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Abstract In this paper, we consider the local discontinuous Galerkin (LDG)
finite element method for one-dimensional linear time-fractional Tricomi-
type equation (TFTTE), which is obtained from the standard one-dimensional
linear Tricomi-type equation by replacing the first-order time derivative with a
fractional derivative (of order α, with 1 < α ≤ 2). The proposed LDG is based
on LDG finite element method for space and finite difference method for
time. We prove that the method is unconditionally stable, and the numerical
solution converges to the exact one with order O(hk+1 + τ 2), where h, τ and
k are the space step size, time step size, polynomial degree, respectively. The
comparison of the LDG results with the exact solutions is made, numerical
experiments reveal that the LDG is very effective.
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1 Introduction

Fractional differential equations (FDEs) is considered as the generalization
of the classical (or integer order) differential with a history of at least three
hundred years. It can be dated back to Leibniz’s letter to L’Hospital, in which
the meaning of the one-half order derivative was first discussed [1]. Although
it has such a long history, its research still stay in the realm of theory, due to the
lack of proper mathematical analysis methods and real applications. However,
the use of FDEs in mathematical models has become increasingly popular
in recent years. Different models using FDEs have been proposed in more
and more fields, such as in viscoelastic mechanics, power-law phenomenon in
fluid and complex network, allometric scaling laws in biology and ecology,
electromagnetic waves, quantum evolution of complex systems, and so on.
For example, the nonlinear oscillation of earthquake can be modeled with
fractional derivatives [2], and the fluid-dynamic traffic model with fractional
derivatives [3] can eliminate the deficiency arising from the assumption of
continuum traffic flow. On the basis of experimental data, fractional partial
differential equations for seepage flow in porous media are suggested in [4].
A review of some applications of fractional derivatives in continuum and
statistical mechanics is given by Mainardi [5].

FDEs gain the advantage over the classical one in modeling some materials
with memory, heterogeneity or inheritable character. Most of the FDES can-
not be solved exactly, approximate and numerical methods must be used. The
modeling progress on using FDEs has led to increasing interest in developing
numerical schemes for their solutions. Several methods have been introduced
to solve FDEs and differential equations, the popular Laplace transform
method [1, 6], the spline collocation method [7], the finite difference/spectral
method [8–16], the Fourier transform method [17], the iteration method [18]
and the operational method [19], the homotopy perturbation/analysis method
[20–28], and so on.

In the present paper we use the LDG to construct the numerical solution to
Tricomi-type equation with time-fractional derivatives of the form,

⎧
⎨

⎩

Dα
t u(x, t) − t2κ�u(x, t) = f (x, t), (x, t) ∈ � × [0, T],

u(x, t) |t=0= u0(x),
∂u(x, t)

∂t
|t=0= u1(x), x ∈ � = [a, b ],

(1)

where 1 < α ≤ 2, κ is a real non-negative number, Dα
t := ∂α

∂tα (defined as
Definition 1.1) denotes the Caputo fractional derivatives in time and f (x, t)
is given function. � is the differential operator

�u(x, t) := ∂2u(x, t)
∂x2

= uxx.
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When α = 2, κ = 1/2 and f (x, t) ≡ 0, (1) is the linear Tricomi equation.
This is why (1) is said to be of Tricomi-type. In 1923, Tricomi [29] initiated
work on boundary value problems for a linear partial differential operator
of mixed type and related equations of variable type (for t > 0 the Tri-
comi equation is hyperbolic, while for t < 0 it is elliptic). In 1945, Frankl
[30] drew attention to the fact that the Tricomi problem was closely con-
nected to the study of gas flows with nearly sonic speeds. More precisely,
the Tricomi equation describes the transition from subsonic flow (elliptic
region) to supersonic flow (hyperbolic region). In [31–35] one can find
more about applications of the Tricomi equation. For α = 2, the motivation
to investigate the problem for (1) comes from physical problems of gas
dynamics [31].

In this paper, we aim to effectively employ the LDG method to establish
the numerical solutions for (1). The discontinuous Galerkin (DG) method has
several attractive properties. First, it can be easily designed for any order of
accuracy. Meanwhile, since the order of accuracy can be locally determined
in each cell independently, it is flexible for arbitrary p adaptivity. Second,
we can use arbitrary triangulations even those with hanging nodes, which is
different from the traditional finite element method. So arbitrary h adaptivity
is allowed. Third, Since the solution in each cell needs to communicate only
with the immediate neighbors, the method has excellent parallel efficiency.
Finally, we can prove its nonlinear stability results easily by choosing the
numerical fluxes carefully. Discontinuous Galerkin methods are a class of
finite element methods using completely discontinuous basis functions, which
are usually chosen as piecewise polynomials. Since the basis functions can
be completely discontinuous, these methods have the flexibility which is not
shared by typical finite element methods. The first DG method was introduced
in 1973 by Reed and Hill [36], in the framework of neutron transport, i.e.
a time independent linear hyperbolic equation. A major development of the
DG method is carried out by Cockburn et al. in a series of papers [37–40]. It
is difficult to apply the DG method directly to the equations with higher order
derivatives. This is because the solution space, which consists of piecewise
polynomials discontinuous at the element interfaces, is not regular enough
to handle higher derivatives. The idea of LDG methods for time dependent
partial differential equations with higher derivatives, is to rewrite the equation
into a first order system, then apply the DG method on the system. A key
ingredient for the success of such methods is the correct design of interface
numerical fluxes. These fluxes must be designed to guarantee stability and
local solvability of all the auxiliary variables introduced to approximate the
derivatives of the solution. The first LDG method was developed by Cockburn
and Shu [41], for the convection diffusion equation containing second deriva-
tives. The local solvability of all the auxiliary variables is why the method is
called a “local” DG method in [41]. The LDG method has been successfully
applied to solve many types of linear and nonlinear problems in science and
engineering by many authors [42–53] and also been used to solve fractional
differential equations [54].
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Definition 1.1 [6] The fractional derivative in the Caputo sense of u(t) ∈
Cm

