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Abstract: This study is devoted to the adaptive consensus problem of multi-agent systems with partly unknown parameters
and bounded external disturbances, under the guidance of an active leader with a reference input signal. Firstly, a distributed
adaptive protocol is proposed for the system without disturbances by adopting the model reference adaptive control method.
Then it is extended to the disturbed system by adding an adaptive disturbance compensator, based on the estimated upper
and lower bounds of unknown disturbance. For the above two cases, sufficient conditions are, respectively, given to ensure
that all agents can eventually track the prescribed leader. A numerical simulation illustrates the effectiveness of the proposed
adaptive consensus protocol.
1 Introduction

In recent years, cooperative control of multi-agent systems
has received considerable attention because of its broad
application in many areas including cooperative control of
unmanned air and underwater vehicles, formation control,
flocking of mobile vehicles, distributed optimisation of
multiple robotic systems and scheduling of automated
highway systems. In cooperative control, consensus problem
is well accepted as one of the most important and
fundamental issues, to which there are mainly two control
strategies: the behaviour-based (or leaderless) method [1–5]
and the leader-following approach [1, 6–11]. In particular,
leader-following consensus means that all follower agents
eventually reach an agreement on the state or output of a
preassigned leader, which specifies a desired objective for
all other agents to follow and is usually independent of its
followers.

In the literature of leader-following consensus for linear
multi-agent systems, some researchers have focused on
the distributed protocol design and consensus condition
analysis of first- or second-order multiple agents with
an active leader, whose model is taken as the double-
or single-integrator dynamics. For example, in [6], the
leader-following consensus problem was studied for the
network of first-order follower agents with a second-order
leader, whose state could not be completely measured and
the acceleration information might be partially unknown.
Further, Hong et al. [7] developed some neighbour-based
rules, consisting of distributed controllers and observers,
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to address the leader-following consensus problem for
second-order follower agents, under the assumptions that
the velocity of a given second-order leader would not be
measured in real-time and its acceleration input was known
to all agents. In [8], the consensus problem was addressed
for the second-order multi-agent system to track a first-order
leader with a desired constant velocity, and meanwhile the
non-uniform time-varying communication delays were taken
into account. Recently, the multi-agent system with general
linear dynamics has also been considered. Ni and Cheng
[10] investigated the leader-following consensus problem
for multiple follower agents modelled by an identical linear
differential equation, and the leader described by a linear
nominal system. To be specific, it was required that the state
matrix of the dynamic leader must be the same as that of all
follower agents, which implied that the dynamic equations
of agents were identical to that of the leader under the zero-
input condition. The role and motivation of this requirement
are clear, but it may be unsatisfied in some applications,
and sometimes accurate parameters of the system dynamics
are also hard or even unable to obtain. Meanwhile, an
autonomous leader described by a given nominal system
without input items cannot present adjustable and flexible
desired trajectories. On the other hand, a real network of
multiple agents is usually in uncertain environments with
various external disturbances and stochastic communication
noises, which may cause the network system to diverge
or oscillate. Therefore the consensus problem of such a
disturbed system is of vital necessity, and has attracted the
attention of some researchers [11–16].
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Motivated by the above observations, we study the
adaptive leader-following consensus problem of linear multi-
agent systems with external disturbances, under the guidance
of a more active leader, described by a linear differential
equation with a reference input signal. Different from
[10], the state matrix of the leader is not required to be
equal to that of the agents, and meanwhile the dynamics
of the agents are supposed to be different. In addition,
some system matrices of the leader and follower agents
are allowed to be unknown, considering the difficulties
in obtaining plant parameters accurately. Unfortunately,
the existing neighbour-based linear protocols in [6–11]
are not applicable to the above leader-following system,
because of the difference between system matrices of the
leader and those of the follower agents, and thus the
model reference adaptive control (MRAC) method [17–
20] is adopted in the protocol design. In particular, for
the multi-agent system with and without bounded external
disturbances, we propose two consensus protocols together
with some adaptive updating laws, which are developed to
estimate the information of unknown system matrices and
the bounds of disturbance on-line. Then, the performance
of a closed-loop system is analysed to derive consensus
conditions on the interaction topology such that all agents
can asymptotically track the active leader with a desired
reference signal. Finally, a numerical example is included
to validate the accuracy of our theoretical results.

