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Abstract

Land-cover characteristics have been considered in many ecological studies. Methods to identify these characteristics by
using remotely sensed time series data have previously been proposed. However, these methods often have a
mathematical basis, and more effort is required to better illustrate the ecological meanings of land-cover characteristics. In
this study, a method for identifying these characteristics was proposed from the ecological perspective of sustained
vegetation growth trend. Improvement was also made in parameter extraction, inspired by a method used for determining
the hyperspectral red edge position. Five land-cover types were chosen to represent various ecosystem growth patterns
and MODIS time series data were adopted for analysis. The results show that the extracted parameters can reflect ecosystem
growth patterns and portray ecosystem traits such as vegetation growth strategy and ecosystem growth situations.
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Introduction

Land-cover characteristics and their dynamics have captured

much attention in the field of ecology, since land-cover exerts a

huge influence over ecosystem biodiversity, water budget [1],

energy flow [2], and carbon cycling [3]. Remotely sensed time

series data provide an opportunity to identify land-cover

characteristics at the temporal scale, which often reflect the

features of ecosystem growth patterns. Ecosystem growth patterns

can be categorized into four types (adapted from [4]): (i)

undisturbed ecosystems; (ii) ecosystems that have suffered coverage

damage that either lasted the whole growing season or followed by

vegetation restoration in the growing season; (iii) ecosystems that

have suffered a phenology change that is expressed as either a shift

in the growing season or a shortened growing season; and (iv)

ecosystems that underwent changes in both coverage and

phenology. However, it is challenging to extract desired land-

cover characteristics while remaining independent of inter-annual

and inter-class variations [1]. Therefore, proper land-cover

characteristic identification methods are needed.

Methods that take into account the temporal features of time

series data to identify land-cover characteristics have been

developed in recent decades; such methods can be roughly

classified into two types. The first type is based on signals observed

at different temporal scales: vegetation information is often present

at seasonal and inter-annual scales, while noise typically has a

higher frequency. By decomposing data into different temporal

frequencies, noises can be excluded and parameters can be

obtained to reflect long-term trends or seasonal patterns. Research

based on this kind of method includes land-cover classification [5]

and long-term vegetation dynamic study [6]. However, the

ecological meaning of parameters obtained by this kind of method

is often limited, and the relations between parameters and land-

cover dynamics need further investigation. The second type of

methods is based on land surface phenological stages. The

phenological stages recognized by time series data include: (i)

constant low/no leaf period in winter when the vegetation is

dormant, (ii) rapid vegetation growth period in spring, (iii) a period

with relatively stable high aboveground biomass in summer, and

(iv) rapid senescence period in autumn [7]. Research based on

such methods can provide more detailed ecological information

(Table 1) that can be applied to study land surface phenology [8],

vegetation response to changing climate [9], zoology [10], and so

on.

Though methods based on phenological stages have been

widely used in ecological studies, phenological stages are often

detected based on mathematical criteria such as choosing a certain

threshold or detecting curve changes [8,11]. However, it is difficult

to choose a mathematically ideal technique [11], and different

analysis methods sometimes provide conflicting results on the same

research topic (such as the long-term greenup trend in North

America [8]). In this study, we propose a method to identify land-

cover characteristics from the ecological perspective of sustained

vegetation growth. During the analysis, phenological growth stages

were first identified based on sustained vegetation growth trends,

and parameters designed to reflect land-cover characteristics were

extracted accordingly. Improvement was also made in parameter
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extraction, which was inspired by a technique used for extracting

the hyperspectral red edge position.

Materials and Methods

Ethics Statement
As a field survey conducted for remote sensing research, we did

not conduct any activities concern field samplings of soil, plants, or

animals in the work. All lands where we conducted the survey are

non-fenced public areas and accessed to everyone, thus we do not

need to ask for any official permission.

Site Description
This study was conducted on the Chongming Island and the

Changxing Island, two alluvial islands in the mouth of the Yangtze

River, China (121u109490 –121u599100E, 31u17940 –31u549200N,

Fig. 1). The area is subject to the northern subtropical monsoon

climate, with an average annual temperature of 15.3uC and a total

annual precipitation around of 1000 mm. Several large land

reclamations have taken place since 1960s, the reclaimed areas are

much larger than ordinary farmland and neighboring areas are

often under the same land management schemes. Diverse land use

and a relatively large reclamation area make the study area

suitable for identifying land-cover characteristics with remote

sensing data.