−1, m ∈ N, t > 0 is defined as

Dα
t u(t) =

⎧
⎪⎪⎨

⎪⎪⎩

1

�(m − α)

∫ t
0 um(s)

ds
(t − s)1+α−m

for m − 1 < α < m,

dm

dtm
u(t) for α = m,

(2)

where �(•) is the Gamma function.

2 The LDG method for one-dimensional TFTTEs

As before, we assume that the following mesh to cover the computational
domain � = [a, b ], consisting of cell Ii = [xi− 1

2
, xi+ 1

2
], for 1 ≤ i ≤ M, where

a = x 1
2

< x 3
2

< · · · < xN+ 1
2

= b . We denote �xi = xi+ 1
2
− xi− 1

2
, 1 ≤ i ≤ M; h =

max
1≤i≤M

�xi. And denote by u+
i+ 1

2
and u−

i+ 1
2

the values of u at xi+ 1
2
, respectively,

from the right cell Ii+1 and from the left cell Ii. [u]i+ 1
2

= u+
i+ 1

2
− u−

i+ 1
2

denotes

the jump of the function u at the cell interfaces.
We define a finite element space consisting of piecewise polynomials

Vk
h = {v : v|Ii ∈ Pk(Ii), 1 ≤ i ≤ M}, (3)

where Pk(Ii) denotes the set of polynomials of degree up to k defined on
the cell Ii. In order to prove the convergence of the scheme, we need the
projections P and P

± in [a, b ], such that for each i,
∫

Ii

(Pω(x) − ω(x))v(x)dx = 0, ∀v ∈ Pk(Ii);
∫

Ii

(P+ω(x) − ω(x))v(x)dx = 0, ∀v ∈ Pk−1(Ii) and P
+ω
(

x+
i− 1

2

)
= ω

(
xi− 1

2

)
;

∫

Ii

(P−ω(x) − ω(x))v(x)dx = 0, ∀v ∈ Pk−1(Ii) and P
−ω
(

x−
i+ 1

2

)
= ω

(
xi+ 1

2

)
.

(4)

Notice that these projections are used in the error estimates of the LDG
methods to derive optimal L2 error bounds in the literature. There are some
approximation results for the projections [42, 46]

‖ωe‖ + h‖ωe‖∞ + h
1
2 ‖ωe‖τh ≤ Cuhk+1, (5)

where ωe = Pω − ω or ωe = P
±ω − ω. Here and below Cu (which may not have

the same value in different places) is a generic constant depending on u and its
derivatives but independent of h. τh denotes the set of boundary points of all
elements Ii. We use C depending on u, T and α to denote a positive constant
which may have a different value in each occurrence. The norm ‖ • ‖ denotes
the L2 norm on �.
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In order to introduce the numerical scheme for the solution of (1), we need
to divide the time space into N cells, where N is a positive integer. Let tn := nτ ,
where τ := T/N is the time step, n = 0, 1, · · · , N be mesh points. The time-
fractional derivative Dα

t u(x, tn) at tn is estimated in [55] as following

Dα
t u(x, tn) = τ−α

�(3 − α)

n∑

j=1

b n− j(u(x, t j) − 2u(x, t j−1) + u(x, t j−2)) + E(n)
τ (x),

(6)
where b n− j = (n − j + 1)2−α − (n − j)2−α > 0 and 1 = b 0 > b 1 > b 2 > · · · >

b n = 0 as n → ∞. In particular, for j = 1, denote u(x, t−1) ≈ u−1 = u(x, 0) −
τu′(x, 0) = u0(x) − τu1(x).

As analysis in [55], we can get the following lemma.

Lemma 2.1 [55] The truncation error E(n)
τ (x) def ined by (6) is bounded by

‖E(n)
τ (x)‖ ≤ CM1T2−α

�(3 − α)
τ + o(τ 2) ≤ Cτ, (7)

where M1 is the upper bound of | ∂3

∂t3 u(x, t)| and C is a constant depending on
u, T and α.

The LDG scheme is formulated based on rewriting (1) into a first-order
system,

{
Dα

t u(x, t) − t2κqx = f (x, t),
q − ux = 0.