The remainder of the paper is organised as follows. In
Section 2, the problem to be solved is stated, and some
preliminaries from algebraic graph theory are presented. In
Section 3, adaptive protocols are proposed and the consensus
conditions are derived. Simulation results are given in
Section 4, and Section 5 concludes the paper.

2 Problem statement and preliminaries

2.1 Problem statement

Consider a multi-agent system consisting of N follower
agents with the ith one modelled by the following linear
dynamic system subject to unknown disturbances

ẋi(t) = Aixi(t) + Bi(ui(t) + di(t)), i = 1, . . . , N (1)

where xi(t) ∈ R
n is the state of the ith agent, ui(t) ∈ R

m

is the control input or protocol and the continuous vector
function di(t) ∈ R

m represents the external disturbance with
bounded peak value. The dynamics of the leader or model
is given by

ẋ0(t) = A0x0(t) + B0r(t) (2)

where x0(t) ∈ R
n is the state, r(t) ∈ R

q is the bounded
reference signal and A0 is the stable state matrix.

Remark 1: Among the system matrices of (1) and (2), only
the exact information on input matrices Bi (i = 1, . . . , N )
and the reference signal r(t) will be used in the protocol
design. This indicates that the dynamics of leader and the
system matrices of the follower agents are allowed to be
partly unknown.

The leader-following consensus problem is stated as
follows: design distributed protocols for N agents using the
local information, such that all agents reach consensus on
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their states with the given leader asymptotically, that is

lim
t→∞(xi(t) − x0(t)) = 0, i = 1, . . . , N (3)

It is obvious that the state matrices of the follower agents
and the leader are different, which results in the invalidation
of the existing neighbour-based linear consensus protocols
in [6–11]. Therefore we employ the MRAC method to the
consensus protocol design and performance analysis of the
above leader-following system with partly unknown system
matrices, by regarding the leader (2) as a reference model. In
order to drive all agents to eventually track the leader, some
necessary assumptions on system matrices of N follower
agents and the leader must be made, motivated by the
standard assumption in MRAC [20].

Assumption 1: Assume that there exist H ∗
i and K∗

i such that
A0 = Ai + BiH ∗T

i and B0 = BiK∗T
i hold.

The ideal matrices H ∗
i and K∗

i are generally unavailable,
since Ai, A0 and B0 may be unknown. On the other hand,
for the bounded disturbance di(t), there must exist constant
upper and lower bounds d̄∗

i and d∗
i , respectively, but the

vectors d̄∗
i and d∗

i are also usually unobtainable. Thus, we
use Hi(t), Ki(t), d̄i(t) and di(t) to denote the estimates of
H ∗

i , K∗
i , d̄∗

i and d∗
i at time instant t, respectively. In fact,

the above true values are ‘artificial’ quantities required only
for analytical purposes, that will not appear in the consensus
protocol design.

2.2 Algebraic graph theory

Undirected graphs are used to model the interaction
topologies among N follower agents. Let Ga = (Va, Ea) be
an undirected graph of order N with the set of nodes Va =
{v1, v2, . . . , vN }, the set of undirected edges Ea ⊆ Va × Va.
In graph Ga, node vi represents the ith follower agent, and
the undirected edge (vi, vj) represents that information is
transmitted between agents i and j. Then, if the edge (vi, vj)
or equivalently (vj, vi) exists, we say that agents i and j are
neighbours. An undirected path is a sequence of ordered
edges of the form (vi1 , vi2), (vi2 , vi3), . . . in an undirected
graph, where vij ∈ Va. If there is a path from every node to
every other one, the undirected graph is said to be connected.
Note that for an undirected graph that is not connected, there
must exist more than one connected component.

