chandrasekhar, Y. Painchaud, and M. Guy 12 Long-Haul Optically Uncompensated IMDD Transmission With MLSE Using the M-Method 12 ANNOUNCEMENTS ANNOUNCEMENTS	A Novel Low-Cost Fiber In-Line-Type Bidirectional Ontical Subassembly	
Networks and Systems Generation and Separation of Closely Separated Dual Baseband Channels for Provisioning of Independent Services in WDM-PON C. A. Chan, M. Attygalle, and A. Nirmalathas Hybrid Multicast Mode in All-Optical Networks X. Liu, H. Wang, and Y. Ji A Bidirectional WDM/TDM-PON Using DPSK Downstream Signals and a Narrowband AWG 12 Performance Evaluation of Trellis Code Modulated oDQPSK Using the KLSE Method 12 Experimental Study of MLSE Receivers in the Presence of Narrowband and Vestigial Sideband Optical Filtering 12 Long-Haul Optically Uncompensated IMDD Transmission With MLSE Using the M-Method 12 ANNOUNCEMENTS A. Gange Compension of Closely Separated Dual Baseband Channels for Provisioning of Independent Services in the Presence of Narrowband and Vestigial Sideband Optical Filtering 12		1233
Generation and Separation of Closely Separated Dual Baseband Channels for Provisioning of Independent Services in WDM-PON C. A. Chan, M. Attygalle, and A. Nirmalathas Hybrid Multicast Mode in All-Optical Networks X. Liu, H. Wang, and Y. Ji A Bidirectional WDM/TDM-PON Using DPSK Downstream Signals and a Narrowband AWG 12 Performance Evaluation of Trellis Code Modulated oDQPSK Using the KLSE Method 12 Experimental Study of MLSE Receivers in the Presence of Narrowband and Vestigial Sideband Optical Filtering 12 Long-Haul Optically Uncompensated IMDD Transmission With MLSE Using the M-Method M. Visintin, P. Poggiolini, and G. Bosco 12 ANNOUNCEMENTS ANNOUNCEMENTS ANNOUNCEMENTS M. Signalia M. Signalia M. Signalia	Networks and Systems	
WDM-PON C. A. Chan, M. Attygalle, and A. Nirmalathas 12 Hybrid Multicast Mode in All-Optical Networks X. Liu, H. Wang, and Y. Ji 12 A Bidirectional WDM/TDM-PON Using DPSK Downstream Signals and a Narrowband AWG 12 Performance Evaluation of Trellis Code Modulated oDQPSK Using the KLSE Method 12 Experimental Study of MLSE Receivers in the Presence of Narrowband and Vestigial Sideband Optical Filtering 12 Long-Haul Optically Uncompensated IMDD Transmission With MLSE Using the M-Method 12 ANNOUNCEMENTS ANNOUNCEMENTS	Generation and Separation of Closely Separated Dual Baseband Channels for Provisioning of Independent Services in	
Hybrid Multicast Mode in All-Optical Networks X. Liu, H. Wang, and Y. Ji 12 A Bidirectional WDM/TDM-PON Using DPSK Downstream Signals and a Narrowband AWG 12 Performance Evaluation of Trellis Code Modulated oDQPSK Using the KLSE Method 12 Performance Evaluation of Trellis Code Modulated oDQPSK Using the KLSE Method 12 Experimental Study of MLSE Receivers in the Presence of Narrowband and Vestigial Sideband Optical Filtering 12 Long-Haul Optically Uncompensated IMDD Transmission With MLSE Using the M-Method 12 ANNOUNCEMENTS M. Visintin, P. Poggiolini, and G. Bosco 12	WDM-PON	1215
A Bidirectional WDM/TDM-PON Using DPSK Downstream Signals and a Narrowband AWG 122 Performance Evaluation of Trellis Code Modulated oDQPSK Using the KLSE Method 122 Performance Evaluation of Trellis Code Modulated oDQPSK Using the KLSE Method 124 Experimental Study of MLSE Receivers in the Presence of Narrowband and Vestigial Sideband Optical Filtering 124 Long-Haul Optically Uncompensated IMDD Transmission With MLSE Using the M-Method 124 ANNOUNCEMENTS 125	Hybrid Multicast Mode in All-Optical Networks	1212
N. Calabretta, M. Presi, R. Proietti, G. Contestabile, and E. Ciaramella 122 Performance Evaluation of Trellis Code Modulated oDQPSK Using the KLSE Method 124 September 2010 M. S. Kumar, H. Yoon, and N. Park 124 Experimental Study of MLSE Receivers in the Presence of Narrowband and Vestigial Sideband Optical Filtering 124 Long-Haul Optically Uncompensated IMDD Transmission With MLSE Using the M-Method 124 ANNOUNCEMENTS ANNOUNCEMENTS	A Bidirectional WDM/TDM-PON Using DPSK Downstream Signals and a Narrowband AWG	
Performance Evaluation of Trellis Code Modulated oDQPSK Using the KLSE Method 124	N. Calabretta, M. Presi, R. Proietti, G. Contestabile, and E. Ciaramella	1227
M. S. Kumar, H. Yoon, and N. Park 124 Experimental Study of MLSE Receivers in the Presence of Narrowband and Vestigial Sideband Optical Filtering 124	Performance Evaluation of Trellis Code Modulated oDQPSK Using the KLSE Method	10.15
Experimental Study of MLSE Receivers in the Presence of Natrowband and Vestigial Studband Optical Pritering 122 Long-Haul Optically Uncompensated IMDD Transmission With MLSE Using the M-Method	Experimental Study of MI SE Deceivers in the Presence of Nerrowband and Vestigial Sideband Optical Filtering	1245
Long-Haul Optically Uncompensated IMDD Transmission With MLSE Using the M-Method 123 ANNOUNCEMENTS ANNOUNCEMENTS	I M Gené P I Winzer R - I Essiambre S Chandrasekhar Y Painchaud and M Guy	1224
ANNOUNCEMENTS	Long-Haul Optically Uncompensated IMDD Transmission With MLSE Using the M-Method	1221
ANNOUNCEMENTS		1230
ANNOUNCEMENTS		
	ANNOUNCEMENTS	