(8)

Let u−1
h , un

h and qn
h be the approximation of u−1, u(x, tn) and q(x, tn), respec-

tively. And let f n = f (x, tn). First, we can get the weak form of (1) at t1 by (6)
and (8),
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∫

�
u(x, t1)vdx + λβ

{
∫

�
q(x, t1)vxdx −

M∑

i=1

[
(q(x, t1)v−)i+ 1

2
− (q(x, t1)v+)i− 1

2

]}

= 2
∫

�
u(x, t0)vdx − ∫

�
u(x, t−1)vdx − β

∫

�
E(1)

τ (x)vdx + β
∫

�
f 1vdx;

∫

�
q(x, t1)ωdx + ∫

�
u(x, t1)ωxdx −

M∑

i=1

{
(u(x, t1)ω−)i+ 1

2
− (u(x, t1)ω+)i− 1

2

}
= 0,

(9)
For n = 1, the fully discrete local discontinuous Galerkin scheme becomes:

find u1
h, q1

h ∈ Vk
h , such that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∫

�
u1

hvdx + λβ

{
∫

�
q1

hvxdx −
M∑

i=1

[(
q̂1

hv
−
)

i+ 1
2

−
(

q̂1
hv

+
)

i− 1
2

]}

= 2
∫

�
u0

hvdx − ∫
�

u−1
h vdx + β

∫

�
f 1vdx;

∫

�
q1

hωdx + ∫
�

u1
hωxdx −

M∑

i=1

{(
û1

hω
−
)

i+ 1
2

−
(

û1
hω

+
)

i− 1
2

)

}

= 0,

(10)

hold for any v, ω ∈ Vk
h .
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Next, we can get the weak form of (1) at tn by (6) and (8) for n = 2, 3, · · · , N,
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫

�
u(x, tn)vdx + λβ

{ ∫

�
q(x, tn)vxdx −

M∑

i=1
[(q(x, tn)v−)i+ 1

2
− (q(x, tn)v+)i− 1

2
]}

=
n−1∑

j=2
(−b j + 2b j−1 − b j−2)

∫

�
u(x, tn− j)vdx + (2b n−1 − b n−2)

∫

�
u(x, t0)vdx

− b n−1
∫

�
u(x, t−1)vdx + (2b 0 − b 1)

∫

�
u(x, tn−1)vdx − β

∫

�
E(n)

τ (x)vdx

+ β
∫

�
f nvdx;

∫

�
q(x, tn)ωdx + ∫

�
u(x, tn)ωxdx −

M∑

i=1

{
(u(x, tn)ω−)i+ 1

2
− (u(x, tn)ω+)i− 1

2

}
= 0.

(11)
Then the fully discrete local discontinuous Galerkin scheme becomes: find
un

h, qn
h ∈ Vk

h , such that
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫

�
un

hvdx + λβ

{
∫

�
qn

hvxdx −
M∑

i=1

[(
q̂n

hv
−)

i+ 1
2
− (q̂n

hv
+)

i− 1
2

]}

=
n−1∑

j=2
(−b j + 2b j−1 − b j−2)

∫

�
un− j

h vdx + (2b n−1 − b n−2)
∫

�
u0

hvdx

−b n−1
∫

�
u−1

h vdx + (2b 0 − b 1)
∫

�
un−1

h vdx + β
∫

�
f nvdx;

∫

�
qn

hωdx + ∫
�

un
hωxdx −

M∑

i=1

{(
ûn

hω
−)

i+ 1
2
− (ûn

hω
+)

i− 1
2

}
= 0,

(12)

hold for any v, ω ∈ Vk
h . Where λ = (nτ)2κ , β = τα�(3 − α).

The “hat” terms in (12) in the cell boundary terms from integration by parts
are the so-called “numerical fluxes”, in order to ensure stability, the alternating
fluxes can be chosen as

(a) : ûn
h = (un

h)
−, q̂n

h = (qn
h)

+ or (b) : ûn
h = (un

h)
+, q̂n

h = (qn
h)

−. (13)

We remark that the choice for the fluxes (13) is not unique. In fact the crucial
part is taking ûn

h and q̂n
h from opposite sides. About the “numerical fluxes”, one

can refer [43, 56].

3 Stability analysis and error estimates of LDG

In order to simplify the notations and without loss of generality, we consider
the case f ≡ 0 in stability analysis and error estimates. And the following
Lemma 3.1 is needed.

Lemma 3.1 Let u−1 = u(x, 0) − τu′(x, 0)=u0(x) − τu1(x) and e−1 =u(x, t−1)−
u−1, then

|e−1| ≤ Cuτ
2 and ‖u−1

h ‖ ≤ Cu(‖u0
h‖ + τ‖u1(x)‖), (14)

in which Cu is a constant depending on u.
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Proof We first show that |e−1| ≤ Cuτ
2. By the definition of e−1 and using

Taylor expansion, we get that

|e−1| = |u(x, t−1) − u−1| = |u(x, t−1) − u(x, 0) + τu′(x, 0)|

= τ 2

2
u′′(x, 0) + o(τ )3 ≤ Cuτ

2.