Table 1. Summary of vegetation metrics used in time series analysis.

Vegetation metric Interpretation References

Greenup Time represents the start of growing season when plant grows and photosynthesis begins [10,21,22]

Maturity Time when green leaf area stabilizes with high photosynthesis activity [22]

Senescence Time when plant begins senescence either expressed by green biomass decrease or
reduced photosynthesis

[22]

Dormancy Time represents the end of growing season when photosynthesis reaches its minimum and
plants become dominant

[10,21,22]

Length of growing season Time span between greenup and dormancy which represents the duration of photosynthetic
activity

[10,21]

Maximum VI Highest VIs level in growing season [21]

Timing of maximum VI Time when VIs reaches its maximum [10,21]

Seasonal amplitude VIs value difference between vegetation dormancy and have the highest aboveground biomass [10,21]

Annual integration Sum of VIs values in growing season [21]

Greenup rate Growth rate during the period between greenup and mature [10,21]

Senescence rate Senescence rate during the period between senescence and dormancy [10,21]

doi:10.1371/journal.pone.0070079.t001

Figure 1. Location of the study area.
doi:10.1371/journal.pone.0070079.g001
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Table 2. Descriptions of different land-cover types in study area.

Land-cover types Description Vegetation coverage Disturbance pattern

Urban Urban area Low to medium No

Orchard Orange tree plantation area Low to medium No

Fallow Farmland where no farming activities conducted, usually
covered by natural herbaceous plants such as weed and
common reed

Medium to high No

Cropland-1 Single-cropping farmland with only rice planted from late May
to October

High Yes; Happened early in the year

Cropland-2 Double-cropping farmland with winter wheat planted from late
last November to early May and rice planted the same time as
cropland1

High Yes; Happened in the mid year

doi:10.1371/journal.pone.0070079.t002

Figure 2. Time series EVI2 data of land cover types processed before and after noise reduction methods.
doi:10.1371/journal.pone.0070079.g002

Identify Land-Cover Feature with Time Series Data

PLOS ONE | www.plosone.org 3 July 2013 | Volume 8 | Issue 7 | e70079



Analysis Preparation
Remote sensing data. A 250 m 8-day composite surface

reflectance data set (MOD09Q1) was used for this study. Satellite

quality assurance (QA) data were obtained for further noise

reduction, and selected data were derived from MOD09A1

because QA data from MOD09Q1 are insufficient to deliver the

actual condition. Remote sensing data for the year 2009, when

several field surveys were conducted, were used for analysis. All the

remote sensing data used were downloaded from NASA (LP

DAAC).

Vegetation indices (VIs) are specially designed indicators that

reflect certain properties, such as vegetation coverage (e.g., NDVI,

EVI & MSAVI) and land surface water content (e.g., LSWI). A

two-band EVI (EVI2) was selected in this study for its superiority

over the widely used NDVI [12]. EVI2 is calculated as follows:

EVI2~2:5|(N{R)=(Nz2:4|Rz1) ð1Þ

where N and R are reflectance in the near-infrared (NIR) and red

bands of MODIS data, respectively.

Field survey. In order to acquire the actual land-cover

conditions in different seasons, we conducted three field surveys

across the year of 2009. Before the first field survey, historical TM

and airborne imageries were studied in the laboratory to identify

the relatively homogenous regions for field surveys. During the

field surveys, a portable Global Position System (GPS) was used to

localize the target ground objects such as cultivated lands, fallow

lands, orchards, and buildings. To aid this task, color maps of TM

and airborne images were printed beforehand and taken with the

investigators for field checks. The field notes were also made and

taken to the laboratory for further analysis, such as location check,

classification and accuracy assessment.

Land-cover selection. The studied land-cover types were

chosen based on ecosystem growth patterns, and five land-cover

types (urban, orchard, fallow, and two types of croplands) were

chosen for further analysis (Table 2). Among them, urban,

orchard, and fallow were used to represent ecosystems that

experience a loss in coverage throughout the growing season;

cropland-2 was used to represent ecosystems with short-term

coverage loss; and cropland-1 was used to represent ecosystems

under a growing season shift. Since in the study area no land-cover

type showed the characteristics of ecosystems under a shortened

growing season, this ecosystem growth pattern was not included in

the present analysis. To better analyze land-cover characteristics,

remote sensing pixels that represent only one land-cover type were

used in the analysis.