To describe the effect of leader to follower agents, let
node v0 represent the leader. Since the leader would not
be affected by the follower agents, the connection edges
between the leader and the agents are directed, and the
corresponding edge set is labelled by El . In the graph, a
directed edge from vi to v0, (vi, v0), represents that the
information is transmitted from the leader to the ith agent,
and it means that the leader is a neighbour of agent i.
For convenience of expression, let V̄ = {Va ∪ v0} be the
node set consisting of all agents and the leader. For each
follower agent in this leader-following system, its set of
neighbours can also include the leader and does so whenever
the leader is within the agent’s neighbourhood. Summarising
the above notations, the set of neighbours of agent i is
Ni = {vj ∈ V̄ : (vi, vj) ∈ {Ea ∪ El}}, and notation N0 = {vj ∈
Va : (vj, v0) ∈ El} represents the set of follower agents that
are directly connected to the leader.

In order to realise the leader-following consensus, we
make the following assumption on the interaction topology.
2003
© The Institution of Engineering and Technology 2012



www.ietdl.org
Assumption 2: At least one agent in each connected
component of Ga is connected to the leader.

3 Main results

In this section, distributed adaptive consensus protocols will
be designed and consensus conditions will be given for
the leader-following multi-agent system (1) and (2) with
partly unknown parameters. To quantitatively analyse the
consensus performance of the system, we define εi(t) =
xi(t) − x0(t) and ei,j(t) = xi(t) − xj(t) (i, j = 1, . . . , N ) to
measure the disagreements of the agents and the leader
and the differences between the agents, respectively. The
motivation of defining new variables εi(t) and ei,j(t) is
clearly shown in the following lemma.

Lemma 1: Under Assumption 2, if x0(t), εi(t) (vi ∈ N0) and
ei,j(t) ((vi, vj) ∈ Ea) are bounded, then all xi(t) (i = 1, . . . , N )
are bounded. Further, if εi(t) = 0 (vi ∈ N0) and ei,j(t) = 0
((vi, vj) ∈ Ea) hold, then xi(t) − x0(t) = 0 is satisfied for all
i = 1, . . . , N .

Proof: For any node vk0 , k0 ∈ {1, . . . , N }, if it is connected to
the leader, then there exists a constant M to satisfy ‖xk0(t) −
x0(t)‖ ≤ M according to the condition that εi(t) (vi ∈ N0) is
bounded, from which it yields that

‖xk0(t)‖ ≤ M + ‖x0(t)‖, vk0 ∈ N0 (4)

Otherwise, for vk0 /∈ N0, it must belong to a connected
component of undirected graph Ga, in which there is at
least one agent connected to the leader by Assumption
2, with the label lk0 (
= k0). Then inequality ‖xlk0

(t) −
x0(t)‖ < M follows. In the above connected component,
the path from nodes k0 to lk0 is supposed to be (vk0 , vk1),
(vk1 , vk2), . . . , (vkL , vlk0

), where L satisfies L + 1 ≤ N − 1.
In addition, by the condition that ei,j(t) ((vi, vj) ∈ Ea) are
bounded, there exists M1 such that ‖xkh(t) − xkh+1(t)‖ ≤ M1

holds for h = 0, . . . , L, where kL+1 = lk0 . Therefore it is
derived that

‖xk0(t) − x0(t)‖
≤ ‖xk0(t) − xk1(t)‖ + · · · + ‖xkL(t) − xkL+1(t)‖

+ ‖xlk0
(t) − x0(t)‖

≤ (L + 1)M1 + M (5)

from which it is immediate that

‖xk0(t)‖ ≤ (N − 1)M1 + M + ‖x0(t)‖, vk0 /∈ N0 (6)

Summarising the above analysis, we can conclude that xk0(t)
is bounded for any k0 ∈ {1, . . . , N }, by inequalities (4) and
(6). Further, if εi(t) = 0 (vi ∈ N0) and ei,j(t) = 0 ((vi, vj) ∈
Ea), it can be easily verified that xi(t) = x0(t) holds for i =
1, . . . , N by setting M = M1 = 0 in (5). �

First of all, we consider the multi-agent system without
external disturbances, that is, di(t) ≡ 0 in (1).