Next, we will show that ‖u−1
h ‖ ≤ C(‖u0

h‖ + τ‖u1(x)‖). We know that

∫

�

u−1
h vdx =

∫

�

P(u0(x) − τu1(x))vdx =
∫

�

(u0
h − τu1(x))vdx

hold for any v ∈ Vk
h . Taking v = u−1

h and by the fact
∫

�
uvdx ≤ 1

4‖u‖2 + ‖v‖2,
we can get that

‖u−1
h ‖2 =

∫

�

u−1
h u−1

h dx =
∫

�

u0
hu−1

h dx −
∫

�

τu1(x)u−1
h dx

≤ 1

4
‖u−1

h ‖2 + ‖u0
h‖2 + 1

4
‖u−1

h ‖2 + τ 2‖u1(x)‖2,

therefore, we can obtain that

‖u−1
h ‖ ≤ Cu(‖u0

h‖ + τ‖u1(x)‖), (15)

where C is a constant depending on u, T and α. Then the lemma is proved. ��

Let e−1
u = u(x, t−1) − u−1

h . By the Lemma 3.1 and using the property (5), we
can get the following result, which will be used in the proof of Theorem 3.3,

‖u(x, t−1) − u−1
h ‖ ≤ Cu(hk+1 + τ 2). (16)

For the fully discrete (10) for n = 1 and (12) for n ≥ 2, we have the following
stability result.

Lemma 3.2 For periodic or compactly supported boundary conditions, the fully
discrete LDG scheme (12) ((10) for n = 1) is unconditionally stable in the sense
that for all τ > 0 and h > 0, it holds

‖un
h‖ ≤ C(‖u0

h‖ + τ‖u1(x)‖), n = 1, 2, · · · , N, (17)

where C is a constant and depends on T, α and u.
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Proof We only prove for the flux choice (13)-(b). If we use (13)-(a), the proof
is similar and is thus omitted here.

If we take v = un
h, ω = λβqn

h and the flux as (13)-(b). For periodic or
compactly supported boundary conditions, we can get that

λβ

{∫

�

qn
hvxdx − β

M∑

i=1

[(
q̂n

hv
−)

i − (q̂n
hv

+)
i−1

]
}

+
∫

�

un
hωxdx −

M∑

i=1

{(
ûn

hω
−)

i − (ûn
hω

+)
i−1

}

= λβ

∫

�

qn
h(u

n
h)xdx − λβ

M∑

i=1

[
((qn

h)
−(un

h)
−)i − ((qn

h)
−(un

h)
+)i−1

]

− λβ

∫

�

qn
h(u

n
h)xdx + λβ

M∑

i=1

{
((qn

h)
−(un

h)
−)i − ((qn

h)
+(un

h)
+)i−1

}

− λβ

M∑

i=1

{
((un

h)
+(qn

h)
−)i − ((un

h)
+(qn

h)
+)i−1

}

= λβ

M∑

i=1

{
((qn

h)
−(un

h)
+)i−1 − ((un

h)
+(qn

h)
−)i
}

= 0.

Therefore, if we take v = un
h, ω = λβqn

h in (12) and the flux as (13)-(b), by
simple computation, we can get that

‖un
h‖2 + λβ‖qn

h‖2

=
n−1∑

j=2

(−b j + 2b j−1 − b j−2)

∫

�

un− j
h un

hdx + (2b n−1 − b n−2)

∫

�

u0
hun

hdx

− b n−1

∫

�

u−1
h un

hdx + (2b 0 − b 1)

∫

�

un−1
h un

hdx. (18)

We will prove the inequality (17) by induction. When n = 1, by (10) we have

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∫

�
u1

hvdx + λβ

{
∫

�
q1

hvxdx −
M∑

i=1

[(
q̂1

hv
−
)

i+ 1
2

−
(

q̂1
hv

+
)

i− 1
2

]}

= ∫
�

(
2u0

h − u−1
h

)
vdx;

∫

�
q1

hωdx + ∫
�

u1
hωxdx −

M∑

i=1

{(
û1

hω
−
)

i+ 1
2

−
(

û1
hω

+
)

i− 1
2

}

= 0.

(19)
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Taking v = u1
h, ω = λβq1

h in (19), by Lemma 3.1 and the fact
∫

�
uvdx ≤

‖u‖‖v‖, we have

‖u1
h‖2 + λβ‖q1

h‖2 =
∫

�

(2u0
h − u−1

h )u1
hdx ≤ (2‖u0

h‖ + ‖u−1
h ‖)‖u1

h‖,

which means that

‖u1
h‖ ≤ C(‖u0

h‖ + ‖u−1
h ‖) ≤ C(‖u0

h‖ + τ‖u1(x)‖).

Assuming that ‖un
h‖ ≤ C(‖u0

h‖ + τ‖u1(x)‖) holds for n = J(J < N), we want
to prove that it holds for n = J + 1. For n = J + 1, by (18) we get that

‖uJ+1
h ‖ ≤

J∑

j=2

| − b j + 2b j−1 − b j−2|‖uJ+1− j
h ‖ + |2b J − b J−1|‖u0

h‖

+ b J‖u−1
h ‖ + (2b 0 − b 1)‖uJ

h‖.