Analysis Techniques
Noise reduction. The asymmetric Gaussian method [13]

and double logistic function [14] were chosen for noise reduction

in this study, since their ability to maintain the integrity of signals is

proven [15]. The Savitzky-Golay filter was also chosen since it

could capture detailed variations in time series data and has shown

good performance when applied in study related to China [16].

Noise reduction was achieved by using TIMESAT [13,17,18].

Ancillary weights of each data were set according to the QA data.

Weights were set at high values for best-quality data (described as

clear in QA data), at moderate values when data were acquired

under less ideal conditions (cloud shadow or mixed), and at low values

when data represent cloudy pixels. Fig. 2 shows the data of

different land-cover types represented by EVI2 before and after

noise reduction.

Phenological stages discrimination. Though rates of

changes in vegetation coverage may vary, the vegetation growth

trend inherited in each phenology stage (sustained increase/

decrease, or consistency) remained constant for a certain time;

therefore, we propose to discriminate phenological stages based on

the sustained vegetation growth trend. The sustained trend was

recognized by the following procedure: if the increment/decre-

ment between neighboring data was larger than a certain

numerical value (the theoretical increase/decrease threshold), we

defined it as an increase or a decrease; and if the increment/

decrement remained constant for some time (for instance more

than one month), the period would be identified as showing a

sustained increase/decrease trend. Time points (greenup, maturi-

ty, senescence, and dormancy; see Table 1) that separate these

phenological stages were identified accordingly. Greenup and

maturity were identified as the beginning and ending of the period

when vegetation showed a sustained increase trend, respectively;

the beginning and ending of the sustained decrease trend were

termed as senescence and dormancy, respectively.

The theoretical increase/decrease threshold was calculated as:

Threshold~(EVI2max{EVI2min)=n ð2Þ

where EVI2max represents the maximum value of each time series

data. Because the aboveground biomass of evergreen vegetation

may vary in winter, when calculating the theoretical increase/

decrease threshold, EVI2min used the minimum value in the first/

second half of the year, respectively. The variable n represents the

period when vegetation biomass increases/decreases. The length

of this period can be determined from long-term field observa-

tions. As the theoretical increase/decrease threshold is not

supposed to give a quantitative value, the time period used can

be longer than actual value. In this study, we simply assumed that

the growing season spans the whole year, with vegetation biomass

increase and decrease period accounting for half a year each.

Further, the corresponding number of MODIS data was used to

represent this period. If there were more than one sustained

increase periods, the first period was used to identify greenup and

maturity. Senescence and dormancy were identified in a similar

way, except that the last sustained decrease period was used for the

identification when more than one sustained decrease period

existed.

Figure 3. Diagram of parameter extraction from time series
vegetation index (VI) data. Blue points represent time points
separating different vegetation growth stages, while red points are
parts of the extracted parameters.
doi:10.1371/journal.pone.0070079.g003
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Parameters extraction. The time at which aboveground

biomass reaches its maximum (MT, a date) was first identified.

MT was extracted by extrapolating two straight lines across the

time points that discriminate phenological stages (Fig. 3). This

process was inspired by a technique used in hyperspectral analysis,

which stabilizes the red edge position when there are multiple

peaks in the first derivative curve of hyperspectral data [19]. The

EVI2 extracted on day MT was used to represent the maximum

vegetation coverage (VImax, dimensionless). If MOD09Q1 data

were missing for that day, VImax was linearly interpolated between

the previous and following data.