3.1 Multi-agent system without disturbances

We adopt the MRAC method in the protocol design, by
regarding leader (2) as a desired reference model. Here,
2004
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the MRAC goal is achieved by updating the estimates
of unknown relation matrices between agents and the
reference model using the local consensus errors, and will
be established by the Lyapunov stability theory.

To be specific, the consensus protocol of multi-agent
system (1) with di(t) ≡ 0 is proposed as

ui(t) = H T
i (t)xi(t) + KT

i (t)r(t) (7)

with updating laws of estimates Hi(t) and Ki(t)

K̇i(t) = −r(t)
∑
vj∈Ni

(xi(t) − xj(t))
TPBi

Ḣi(t) = −xi(t)
∑
vj∈Ni

(xi(t) − xj(t))
TPBi

(8)

where Ni is the neighbour set of agent i, including
the follower agents and the leader, and P ∈ R

n×n is a
positive definite matrix satisfying AT

0 P + PA0 = −Q < 0.
The existence of P is guaranteed by the fact that A0

is a stable matrix. Note that only the local information,
determined by the interaction topology, is used in the
adaptive consensus protocol (7) and (8). Meanwhile, A0 is
not required to be known exactly, but with some necessary
information to obtain the matrix P in (8).

Denote H̃i(t) = Hi(t) − H ∗
i and K̃i(t) = Ki(t) − K∗

i .
Substituting protocol (7) into the multi-agent system (1) with
di(t) ≡ 0 leads to

ẋi(t) = Aixi(t) + Bi[H T
i (t)xi(t) + KT

i (t)r(t)]
= (Ai + BiH

∗T
i )xi(t) + BiH̃

T
i (t)xi(t)

+ BiK
∗T
i r(t) + BiK̃

T
i (t)r(t)

= A0xi(t) + B0r(t) + BiH̃
T
i (t)xi(t) + BiK̃

T
i (t)r(t) (9)

Then, combining (9) and (2), it is derived that

ε̇i(t) = A0εi(t) + BiH̃
T
i (t)xi(t) + BiK̃

T
i (t)r(t) (10)

ėi,j(t) = A0ei,j(t) + BiH̃
T
i (t)xi(t) + BiK̃

T
i (t)r(t)

− BjH̃
T
j (t)xj(t) − BjK̃

T
j (t)r(t) (11)

According to the previous development, we now present the
leader-following consensus result for the multi-agent system
without external disturbances.

Theorem 1: For the multi-agent system (1) with di(t) ≡ 0,
if at least one follower agent in each connected component
of Ga is connected to the leader (2), then N agents
asymptotically achieve consensus with the leader under
the adaptive protocol (7) and (8), that is, limt→∞(xi(t) −
x0(t)) = 0, i = 1, . . . , N .

To show Theorem 1, the following lemma is adopted from
the literature.

Lemma 2 (Barbalat’s Lemma [20]): Assume that g(·) : R �→
R is uniformly continuous and integrable, that is

∫∞

0

g(t)dt < ∞

Then, it holds that limt→∞ g(t) = 0.
IET Control Theory Appl., 2012, Vol. 6, Iss. 13, pp. 2002–2008
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Proof of Theorem 1: Take the Lyapunov function candidate

V (t) = V1(t) + V2(t) (12)

with

V1(t) =
∑

vi∈N0

εT
i (t)Pεi(t) + 1

2

∑
(vi ,vj)∈Ea

eT
i,j(t)Pei,j(t) (13)

and

V2(t) =
N∑

i=1

tr(K̃T
i (t)K̃i(t) + H̃ T

i (t)H̃i(t)) (14)

As stated in the updating law (8), matrix P is positive
definite, and satisfies AT