Using b 0 = 1, by Lemma 3.1 and the induction assumption, we obtain

‖uJ+1
h ‖ ≤ C

⎛

⎝
J∑

j=2

| − b j + 2b j−1 − b j−2| + |2b J − b J−1| + b J + 2 − b 1

⎞

⎠

× (‖u0
h‖ + τ‖u1(x)‖)

≤ C

⎛

⎝
J∑

j=2

|b j−1 − b j| + |b j−2 − b j−1| + b J + b J−1 + 2 − b 1

⎞

⎠

× (‖u0
h‖ + τ‖u1(x)‖)

= 3C(‖u0
h‖ + τ‖u1(x)‖) = C(‖u0

h‖ + τ‖u1(x)‖),

and we are done. ��

Next, we will present and prove the main convergence theorem.

Theorem 3.3 Let u(x, tn) be the exact solution of (1) and un
h be the numerical

solution of the fully discrete LDG scheme (12) ((10) for n = 1). Then

‖u(x, tn) − un
h‖ ≤ C(hk+1 + τ 2), n = 1, 2, · · · , N, (20)

where C is a constant and depends on T, α and u.
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Proof We denote

{
en

u = u(x, tn) − un
h = P

+en
u − [P+u(x, tn) − u(x, tn)],

en
q = q(x, tn) − qn

h = P
−en

q − [P−q(x, tn) − q(x, tn)].
(21)

In order to finish the proof of this theorem, we need to show that

‖P
+en

u‖ ≤ C(hk+1 + τ 2), (22)

then using (21), the triangle inequality and the property (5), we can finish the
proof of the theorem.

Combining (11) with (12) and using (21), by calculating we obtain that

∫

�

P
+en

uvdx + λβ

{∫

�

P
−en

qvxdx −
M∑

i=1

[((
P

−en
q

)−
v−
)

i+ 1
2

−
((

P
−en

q

)−
v+
)

i− 1
2

]}

+
∫

�

P
−en

qωdx +
∫

�

P
+en

uωxdx −
M∑

i=1

{((
P

+en
u

)+
ω−
)

i+ 1
2

−
((

P
+en

u

)+
ω+
)

i− 1
2

}

=
∫

�

[
P

+u(x, tn) − u(x, tn)
]
vdx

+ λβ

{∫

�

[
P

−q(x, tn) −q(x, tn)
]
vxdx−

M∑

i=1

[((
P

−q(x, tn) − q(x, tn)
)−

v−
)

i+ 1
2

−
((

P
−q(x, tn) − q(x, tn)

)−
v+
)

i− 1
2

]}

+
∫

�

[
P

−q(x, tn) − q(x, tn)
]
ωdx +

∫

�

[
P

+u(x, tn) − u(x, tn)
]
ωxdx

−
M∑

i=1

{
((P+u(x, tn) − u(x, tn))+ω−)i+ 1

2
− ((P+u(x, tn) − u(x, tn))+ω+)i− 1

2

}

+
n−1∑

j=2

(−b j + 2b j−1 − b j−2)

∫

�

{
P

+en− j
u − [P+u(x, tn− j) − u(x, tn− j)]

}
vdx

+ (2b n−1 − b n−2)

∫

�

{
P

+e0
u − [P+u(x, t0) − u(x, t0)]

}
vdx − b n−1

∫

�

e−1
u vdx

+ (2b 0−b 1)

∫

�

{
P

+en−1
u − [P+u(x, tn−1) − u(x, tn−1)]

}
vdx−β

∫

�

En
τ (x)vdx.

(23)
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Taking v = P
+en

u and ω = λβP
−en

q in (23), and using the properties (4), we
can get the following result,

∫

�

(
P

+en
u

)2
dx + λβ

∫

�

(
P

−en
q

)2
dx

=
∫

�

[
P

+u(x, tn) − u(x, tn)
]
P

+en
udx

− λβ

M∑

i=1

{{[P−q(x, tn) − q(x, tn)]−
(
P

+en
u
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i+ 1

2

− {[P−q(x, tn) − q(x, tn)]−
(
P

+en
u

)+}
i− 1

2

}
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∫

�

[
P
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P

−en
qdx

− λβ
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P

−en
q
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i+ 1

2

− {[P+u(x, tn) − u(x, tn)
]+(

P
−en

q

)+}
i− 1

2

}

+
n−1∑

j=2

(− b j + 2b j−1 − b j−2
)

×
∫

�

{
P

+en− j
u − [P+u(x, tn− j) − u(x, tn− j)]

}
P

+en
udx

+ (2b n−1 − b n−2)

∫

�

{
P

+e0
u − [P+u(x, t0) − u(x, t0)]

}
P

+en
udx

− b n−1

∫

�

e−1
u P

+en
udx

+ (2b 0 − b 1)

∫

�

{
P

+en−1
u − [P+u(x, tn−1) − u(x, tn−1)]

}
P

+en
udx

− β

∫

�

En
τ (x)vdx. (24)