Call for Papers for JDT Letters	1278
Call for Papers for JSTQE—THz Materials, Devices, and Applications	1279
Call for Papers for JLT-Nano-Optoelectronics and Applications	1280

Hybrid Multicast Mode in All-Optical Networks

Xin Liu, Hongxiang Wang, and Yuefeng Ji

Abstract—Although serial multicast mode (SMM) can increase the multicast success ratio (MSR) more than parallel multicast mode (PMM), it suffers from the signal impairment and the extra delay caused by the optical loop. In this letter, a novel hybrid multicast mode (HMM), which combines PMM and SMM, is proposed to mitigate those issues. Moreover, an HMM-based two-level-buffered all-optical multicast module is also proposed to further mitigate the signal impairment in this letter. Finally, with the simulations, a conclusion can be drawn that HMM can get higher MSR and lower average delay than both PMM and SMM.

Index Terms-Networks, optical communication.

I. INTRODUCTION

TRADITIONALLY, research of multicasting in all-optical networks has been focused on the issues of the parallel multicast mode (PMM), which is realized by a 1-to-n optical power splitter embedded in the optical switch matrix [1], [2] or a separated device producing n simultaneous optical multicast packets (OMPs) on n different wavelengths [3], [4]. To increase the multicast success ratio (MSR) and guarantee the quality of services of the multicasting, a novel serial multicast mode (SMM) was proposed in [5]. It can realize the copies of the input OMP exported serially.

However, in the SMM-based all-optical multicast module (AOMM/SMM), the extra delay and the signal impairments are incurred by the optical loop and the erbium-doped fiber amplifiers (EDFAs) [5]. Those issues limit the implementation of SMM in all-optical networks.

To reduce the signal impairment and the extra delay caused by SMM, a novel hybrid multicast mode (HMM) is proposed in this letter. It combines PMM and SMM, realizes the storage and duplication of the input OMP, and exports multiple copies each time. Differences among SMM, PMM, and HMM are illustrated in Fig. 1. Since each time there are multiple copies exported in HMM, the average extra delay caused by the optical loop will be lower than that of SMM.