Two other parameters were further extracted to reflect the

vegetation growth status. The average increase rate (AIR,

dimensionless) between greenup and maturity was calculated to

Figure 4. Workflow of hierarchical scheme for land-cover classification. All thresholds that been used in different noise reduction methods
were same.
doi:10.1371/journal.pone.0070079.g004
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reflect how vegetation grows from the minimum vegetation

coverage to a relatively stable status. The mean EVI2 between

greenup and maturity (VIgm, dimensionless) focuses on the average

status in the sustained growing period

AIR~
Xb
a

DVIi

,
(Tgrowth{1) ð3Þ

VIgm~
Xb
a

VIi

,
Tgrowth ð4Þ

where a and b represent greenup and maturity respectively;Pb
a

DVIi represents the accumulated increments of EVI2 in the

sustained growing period (backslash region in Fig. 3);
Pb
a

VIi is the

EVI2 accumulation in the same period (slash region in Fig. 3);

Tgrowth represents the time span between greenup and maturity

(Fig. 3), and we used the number of MODIS data to represent this

period.

Different ecosystem growth patterns can be expressed by

parameter differentiations. Coverage differentiation would be

most evident for ecosystems that have suffered vegetation coverage

loss lasted the growing season, and the maximum vegetation

coverage (hence the values of VImax) would then reduce

accordingly. Since total vegetation coverage increase/decrease

status is related to the maximum coverage, the values of AIR and

VIgm will also decrease. In ecosystems that are under short-term

vegetation loss, VImax will more or less represent the coverage

during the period of vegetation damage and not the maximum

coverage in the growing season; therefore, VImax value will

decrease. However, the changes in phenology or total vegetation

coverage (and hence parameters of MT, AIR, and VIgm) depend

on the severity and duration of the damage. Phenology

differentiation is the most obvious characteristic of an ecosystem

undergoing a growing season shift, and the value of MT would

change accordingly. Ecosystems with shortened growing seasons

exhibit slight shifts of phenology and accelerated vegetation

coverage increase/decrease rates. All parameters would change in

ecosystems that undergo both coverage and phenological changes.

Land-cover classification. In order to test whether the

extracted parameters could be used for actual land-cover change

detection, a hierarchical classification scheme was adopted to

classify the studied land-cover types (Fig. 4). The parameters used

in each classification level were chosen based on the aim of the

classification, with each parameter aimed to discriminate only one

aspect of the land-cover (sparsely/densely planted, with/without

phenological shift, or high/low growth rate). For example, in this

study, both coverage and phenology in cropland-2 are distinct

from other land-cover types, hence three parameters, MT, VImax,

and AIR were chosen in the first classification level. Land-cover

types were not sub-classified artificially from each other if no

apparent differences in ecosystem features were detected.

Table 3. The mean value and standard deviation (SD) of parameters extracted from time series vegetation index (VI) data with
asymmetric Gaussian method (A), double logistic function (B), and Savitzky-Golay filter (C).

A MT VImax AIR VIgm

mean SD mean SD mean SD mean SD

Urban 200 12.493 0.198 0.035 0.043 0.006 0.149 0.006

Orchard 205 31.842 0.370 0.047 0.059 0.021 0.308 0.041

Fallow 194 10.799 0.496 0.052 0.167 0.025 0.318 0.033

Cropland-1 228 6.799 0.618 0.082 0.250 0.049 0.391 0.035

Cropland-2 166 12.356 0.200 0.070 0.223 0.031 0.327 0.028

B MT VImax AIR VIgm

mean SD mean SD mean SD mean SD

Urban 204 13.345 0.197 0.037 0.038 0.006 0.149 0.031

Orchard 216 26.139 0.372 0.047 0.053 0.019 0.310 0.043

Fallow 191 10.796 0.504 0.056 0.177 0.029 0.313 0.033

Cropland-1 229 10.878 0.625 0.085 0.252 0.067 0.390 0.040

Cropland-2 168 11.090 0.188 0.081 0.216 0.032 0.327 0.029

C MT VImax AIR VIgm

mean SD mean SD mean SD mean SD

Urban 189 20.587 0.188 0.081 0.034 0.015 0.140 0.037

Orchard 185 40.105 0.350 0.052 0.063 0.025 0.290 0.055

Fallow 192 10.531 0.495 0.069 0.154 0.041 0.288 0.055

Cropland-1 228 9.770 0.628 0.092 0.285 0.077 0.349 0.047

Cropland-2 169 12.665 0.199 0.076 0.229 0.032 0.331 0.035

doi:10.1371/journal.pone.0070079.t003
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The thresholds used for classification were set roughly according

to predefined criteria rather than on the basis of training data, and

hence all original data were used for validation. The thresholds

were defined by the following criteria. The threshold of VImax/

VIgm was set as the arithmetic mean value of soil background and

the highest/mean VI value of pixels with the highest vegetation

coverage. MT, being representative of phenological information,

would change in ecosystems under phenological changes. The

threshold of AIR was set as the arithmetic mean value of the

observed highest values and the lowest ones. All thresholds used in

classification are the same for data processed by different noise

reduction methods. Confusion matrixes were used to evaluate

classification accuracies.