By (24) and the fact that AB ≤ 1
2 A2 + 1

2 B2, the following inequality holds,

‖P
+en

u‖2 + λβ‖P
−en

q‖2

≤
{
‖P

+u(x, tn) − u(x, tn)‖ +
n−1∑

j=2

| − b j + 2b j−1 − b j−2|‖P
+en− j

u ‖

+
n−1∑

j=2

| − b j + 2b j−1 − b j−2|‖P
+u(x, tn− j) − u(x, tn− j)‖
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+ |2b n−1 − b n−2|‖P
+e0

u‖ + |2b n−1 − b n−2|‖P
+u(x, t0) − u(x, t0)‖

+ b n−1‖e−1
u ‖ + (2b 0 − b 1)‖P

+en−1
u ‖

+ (2b 0 − b 1)‖P
+u(x, tn−1) − u(x, tn−1)‖

+ β‖En
τ (x)‖

}
‖P

+en
u‖ + λβ‖P
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−en

q‖

≤ 1

2
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j=2

| − b j + 2b j−1 − b j−2|‖P
+en− j

u ‖

+
n−1∑

j=2

| − b j + 2b j−1 − b j−2|‖P
+u(x, tn− j) − u(x, tn− j)‖

+ |2b n−1 − b n−2|‖P
+e0

u‖ + |2b n−1 − b n−2|‖P
+u(x, t0) − u(x, t0)‖

+ b n−1‖e−1
u ‖ + (2b 0 − b 1)‖P

+en−1
u ‖

+ (2b 0 − b 1)‖P
+u(x, tn−1) − u(x, tn−1)‖

+ β‖En
τ (x)‖

}2 + 1

2
‖P

+en
u‖2

+ 1

2
λβ‖P

−q(x, tn) − q(x, tn)‖2 + 1

2
λβ‖P

−en
q‖2,

(25)
which means that

‖P
+en

u‖2

≤
⎧
⎨

⎩
‖P

+u(x, tn) − u(x, tn)‖ +
n−1∑

j=2

| − b j + 2b j−1 − b j−2|‖P
+en− j

u ‖

+
n−1∑

j=2

| − b j + 2b j−1 − b j−2|‖P
+u(x, tn− j) − u(x, tn− j)‖

+ |2b n−1 − b n−2|‖P
+e0

u‖ + |2b n−1 − b n−2|‖P
+u(x, t0) − u(x, t0)‖

+ b n−1‖e−1
u ‖ + (2b 0 − b 1)‖P

+en−1
u ‖

+ (2b 0 − b 1)‖P
+u(x, tn−1) − u(x, tn−1)‖ + β‖En

τ (x)‖
⎫
⎬

⎭

2

+ λβ‖P
−q(x, tn) − q(x, tn)‖2. (26)

Next, we use mathematical induction to get the error estimation,

‖P
+en

u‖2 ≤ C2(hk+1 + τ 2)2. (27)
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Similar to Lemma 3.2, we can also use mathematical induction to prove the
inequality (27). When n = 1, by (10), the property (5) and the fact that hk+1 is
lower than τ

α
2 hk+1, we have

‖P
+e1

u‖2 ≤
{
‖P

+u(x, t1) − u(x, t1)‖ + 2‖P
+e0

u‖ + 2‖P
+u(x, t0) − u(x, t0)‖

+ ‖e−1
u ‖ + β‖En

τ (x)‖
}2 + λβ‖P

−q(x, tn) − q(x, tn)‖2

≤ C2(hk+1 + τ 2)2 + C2(τ
α
2 hk+1)2

≤ C2(hk+1 + τ 2)2. (28)

Assuming that ‖P
+en

u‖2 ≤ C2(hk+1 + τ 2)2 holds for n = J(J < N), we want
to prove that it holds for n = J + 1. For n = J + 1, by the inequality (26) we
get that

‖P
+eJ+1

u ‖2

≤
⎧
⎨

⎩
‖P

+u(x, tJ+1) − u(x, tJ+1)‖ +
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j=2
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+
J∑

j=2
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+e0

u‖ + |2b J − b J−1|‖P
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+ b J‖e−1
u ‖ + (2b 0 − b 1)‖P

+eJ
u‖ + β‖EJ+1

τ (x)‖

+ (2b 0 − b 1)‖P
+u(x, tJ) − u(x, tJ)‖

}2 + λβ‖P
−q(x, tJ+1) − q(x, tJ+1)‖2.

≤ C2

⎧
⎨

⎩

⎡

⎣
J∑

j=2

(b j−2 − b j) + b J + (2b 0 − b 1)

⎤

⎦ (hk+1 + τ 2)

+
⎡

⎣
J∑

j=2

(b j−2 − b j) + 2b J−1 + 3b 0 − b 1

⎤

⎦ hk+1 + τα+1

⎫
⎬

⎭

2

+ C2 (τ
α
2 hk+1)2 .