0 P + PA0 = −Q < 0.
By (10) and (11), we first compute the time derivative of

V1(t) as

V̇1(t) =
∑

vi∈N0

εT
i (t)(PA0 + AT

0 P)εi(t)

+ 2
∑

vi∈N0

εT
i (t)PBi[H̃ T

i (t)xi(t) + K̃T
i (t)r(t)]

+
∑

(vi ,vj)∈Ea

{
1

2
eT

i,j(t)(PA0 + AT
0 P)ei,j(t)

+ eT
i,j(t)PBi[H̃ T

i (t)xi(t) + K̃T
i (t)r(t)]

− eT
i,j(t)PBj[H̃ T

j (t)xj(t) + K̃T
j (t)r(t)]

}
(15)

Since the interaction graph of N follower agents
is undirected, (vi, vj) ∈ Ea implies (vj, vi) ∈ Ea. Then,
combining with the fact ei,j(t) = −ej,i(t), we have

−
∑

(vi ,vj)∈Ea

eT
i,j(t)PBj[H̃ T

j (t)xj(t) + K̃T
j (t)r(t)]

=
∑

(vi ,vj)∈Ea

eT
i,j(t)PBi[H̃ T

i (t)xi(t) + K̃T
i (t)r(t)]

from which it follows that

V̇1(t) =
∑

vi∈N0

εT
i (t)(PA0 + AT

0 P)εi(t)

+ 2
∑

vi∈N0

εT
i (t)PBi[H̃ T

i (t)xi(t) + K̃T
i (t)r(t)]

+
∑

(vi ,vj)∈Ea

{
1

2
eT

i,j(t)(PA0 + AT
0 P)ei,j(t)

+ 2eT
i,j(t)PBi[H̃ T

i (t)xi(t) + K̃T
i (t)r(t)]

}

= −
∑

vi∈N0

εT
i (t)Qεi(t) − 1

2

∑
(vi ,vj)∈Ea

eT
i,j(t)Qei,j(t)

+ 2
∑

vi∈N0

εT
i (t)PBi[H̃ T

i (t)xi(t) + K̃T
i (t)r(t)]

+ 2
∑

(vi ,vj)∈Ea

eT
i,j(t)PBi[H̃ T

i (t)xi(t) + K̃T
i (t)r(t)] (16)
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Now, it is obtained that

V̇ (t) = V̇1(t) + V̇2(t)

= −
∑

vi∈N0

εT
i (t)Qεi(t) − 1

2

∑
(vi ,vj)∈Ea

eT
i,j(t)Qei,j(t)

+ 2
∑

vi∈N0

εT
i (t)PBi[H̃ T

i (t)xi(t) + K̃T
i (t)r(t)]

+ 2
∑

(vi ,vj)∈Ea

eT
i,j(t)PBi[H̃ T

i (t)xi(t) + K̃T
i (t)r(t)]

+ 2
N∑

i=1

tr(K̃T
i (t)K̇i(t) + H̃ T

i (t)Ḣi(t)) (17)

By the facts

εT
i (t)PBi[H̃ T

i (t)xi(t) + K̃T
i (t)r(t)]

= tr{[H̃ T
i (t)xi(t) + K̃T

i (t)r(t)]εT
i (t)PBi}

eT
i,j(t)PBi[H̃ T

i (t)xi(t) + K̃T
i (t)r(t)]

= tr{[H̃ T
i (t)xi(t) + K̃T

i (t)r(t)]eT
i,j(t)PBi}

it yields that

2
∑

vi∈N0

εT
i (t)PBi[H̃ T

i (t)xi(t) + K̃T
i (t)r(t)]

+ 2
∑

(vi ,vj)∈Ea

eT
i,j(t)PBi[H̃ T

i (t)xi(t) + K̃T
i (t)r(t)]

= 2
∑

vi∈N0

tr{[H̃ T
i (t)xi(t) + K̃T

i (t)r(t)]εT
i (t)PBi}

+ 2
∑

(vi ,vj)∈Ea

tr{[H̃ T
i (t)xi(t) + K̃T

i (t)r(t)]eT
i,j(t)PBi}

= 2
N∑

i=1

tr{[H̃ T
i (t)xi(t) + K̃T

i (t)r(t)]