Results

Basic Characteristics of Land-cover Types
The extracted parameters can reflect the basic characteristics of

different land-cover types (Table 3). MT value changes reflect

changes in vegetation phenology. In cropland-1, MT values

changes as the growing season has shifted, and these values are the

largest among all land-cover types. In cropland-2, since human

interference has actually altered vegetation phenology, the MT

values have also shifted and are the smallest of all land-cover types.

Urban, orchard, and fallow have intermediate MT values, which

reflects the fact that the vegetation phenology has not changed

here.

VImax reflect the changes in ecosystem coverage. Since

cropland-1 did not undergo vegetation coverage loss, this land-

cover type has the highest VImax values (Table 3). VImax values of

fallow, orchard, and urban decrease with reduced vegetation

coverage. Because the tree density in orchard areas is not high,

vegetation coverage of orchards is no larger than that of fallow

areas (as indicated in Fig. 5); hence, it is understandable that the

average VImax values of orchard are lower than those of fallow. In

cropland-2, as MT occurs during the time right after rice

transplantation at when the land is barely covered, the values of

VImax are not high.

AIR and VIgm are parameters that reflect vegetation growth

status. On the whole, the change patterns of AIR and VIgm values

are similar to those of VImax, with cropland-1 having the highest

values, followed by fallow and orchard, and urban areas having

the smallest values. However, in cropland-2, as VImax values do

not reflect the maximum vegetation coverage in the growing

season, AIR and VIgm values do not follow the trend exhibited in

VImax.

MT Results Evaluation
An evaluation was performed on MT results to illustrate the

variation in the values (Table 3), because although MT values are

quite similar for data processed by different noise reduction

methods in fallow, cropland-1, and cropland-2, the results of

urban and orchard varied with methods and much lower MT

values were obtained when using the Savitzky-Golay filter. As

there is no readily available evaluation method, we chose an

indirect means of assessment. VImax is based on the position of

MT, and a departure of MT from the time of the highest

aboveground biomass would result in a decrease in the VImax

value. Thus, the VImax value can serve as an indicator for MT

evaluation, and comparisons of VImax with the corresponding

maximum values of raw data are shown in Fig. 5. The asymmetric

Gaussian method and double logistic function provided satisfying

results; however, the coefficient of the relationship (R2) is much

lower when using the Savitzky-Golay filter, which indicates greater

errors in data processed by this method. Therefore, the observed

MT variations in Table 3 should be the result of unstable

performance of the Savitzky-Golay filter when it is applied for

areas with low vegetation coverage, as vegetation signals are weak

and more sensitive to noise in such areas. Cropland-2 was

excluded from this evaluation because its VImax values do not

reflect the maximum vegetation coverage in the growing season.

Ecosystem Traits Detection
Because the species composition varied among ecosystems, the

vegetation growth condition expressed at ecosystem scale differed,

Figure 5. Results evaluation by comparing derived VImax with
corresponding maximum values of raw data. Frames showed
results that obtained with asymmetric Gaussian method (A) (R2 = 0.944),
double logistic function (B) (R2 = 0.947), and Savitzky-Golay filter (C)
(R2 = 0.837) respectively.
doi:10.1371/journal.pone.0070079.g005
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and this trait is inherent in ecosystems. However, AIR and VIgm

cannot be used for direct detection of such differences, because the

influence of coverage would hide them. By using VImax, the

coverage differentiation can be partially minimized (Fig. 6), and

vegetation growth traits can be conveyed through slope changes.

The differences between vegetation growth rates are shown in

Fig. 6A, C, and E. In Fig. 6A and C, slopes of cropland-1 and

fallow are larger than those of urban and orchard, indicating that

under same coverage, cropland-1 and fallow grow faster. Although

intra-class variations in data processed by Savitzky-Golay filter are

larger than those in the data processed by the other two methods,

a similar pattern could also be observed (Fig. 6E). Since orchard

areas comprising woody plants and trees are the dominate urban

vegetation in the study area, the slope differences seen in the

figures indicate the differences between herbaceous vegetation and

woody plants, as herbaceous plants grow faster that woody plants

under suitable conditions.