(29)
We know that τ 2 is lower than τα+1 because of 1 < α ≤ 2. Since 0 < b j < 1

for all non-negative integers j, then (29) will become

‖P
+eJ+1

u ‖2 ≤ C2[(hk+1 + τ 2)
]2

. (30)

So we have completed the proof of (22) and the proof is completed. ��
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Table 1 The error, L2 space convergence rates (the fourth column) and L∞ space convergence
rates (the last column) of Example 1 for τ = 0.5h3 and using piecewise P0 elements

α M L2-error Rate L∞-error Rate

1.2 5 1.49933e-004 – 4.08359e-004 –
10 7.18084e-005 1.0621 2.02277e-004 1.0135
15 4.74981e-005 1.0194 1.35798e-004 0.9828
20 3.55254e-005 1.0096 1.01879e-004 0.9982

1.6 5 1.48925e-004 – 4.10518e-004 –
10 7.17460e-005 1.0536 2.01945e-004 1.0235
15 4.74837e-005 1.0180 1.36016e-004 0.9747
20 3.55212e-005 1.0089 1.02010e-004 1.0001

1.9 5 1.48266e-004 – 4.16165e-004 –
10 7.17234e-005 1.0477 2.01914e-004 1.0434
15 4.74865e-005 1.0170 1.36502e-004 0.9656
20 3.55324e-005 1.0081 1.02071e-004 1.0104

4 Numerical examples

In this section, we carry out a series of numerical experiments and present
some results to confirm our theoretical statements. Taking h = 1/M and τ =
1/N, where M and N are the numbers of meshes in space and time. The L2-
norm and L∞-norm are considered in the examples.

Example 1 We consider the following homogeneous boundary condition
problem

⎧
⎨

⎩

Dα
t u(x, t) − t�u(x, t) = f (x, t), (x, t) ∈ [0, 1] × [0, 1],

u(0, t) = u(1, t) = 0, u(x, t) |t=0= 0,
∂u(x, t)

∂t
|t=0= 0,

(31)

with f (x, t)= 6
�(4−α)

t(3−α)(x−x2)5−t4(20x3−150x4+420x5−560x6+360x7−90x8).

Table 2 The error, L2 space convergence rates (the fourth column) and L∞ space convergence
rates (the last column) of Example 1 for τ = 0.5h3 and using piecewise P1 elements

α M L2-error Rate L∞-error Rate

1.2 5 4.68571e-005 – 2.22760e-004 –
10 1.19892e-005 1.9665 6.03418e-005 1.8843
15 5.34284e-006 1.9934 2.85046e-005 1.8496
20 3.00808e-006 1.9968 1.59916e-005 2.0092

1.6 5 4.67894e-005 – 2.22515e-004 –
10 1.19863e-005 1.9648 6.03203e-005 1.8832
15 5.34224e-006 1.9931 2.84962e-005 1.8495
20 3.00786e-006 1.9967 1.59854e-005 2.0095

1.9 5 4.67871e-005 – 2.22954e-004 –
10 1.19870e-005 1.9646 6.03856e-005 1.8845
15 5.34234e-006 1.9932 2.85151e-005 1.8505
20 3.00787e-006 1.9968 1.59921e-005 2.0103
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Table 3 The error, L2 space convergence rates (the fourth column) and L∞ space convergence
rates (the last column) of Example 1 for τ = 0.5h3 and using piecewise P2 elements

α M L2-error Rate L∞-error Rate

1.2 5 7.65138e-006 – 4.01305e-005 –
10 9.91877e-007 2.9475 5.83554e-006 2.7818
15 2.98522e-007 2.9614 1.73026e-006 2.9983
20 1.27160e-007 2.9665 7.25087e-007 3.0233

1.6 5 7.69466e-006 – 4.02426e-005 –
10 9.93156e-007 2.9538 5.83652e-006 2.7855
15 2.97754e-007 2.9710 1.72621e-006 3.0045
20 1.26037e-007 2.9883 7.20372e-007 3.0378

1.9 5 8.05815e-006 – 4.11242e-005 –
10 1.02954e-006 2.9684 5.93185e-006 2.7934
15 3.06898e-007 2.9851 1.75063e-006 3.0098
20 1.29304e-007 3.0045 7.29005e-007 3.0452

The exact solution of the problem is given by u(x, t) = t3(x − x2)5. For this
example we choose τ = 0.5h3. We used the elements P0, P1 and P2 for the
considered problem, respectively. The error estimate are presented in Tables 1,
2 and 3 for different M at given α. We can see from Tables 1–3 that the
L2-error and L∞-error convergence rates for space yield the approximation
order close to first-order, second-order and third-order for P0, P1 and P2

elements, respectively, which confirm the theoretical prediction. For the time
convergence rates, we only consider the P1 elements. In Fig. 1a and b, we
take M = 500 and N = 50, 100, 200, 400 for the time convergence rate, we can
see from these figures that the time convergence rates are very close to the
first-order. From Table 4, we can see that L2-error convergence rates for time
yield the approximation order close to first-order for P1 elements. The time
convergence rates are lower about one order than the theoretical prediction,
that is because the space step is not small enough. However, if h is taken
sufficiently small so that the error in the approximation should be dominated
by the temporal approximation, the storage requirement to save the solution
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log(τ)

lo
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ro

r)

τ

L2

L
∞ ∞

a. α = 1.2 b. α = 1.9

Fig. 1 The time convergence rates analysis of Example 1 with M = 500 for different α
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Table 4 The error, L2 time convergence rates of Example 1 for M = 500 and using piecewise P1

elements

α N L2-error Rate α N L2-error Rate

1.2 50 1.10563e-005 – 1.9 50 1.76945e-005 –
100 5.48620e-006 1.0110 100 8.65034e-006 1.0324
200 2.73205e-006 1.0058 200 4.22448e-006 1.0340
400 1.36432e-006 1.0018 400 2.06272e-006 1.0342

for all time levels may not be acceptable in practical applications. In our future
works, we will pay more attention to construct efficient algorithms to reduce
the storage requirement.