×
∑
vj∈Ni

(xi(t) − xj(t))
TPBi} (18)

Applying the above equation and updating law (8) into (17),
we have

V̇ (t) = −
∑

vi∈N0

εT
i (t)Qεi(t) − 1

2

∑
(vi ,vj)∈Ea

eT
i,j(t)Qei,j(t)

≤ 0 (19)

which implies that εi(t) (vi ∈ N0), ei,j(t) ((vi, vj) ∈ Ea),
Ki(t) and Hi(t) are bounded. Meanwhile, x0(t) is also
bounded, since the reference signal r(t) is bounded. Then,
according to Lemma 1, all xi(t) (i = 1, . . . , N ) are bounded,
and then ε̇i(t) (vi ∈ N0) and ėi,j(t) ((vi, vj) ∈ Ea) are all
bounded by (10) and (11). Therefore

∑
vi∈N0

εT
i (t)Qεi(t) +

(1/2)
∑

(vi ,vj)∈Ea
eT

i,j(t)Qei,j(t) is uniformly continuous. On the
other hand, since V (t) is non-increasing and bounded from
below by zero, it has a non-negative limit V (∞) as t → ∞.
2005
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Summarising the above analysis, we have

∫∞

0

⎡
⎣ ∑

vi∈N0

εT
i (t)Qεi(t) + 1

2

∑
(vi ,vj)∈Ea

eT
i,j(t)Qei,j(t)

⎤
⎦ dt

= −
∫∞

0

V̇ (t)dt = V (0) − V (∞) ≤ V (0) < ∞ (20)

Then, it is immediate from Lemma 2 that limt→∞εi(t) = 0
(vi ∈ N0) and limt→∞ei,j(t) = 0 ((vi, vj) ∈ Ea), which results
in limt→∞(xi(t) − x0(t)) = 0 (i = 1, . . . , N ) by the proof of
Lemma 1. �

3.2 Multi-agent system with bounded
disturbances

For the multi-agent system (1) with unknown bounded
disturbance di(t), the consensus protocol is designed as

ui(t) = H T
i (t)xi(t) + KT

i (t)r(t) − [(I − σi(t))d̄i(t)

+ σi(t)di(t)] (21)

and σi(t) is defined by

σi(t) = diag{σi1(t), . . . , σim(t)}

σik(t) =

⎧⎪⎪⎨
⎪⎪⎩

0,
∑
vj∈Ni

(xi(t) − xj(t))
TPBik ≥ 0

1,
∑
vj∈Ni

(xi(t) − xj(t))
TPBik < 0

(22)

where, Bik is the kth column of matrix Bi, k = 1, . . . , m.
The updating laws of Ki(t) and Hi(t) are given by (8), and
the estimated upper and lower bounds of disturbance are
updated by the following adaptive schemes

˙̄di(t) = γi1(I − σi(t))B
T
i P

∑
vj∈Ni

(xi(t) − xj(t))

ḋ i(t) = γi2σi(t)B
T
i P

∑
vj∈Ni

(xi(t) − xj(t))
(23)

where γi1 and γi2 (i = 1, . . . , N ) are positive constants.
Substituting protocol (21) into the multi-agent system (1)
yields

ẋi(t) = A0xi(t) + B0r(t) + BiH̃
T
i (t)xi(t) + BiK̃

T
i (t)r(t)

− Bi[(I − σi(t))d̄i(t) + σi(t)di(t)] + Bidi(t) (24)

For the convenience of analysis, we denote di(t) =
[di1(t) . . . dim(t)]T, d̄i(t) = [d̄i1(t) . . . d̄im(t)]T, di(t) =
[di1(t) . . . dim(t)]T, d̄∗

i = [d̄∗
i1 . . . d̄∗

im]T and d∗
i = [d∗

i1 . . . d∗
im]T.