The differences between ecosystem average growing conditions

are shown in Fig. 6 B, D, and F. In these figures, the slopes of

orchard are higher than those of cropland-1 and fallow, indicating

that the average coverage of orchard is larger at ecosystem level.

Since the woody plants in orchard are evergreen and herbaceous

plants senescence every year, the aboveground biomasses are

different when spring comes, therefore, the coverage of woody

plants increased faster. Because some of the trees are deciduous in

urban area, the slopes of urban are slightly lower than those of

orchard. Cropland-2 was excluded in this part of analysis since its

VImax values do not reflect the maximum vegetation coverage in

the growing season.

Classification Accuracy Assessment
Confusion matrixes were used to evaluate classification accura-

cy, (Table 4) and were made for data processed by each different

noise reduction method. All noise reduction methods achieve

relatively high overall classification accuracy. The user’s accuracy

of fallow is the lowest in all methods, and errors mainly arise from

misclassification of urban/orchard. In our study, the chosen land-

cover types are only based on actual land surface situations and we

Figure 6. The cross-comparisons among parameters extracted. The left column represent the comparisons between AIR and VImax obtained
via asymmetric Gaussian method (A), double logistic function (C), and Savitzky-Golay filter (E), respectively. The right column represent the
comparisons of VIgm with VImax by using asymmetric Gaussian method (B), double logistic function (D), and Savitzky-Golay filter (F).
doi:10.1371/journal.pone.0070079.g006
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did not set any predefined coverage criterion for data selection.

Therefore, the actual coverage of fallow, urban, and orchard can

overlap (also indicated in Fig. 5), and hence misclassifications are

acceptable.

Discussion

Phenological Stages Identification
Remote sensing phenological stages that used to extract land-

cover characteristics are often identified by discriminating the time

points that separate them. However, it is difficult to choose a

mathematically ideal method [11]. Furthermore, as these points

are timings that represent dynamic vegetation growth conditions,

it is difficult to directly evaluate the results from field phenology

observations, because the two kinds of data are not measured at

the same spatial scale and often represent different ground

phenological events [8]. Therefore, we turned to the sustained

vegetation growth trend that phenological stages inherently

exhibited, and time points were thus identified. In this identifica-

tion process, as the theoretical increase/decrease threshold is not

to give a precise quantitative value, the process can be flexible

when applied to large scale analysis. Besides, this method can

adjust itself according to the maximum and minimum values of the

time series data of each pixel. Although time points were only used

for later land-cover characteristic identification in this study, they

can also be used in land surface phenology research.

Land-cover Characteristics Identification
Parameters were extracted to reflect land-cover characteristics.

In this study, the time of highest vegetation biomass (MT) was

detected first, and the VI value that represented maximum

vegetation coverage (VImax) was identified accordingly. Compared

with commonly used methods [10], MT was extracted based on

temporal features of time series data rather than by using a single

maximum value, this makes it more resistant to variations caused

Table 4. Land classification accuracy assessments of data processed by different smoothing methods (A) asymmetric Gaussian
method, (B) double logistic function, and (C) Savitzky–Golay filter.

A Reference data

Classification Urban/orchard Fallow Cropland-1 Cropland-2 Total
User’s accuracy
(%)

Urban/orchard 144 5 0 29 178 80.90

Fallow 36 115 2 9 162 70.99

Cropland-1 0 2 19 0 21 90.48

Cropland-2 0 0 0 439 439 100

Total 180 122 21 477

Producer’s accuracy (%) 80 94.26 90.48 92.03

Overall accuracy: 89.63% Kappa: 0.825

B Reference data

Classification Urban/orchard Fallow Cropland-1 Cropland-2 Total User’s accuracy
(%)

Urban/orchard 147 5 0 34 186 79.03

Fallow 33 117 2 16 168 69.64

Cropland-1 0 0 19 0 19 100

Cropland-2 0 0 0 427 427 100

Total 180 122 21 477

Producer’s accuracy (%) 81.67 95.90 90.48 89.52

Overall accuracy: 88.75% Kappa: 0.811

C Reference data

Classification Urban/orchard Fallow Cropland-1 Cropland-2 Total User’s accuracy
(%)