The simplest way to realize HMM is to change the 1-to-2 optical power splitter of the AOMM/SMM to the 1-to-3 optical power splitter. As shown in Fig. 2(b), each time the OMP in the loop goes through the 1-to-3 optical power splitter, two copies will be exported from the HMM-based AOMM (AOMM/HMM). However, the signal impairment of the output OMPs from the AOMM/HMM is still the same as that from AOMM/

The authors are with the Key Laboratory of Optical Communication and Lightwave Technologies, Ministry of Education, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, China (e-mail: xin.liu@tom. com; wanghx@bupt.edu.cn; jyf@bupt.edu.cn).

Digital Object Identifier 10.1109/LPT.2007.901739

Optical Switch Matrix Embedded PMM (a) (c) (b) (d) Optical Switch Matrix Optical Switch Matrix (c) (b) (d) Optical Switch Matrix

Fig. 1. Difference among PMM, SMM, and HMM. (a) Embedded PMM [1], [2]. (b) Separated PMM [3], [4]. (c) SMM [5]. (d) HMM. Numbers 1–5 are the operational steps of the optical switch matrix.

Fig. 2. Structures of the AOMM/SMM and the AOMM/HMM. (a) Structure of AOMM/SMM [5]. (b) Structure of AOMM/HMM. AOWC: all-optical wavelength converter. OPSP: optical power splitter. OSW: optical switch.

SMM. To reduce the signal impairment, an HMM-based twolevel-buffered AOMM (TB-AOMM/HMM) is also proposed in this letter. It can decrease the circulation times of the OMPs in the all-optical loop with the two-level fiber delay lines (FDLs).

II. HMM-BASED TB-AOMM/HMM

The structure of the TB-AOMM/HMM is shown in Fig. 3. It is made up of two all-optical wavelength converters, three EDFAs, a 1-to-3 optical power splitter, a 1×2 optical switch, two FDLs, a 3-dB coupler, and a 3-dB splitter.

The functions of the all-optical wavelength converters, EDFA, and 1-to-3 optical power splitter are the same as those in the AOMM/SMM. FDL₁ and FDL₂ are used to buffer the copies of the input OMP created by the 3-dB splitter and the 1-to-3 optical power splitter, respectively. In accordance with the latency of the FDL in the AOMM/SMM, the latency of FDL₁ should be longer than the sum of the length of the

Manuscript received January 22, 2007; revised May 15, 2007. This work was jointly supported by the NSFC for the DYS Program (60325104), by the NSFC (60572021), by the National 863 Project (2006AA01Z238), by the PCSIRT (IRT0609), by the ISTCP (2006DFA11040), by the 111 Project (B07005), and by the Project in Network and Information Security Program of NSFC, China.

Fig. 3. Structure and application of the TB-AOMM/HMM. AOWC: all-optical wavelength converter. OPSP: optical power splitter. OSW: optical switch.

Fig. 4. Implementation of TB-AOMM/HMM. AOWC: all-optical wavelength converter. OPSP: optical power splitter. OSW: optical switch. $T_{\rm FDL}$ is the latency of the FDL₁.

maximal OMP in the network and the processing time of the multicast module. Concerning the latency of FDL_2 , it is twice the latency of FDL_1 . The optical switch is used to control the optical loop composed of the 1-to-3 optical power splitter, optical switch, $EDFA_3$, and FDL_2 . When the TB-AOMM/HMM is available, the optical switch connects the input of the 1-to-3 optical power splitter with the output of the 3-dB coupler.

As described in Fig. 3, when an OMP arrives, it will be switched to the input of the TB-AOMM/HMM by the optical switch matrix of the local node. Then, as shown in Fig. 4(a), since the input of the 1-to-3 optical power splitter is connected with the output of the 3-dB coupler by the optical switch, after the OMP goes through the 3-dB splitter, one of the two copies created by the 3-dB splitter will be buffered in FDL₁ [COPY₀ in Fig. 4(b)], and the other will go through the 1-to-3 optical

power splitter via the 3-dB coupler and the optical switch. When the copy goes through the 1-to-3 optical power splitter, three copies (COPY₁, COPY₂, and COPY_a) are generated, in which COPY_a enters FDL₂ and the other two copies are directly exported to the optical switch matrix via the EDFA and the all-optical wavelength converters, as shown in Fig. 4(b).