Theorem 2: For the multi-agent system (1) with partly
unknown parameters and bounded disturbance di(t), if at
least one follower agent in each connected component of Ga

is connected to the leader (2), then N agents asymptotically
achieve consensus with the leader under the adaptive
protocol (21) together with updating laws (8) and (23), that
is, limt→∞(xi(t) − x0(t)) = 0, i = 1, . . . , N .
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Proof: Take the Lyapunov function candidate as

V̄ (t) = V (t) + V3(t)

with V (t) given by (12), and V3(t) defined by

V3(t) =
N∑

i=1

˜̄di

T

(t) ˜̄di(t)

γi1
+

N∑
i=1

d̃
T

i (t)d̃i(t)

γi2
(25)

where ˜̄di(t) = d̄i(t) − d̄∗
i � [ ˜̄di1(t) . . .

˜̄dim(t)]T and d̃ i(t) = di

(t) − d∗
i � [d̃ i1(t) . . . d̃ im(t)]T.

By the proof of Theorem 1, computing the time derivative
of V (t) leads to

V̇ (t) = −
∑

vi∈N0

εT
i (t)Qεi(t) − 1

2

∑
(vi ,vj)∈Ea

eT
i,j(t)Qei,j(t)

+ 2
∑

vi∈N0

{−εT
i (t)PBi[(I − σi(t))d̄i(t) + σi(t)di(t)]

+ εT
i (t)PBidi(t)} + 2

∑
(vi ,vj)∈Ea

{−eT
i,j(t)PBi

× [(I − σi(t))d̄i(t) + σi(t)di(t)] + eT
i,j(t)PBidi(t)}

= −
∑

vi∈N0

εT
i (t)Qεi(t) − 1

2

∑
(vi ,vj)∈Ea

eT
i,j(t)Qei,j(t)

+ 2
∑

vi∈N0

{
−εT

i (t)P
m∑

k=1

Bik [(1 − σik(t))d̄ik(t)

+ σik(t)dik(t)] + εT
i (t)P

m∑
k=1

Bikdik(t)

}

+ 2
∑

(vi ,vj)∈Ea

{
−eT

i,j(t)P
m∑

k=1

Bik [(1 − σik(t))d̄ik(t)

+ σik(t)dik(t)] + eT
i,j(t)P

m∑
k=1

Bikdik(t)

}

= −
∑

vi∈N0

εT
i (t)Qεi(t) − 1

2

∑
(vi ,vj)∈Ea

eT
i,j(t)Qei,j(t)

− 2
N∑

i=1

∑
vj∈Ni

(xi(t) − xj(t))
TP

m∑
k=1

Bik

× [(1 − σik(t))d̄ik(t) + σik(t)dik(t)]

+ 2
N∑

i=1

∑
vj∈Ni

(xi(t) − xj(t))
TP

m∑
k=1

Bikdik(t) (26)

where the adaptive law (8) and the fact ei,j(t) = −ej,i(t)
have been used. From the condition d∗

ik ≤ dik(t) ≤ d̄∗
ik

(k = 1, . . . , m) and the definition of σik(t) by (22), it is

Fig. 1 Interaction graph of five follower agents and one leader
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immediate that

2
N∑

i=1

∑
vj∈Ni

(xi(t) − xj(t))
TP

m∑
k=1

Bikdik(t)

≤ 2
N∑

i=1

∑
vj∈Ni

(xi(t) − xj(t))
TP

×
m∑

k=1

Bik [(1 − σik(t))d̄
∗
ik + σik(t)d

∗
ik ] (27)

Applying the above inequality into (26) yields

V̇ (t) ≤ −
∑

vi∈N0

εT
i (t)Qεi(t) − 1

2

∑
(vi ,vj)∈Ea

eT
i,j(t)Qei,j(t)

− 2
N∑

i=1

∑
vj∈Ni

(xi(t) − xj(t))
TP

m∑
k=1

Bik

× [(1 − σik(t))
˜̄dik(t) + σik(t)d̃ ik(t)] (28)
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from which it follows that