Example 2 In this example, we will consider the following periodic boundary
condition problem

⎧
⎪⎨

⎪⎩

Dα
t u(x, t) − t2�u(x, t) = f (x, t), (x, t) ∈ [0, 1] × [0, 1],

u(0, t) = u(1, t) = 1, u(x, t) |t=0= 0,
∂u(x, t)

∂t
|t=0= 0,

(32)

with f (x, t) = ( 6
�(4−α)

t(3−α) + 4π2t5) cos(2πx).

a. exact solution b.   = 1.2

d.    = 1.9c.   = 1.6

α

αα

Fig. 2 The exact solution and LDG numerical solutions of Example 2 for different α at N = 1,000
and M = 30
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Fig. 3 The space convergence rates analysis of Example 2 with N = 10,000 for different α

The exact solution of the problem is u(x, t) = t3 cos(2πx). We used the
elements P2 for the considered problem. Figure 2a–d show the exact solution
and LDG numerical solutions of Example 2 for different α at given M = 30
and N = 1,000. We can see from these figures that the numerical solutions are
almost the same, because the exact solution is the same one for different α. In
Fig. 3a–c, we take N = 10,000 and M = 5, 10, 15, 20 for the space convergence
rate, we can see from these figures that the space convergence rates are very
close to the third-order. The numerical results for the problem are consistent
with our theoretical analysis.

Table 5 The error, L2 space convergence rates (the fourth column) and L∞ space convergence
rates (the last column) of Example 3 for τ = 0.5h3 and using piecewise P0 elements

α M L2-error Rate L∞-error Rate

2 5 4.36479e-001 – 6.98686e-001 –
10 1.51684e-001 1.5248 3.19793e-001 1.1275
15 9.22909e-002 1.2254 2.10735e-001 1.0286
20 6.73199e-002 1.0967 1.57829e-001 1.0049
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Table 6 The error, L2 space convergence rate (the fourth column) and L∞ space convergence
rate (the last column) of Example 3 for τ = 0.5h3 and using piecewise P2 elements

α M L2-error Rate L∞-error Rate

2 5 5.50223e-002 – 8.08142e-002 –
10 7.00770e-003 2.9730 9.96147e-003 3.0202
15 2.09129e-003 2.9823 3.01571e-003 2.9470
20 8.77750e-004 3.0178 1.26621e-003 3.0165

Example 3 In this example, in order to verify the validity of LDG method, we
will consider the following time-fractional wave equation
⎧
⎪⎨

⎪⎩

Dα
t u(x, t) − �u(x, t) = 0, (x, t) ∈ [0, 1] × [0, 1],

u(0, t) = u(1, t) = 0, u(x, t) |t=0= sin(2πx),
∂u(x, t)

∂t
|t=0= 2π sin(2πx).

(33)
For α = 2, (33) will become the classical wave equation. The exact solu-

tion of the classical wave equation is given by u(x, t) = sin(2πx)(sin(2π t) +
cos(2π t)). We used the elements P0 and P2 for the considered problem,

a.   = 1.3 b.   = 1.7

c. The numerical solution for    = 2 d. The exact solution for    = 2

α α

αα

Fig. 4 The exact solution and LDG numerical solutions of Example 3 for different α at N = 1,000
and M = 50
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respectively. If we choose τ = 0.5h3, the error estimates are presented in
Tables 5 and 6 for different M at α = 2. We can see from Tables 5 and 6 that the
L2-error and L∞-error convergence rates for space yield the approximation
order close to first-order and third-order for P0 and P2 elements, respectively,
which confirm the theoretical prediction. For P2 elements, Fig. 4a–d show
the exact solution and LDG numerical solutions of Example 3 for different
α at given M = 50 and N = 1,000. We can see from these figures that there
are great difference for numerical solutions of different α, because the exact
solution is the not the same one for different α. Figure 4a and b show that for
1 < α < 2, the considered problem exhibits the combined diffusion and wave
behaviour (It should be pointed out that the exact solution is difficult to be
obtained for 1 < α < 2, therefore, it is difficult to get the convergence rates).
However, from Fig. 4c and d we can find that the numerical solution is good
approximation of the exact solution for α = 2, which means that our method is
effective.

5 Conclusion

In this paper, we have developed local discontinuous Galerkin methods to
solve the one-dimensional time-fractional Tricomi-type equations. The sta-
bility analysis and error estimates for the full discrete scheme is discussed.
Numerical examples for one-dimensional cases are given to illustrate the
accuracy and capability of the methods. The LDG method has a good potential
in solving the one-dimensional time-fractional Tricomi-type equations and
similar linear or nonlinear equations in mathematical physics. This idea can
be also used for two-dimensional fractional problems. However, in three-
dimensional case the storage requirement to save the solution for all time levels
may not be acceptable in practical applications. Constructing more efficient
algorithms to reduce the storage requirement is also our goal in future works.
Future work also includes the proof of convergence for general Pk polynomials
when using a non-uniform grid and the exploration of higher-order nonlinear
equations.
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