Then, $COPY_0$ starts to be exported from FDL_1 . The same as the other copy which is not buffered by FDL_1 , $COPY_0$ will go through the 1-to-3 optical power splitter via the 3-dB coupler and the optical switch. After time $T_{\rm FDL}$, which is the same as the latency of FDL_1 , another three copies (COPY₃, COPY₄, and $COPY_b$) are generated, in which $COPY_b$ enters FDL_2 and the other two copies are exported. As shown in Fig. 4(c), since the latency of FDL₂ is twice that of FDL₁, when COPY₃ and $COPY_4$ are exported, there are two copies ($COPY_a$ and $COPY_b$) being buffered in FDL₂. Before the first bit of $COPY_a$ exported, the optical switch should be rearranged to connect the input of the 1-to-3 optical power splitter with the output of FDL₂ to construct the optical loop composed of the 1-to-3 optical power splitter, optical switch, EDFA₃, and FDL₂. Hence, with the two copies (COPY_{α} and COPY_{β}) in FDL₂ and the optical loop, the TB-AOMM/HMM will export two copies (COPY_{2k-1} and $COPY_{2k}$, which are the kth (k > 1) output) each time until the loop is broken by the optical switch, as Fig. 4(d) shows.

Suppose that $(S/N)_0$ is the signal-to-noise ratio (SNR) of the input optical signal, δ is the noise figures of the EDFA, which is defined as the ratio of the input SNR to the output SNR of the EDFA, and *i* is the circulation times that the OMPs recirculate in the optical loop; based on the above illustration, we can obtain the SNR of the copy *n* exported from the TB-AOMM/HMM by (1). In addition, the SNR of the copy *n* exported from the AOMM/SMM and AOMM/HMM can also be obtained by (2) and (3), respectively,

$$(S/N)_n = \begin{cases} (S/N)_0 - (i+1) \times \delta, & n = 4i+1\\ (S/N)_0 - (i+1) \times \delta, & n = 4i+2\\ (S/N)_0 - (i+1) \times \delta, & n = 4i+3\\ (S/N)_0 - (i+1) \times \delta, & n = 4i+4 \end{cases} \\ \times \begin{pmatrix} i = 0, 1, 2, \dots\\ n = 1, 2, 3, \dots \end{pmatrix} (dB)$$
(1)

$$(S/N)_n = (S/N)_0 - (i+1) \times \delta, \quad n = i+1$$

 $\times (i = 0, 1, 2, ...) (dB)$ (2)

$$(S/N)_n = \begin{cases} (S/N)_0 - (i+1) \times \delta, & n = 2i+1\\ (S/N)_0 - (i+1) \times \delta, & n = 2i+2\\ \times \begin{pmatrix} i = 0, 1, 2, \dots\\ n = 1, 2, 3, \dots \end{pmatrix} (dB).$$
(3)

Fig. 5(a) plots the SNR impairment (decibels) against the output number of the copies from those multicast modules. From it, we can see that the signal impairment caused by the TB-AOMM/HMM is much less than that by the other two multicast modules, especially when more copies need to be exported.

Moreover, Fig. 5(b) plots the output number of the copies from those multicast modules against the circulation times of the OMPs recirculating in the optical loop. If we assume that SMM and HMM have the same tolerance of the signal impairment, which means that the maximum circulation times of the packets in SMM and HMM are the same, from Fig. 5(b), we can see that the TB-AOMM/HMM can export the most copies.

Fig. 5. Comparison of the signal impairment and the output number among AOMM/SMM, AOMM/HMM, and TB-AOMM/HMM. δ is the noise figure (NF) of the EDFA.

Fig. 6. MSR comparison among PMM, SMM, and HMM. k is the number of the wavelengths in each downstream path.

III. PERFORMANCE EVALUATIONS

In this section, MSR and the average multicast delay (AMD) among PMM, SMM, and HMM are investigated by simulations.