˙̄V (t) ≤ −
∑

vi∈N0

εT
i (t)Qεi(t) − 1

2

∑
(vi ,vj)∈Ea

eT
i,j(t)Qei,j(t)

− 2
N∑

i=1

∑
vj∈Ni

(xi(t) − xj(t))
TP

m∑
k=1

Bik [(1 − σik(t))
˜̄dik(t)

+ σik(t)d̃ ik(t)] + 2
N∑

i=1

m∑
k=1

( ˙̄dik(t)
˜̄dik(t)

γi1
+ ḋ ik(t)d̃ ik(t)

γi2

)

= −
∑

vi∈N0

εT
i (t)Qεi(t) − 1

2

∑
(vi ,vj)∈Ea

eT
i,j(t)Qei,j(t)

≤ 0 (29)

where the following equivalent version of adaptive updating
law (23) is applied in the second step

˙̄dik(t) = γi1(1 − σik(t))B
T
ikP

∑
vj∈Ni

(xi(t) − xj(t))
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Fig. 2 State trajectories of five follower agents and the leader

a First element: xi,1(t)
b Second element: xi,2(t)
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ḋ ik(t) = γi2σik(t)B
T
ikP

∑
vj∈Ni

(xi(t) − xj(t)), k = 1, . . . , m

By adopting the same proof lines of Theorem 1, the
consensus result can be established by summarising the
above results and Lemmas 1, 2. �

4 Simulation results

We provide a simulation example to illustrate the leader-
following consensus performance of multi-agent systems
with bounded disturbances under the proposed adaptive
protocol. In particular, a network consisting of five follower
agents and one leader is considered. In models (1) and (2),
the system matrices are

A1 = A2 =
[

1 3
1 1

]
, B1 = B2 =

[
0 1
1 2

]
,

A3 =
[

0 2
−2 1

]
, B3 =

[−1 2
0 1

]
,

A4 = A5 =
[

1 0
−1 2

]
, B4 = B5 =

[
1 0
3 1

]
,

A0 =
[

0 1
−1 −3

]
, B0 =

[
1 −2
4 1

]
(30)

xi(t) = [xi,1(t) xi,2(t)]T (i = 0, 1, 2, 3, 4, 5), di(t) is the
bounded random white noise and the reference signal
is r(t) = [sin(t) cos(t)]T. It can be easily verified that
Assumption 1 is satisfied. The interaction graph of five
agents and the leader is shown in Fig. 1, which satisfies
the topology condition of Theorem 2. The initial state of
the leader is given by x0(0) = [0 0]T, and the initial states
of five agents are x1(0) = [−1 1]T, x2(0) = [0 2]T, x3(0) =
[−2 0]T, x4(0) = [1 1.5]T and x5(0) = [−3 2.5]T.

Take the initial values of the updating matrices and
vectors in adaptive laws (8) and (23) as Ki(0) = Hi(0) =
0 and d̄i(0) = di(0) = 0 for i = 1, . . . , 5. Then, under the
consensus protocol (21) together with adaptive laws (8) and
(23), the robust leader-following consensus performance is
presented in Fig. 2. Obviously, the five agents can track
the leader with reference signal r(t) within 130 s, even in
the presence of unknown disturbances, which validates the
effectiveness of the proposed adaptive protocol.

5 Conclusions

This paper has addressed the robust leader-following
consensus problem of linear multi-agent systems with
partially unknown parameters and bounded disturbances.
Different from the previous related work, in this paper, a
reference signal is preassigned as the input of an active
leader whose state matrix is not required to be equal to
that of the follower agents, and meanwhile, the unknown
external disturbances are also taken into account. For such a
leader-following system, it turns out that the MRAC method
together with the adaptive disturbance compensator could
be nicely employed to the consensus protocol design. It is
2008
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shown that under the proposed adaptive protocols, all agents
can eventually track the prescribed leader accurately even in
the presence of external disturbances, if at least one follower
agent in each connected component of interaction graph is
connected to the leader.
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