Urban/orchard 144 29 0 18 191 75.39

Fallow 36 91 2 13 142 64.08

Cropland-1 0 1 19 0 20 95

Cropland-2 0 1 0 446 447 99.78

Total 180 122 21 477

Producer’s accuracy (%) 80 74.59 90.48 93.50

Overall accuracy: 87.5% Kappa: 0.786

Integers in tables represent the number of pixels that belongs to a certain classification condition.
doi:10.1371/journal.pone.0070079.t004
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by noise. In ecosystems where growth patterns change as a result

of disturbances (either in coverage or phenology caused by events

such as insect defoliation, windfall, and wildfire), the time points

and therefore MT would change consequently; hence, MT can

also be used as an indicator of disturbances. This is especially

convenient if an irregular growing season was caused by such a

disturbance. When MT is combined with VImax, subtle vegetation

damages can be more evident. However, the time points of

greenup and dormancy are sensitive to the start of spring and the

end of autumn, which make these time points vulnerable to inter-

annual meteorological variations. In order to obtain a more stable

inter-annual result of MT, adjustments such as use of meteorology

data or reference area are recommended.

AIR and VIgm can portray ecosystem traits that represent how

ecosystems grow. The trait difference between ecosystems with

different vegetation composition is especially evident when

coverage differences are minimized (Fig. 6). Though effort has

been made to discriminate land-cover types that have different

species composition by comparing growing season NDVI [20], this

method can further explore the temporal features of ecosystems.

Therefore, this method has potential for monitoring land-cover

changes caused by species variation (such as species invasion and

vegetation succession). Similar parameters extracted from vegeta-

tion biomass decrease period can also be used for detecting how

vegetation senescence. This kind of information could help us to

understand ecosystem changes in more detail, and help us to

further explore ecosystem processes and functions, as well as the

causes of the ecosystem changes.

Land-cover Classification
As the extracted parameters incorporated both spectral and

temporal features, land-cover characteristics can be better

explored. Results of this study show that this kind of land-cover

classification can achieve relatively satisfying results in practice.

Classification schemes that include these parameters will facilitate

land-cover mapping in complicated situations, such as in regions

where the differences between land-cover types are subtle, or in

areas with irregular growing seasons.

The Performance of Noise Reduction Methods
Although an 8-day composition scheme is adopted in MODIS

products, the presence of cloud remains a problem in retrieving

land-cover characteristics in our study area. Therefore, the

performance of noise reduction methods affects the ultimate

results. Our results show that the asymmetric Gaussian method

and double logistic function performed better than the Savitzky-

Golay filter, and that some apparent discrepancies exist in the

Savitzky-Golay filter. For example, in Fig. 5C some VImax values

in urban are obviously larger than the maximum values of raw

data (such as 0.380 of VImax corresponds to 0.201 of maximum

raw data). This indicates larger errors in the noise reduced data,

and indicates that the Savitzky-Golay filter is less robust in areas

where vegetation is sparse and noises are frequent. It further

confirms a conclusion obtained by [15] that the asymmetric

Gaussian method and double logistic function can maintain the

integrity of signals and that the Savitzky-Golay filter is sensitive to

noise. Our results also give a direct illustration that the Savitzky-

Golay filter is not suitable to deal with noise contaminated data at

the seashore.

Conclusion and Outlook
In this study, we tried to identify land-cover characteristics

based on the consideration of sustained vegetation growth trends.

During this process, an improvement was also made by simulating

a method used for determining the hyperspectral red edge

position. Our results show that this method can capture ecosystem

growth patterns and more detailed ecosystem traits such as species

growing strategy and ecosystem growth status. This method has a

potential in land-cover dynamic studies related to vegetation

coverage and composition changes (such as ecosystem damage

evaluation, invasive species monitoring, and vegetation succession

validation), and also in land surface phenology monitoring. When

combined with auxiliary data, such as soil properties, or carbon

fluxes between land surface and atmosphere, improvement in the

understanding of human-environment interactions and influence

of changes in one ecosystem on another can be conceived.
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