The network model, the traffic model, and the retransmission scheme we adopted here are the same as those in [5]. We consider the TB-AOMM/HMM in simulations and assume that the latency of its FDL₁ is the same as that of the FDL in the AOMM/SMM, which is defined as 10 μ s long. To limit the transmission delay, the times of the copies of an OMP exported from the TB-AOMM/HMM are assumed to be the same as those from the AOMM/SMM, which means that SMM and HMM will have the same maximal extra delay.

The MSR is defined as the ratio of the number of the OMPs that have been received by all the destination nodes to the number of the OMPs that have been sent by the source node (including all the retransmitted packets). That is, if an OMP is received by all the destination nodes after three times of re-transmission, the number of the OMPs that have been received by all the destination nodes is 1, the number of the OMPs that have been sent by the source node is 4, and the MSR is 25%. Simulation results are shown in Figs. 6 and 7.

It should be mentioned here that the higher simulation results (MSR and AMD of PMM and SMM) in this letter compared with those in [5] are due to the retransmission scheme. In detail, the retransmission scheme does not work adequately in [5] (although we defined the maximal retransmission times as 3 in [5], no packets are retransmitted twice or more times), and that is modified in this letter. With the modified scheme, more packets can be received by all the destination nodes under the same condition. That leads to the incompatibility of the simulations results between this letter and [5].

Fig. 7. Average transmission delay (AMD) comparison among PMM, SMM, and HMM. k is the number of the wavelengths in each downstream path.

Since each time two copies are exported from HMM, the number of the total output copies from HMM is twice that from SMM. When copies are exported from the multicast module, if there is more than one downstream link available, one more OMP can be transmitted in HMM than in SMM. Then, the remaining downstream links where the multicast has not been implemented in HMM will be one less than those in SMM. With the following copies exported, the remaining downstream links in HMM will have more opportunities to be scheduled than those in SMM. Consequently, as Fig. 6 shows, HMM can obtain the highest MSR among the three multicast modes.

Fig. 7 shows the AMD comparison among PMM, SMM, and HMM. Although the maximal extra delay of SMM and HMM are supposed to be the same, since each time more copies are exported from HMM than SMM, multicast on more downstream paths will be implemented during the same period. In addition, since the MSR of HMM is higher than that of PMM and SMM, there are more OMPs that do not need to be retransmitted in HMM than in PMM and SMM. As a result, the AMD of HMM is lower than that of PMM and SMM.

IV. CONCLUSION

A novel HMM and an HMM-based TB-AOMM/HMM are proposed in this letter. With the illustrations and the performance evaluations, conclusions can be drawn that the TB-AOMM/HMM can mitigate the signal impairment with the two-level FDL and that HMM can achieve higher multicast ratio and lower AMD than both PMM and SMM.

REFERENCES

- W. Zhuoran, N. Chi, and S. Yu, "2-to-4 optical multicast using active vertical coupler optical crosspoint switch matrix," *IEEE Photon. Technol. Lett.*, vol. 18, no. 1, pp. 286–288, Jan. 1, 2006.
- [2] S.-C. Lee, R. V., and S. Y., "Advanced optical packet switching functions using active vertical-couplers -based optical switch matrix," *IEEE J. Sel. Topics Quantum Electron.*, vol. 12, no. 4, pp. 817–827, Jul./Aug. 2006.
- [3] G. Contestabile, M. P., and E. C., "Multiple wavelength conversion for WDM multicasting by FWM in an SOA," *IEEE Photon. Technol. Lett.*, vol. 16, no. 4, pp. 1775–1777, Apr. 2004.
- [4] G. Contestabile, N. C., R. P., and E. C., "Double-stage cross-gain modulation in SOAs: An effective technique for WDM multicasting," *IEEE Photon. Technol. Lett.*, vol. 18, no. 1, pp. 181–183, Jan. 1, 2006.
- [5] X. Liu, H. W., and Y. J., "Serial multicast mode in all-optical networks," *IEEE Photon. Technol. Lett.*, vol. 18, no. 22, pp. 2416–2418, Nov. 15, 2006.