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Abstract. A new symmetric two-terminal non-volatile electrical pulse induced
resistance-change (EPIR) device is fabricated in the Pr0.7Ca0.3MnO3 (PCMO)
materials system and analysed. Two actual devices of somewhat different
construction are tested. Both consist of two similar half-parts, characterized
by similar resistance versus pulse voltage hysteresis loops, which are reversely
connected together in series forming a reflection symmetric device. Even though
the devices are as physically symmetric as possible, they are found to exhibit
resistance-switching under the application of voltage pulses of different amplitude
and of different polarities.A symmetric model of the above device is proposed, and
its analysis confirms the features noted above. The switching is history dependent
and shows multi-intrinsic state resistance switching, which is very useful for
developing future multi-bit EPIR devices.
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1. Introduction

The observation of the electrical pulse induced resistance-change (EPIR) effect [1] in perovskite
oxide thin films such as Pr0.7Ca0.3MnO3 (PCMO) at room temperature has drawn much attention
[2]–[4]. Usually the device is constructed as a thin PCMO film (of around 500 nm thickness)
sandwiched between two electrodes. The resistance of the device can be switched down by a
short electric pulse of one polarity and switched up by a short pulse of the opposite polarity. Such
simple structured resistive switching devices have important application in novel non-volatile
high-density memories [2, 5, 6].

However, the basic mechanism responsible for the EPIR effect is still under investigation.
Switching of the resistance of such an electric device by reversing the polarity of the switching
pulse has brought into question the conservation of parity [7]. This question has resulted in
much discussion [8, 9] with suggestions that a necessary requirement for EPIR switching is an
asymmetry resulting from device fabrication, and that the EPIR effect cannot be an intrinsic
property of the PCMO that constitutes the bulk material of the device [7]. It should be noted that
the EPIR switching effect appears not only in asymmetric devices with two different electrodes,
but also in symmetrically looking devices such as a PCMO thin film sandwiched between two
similar electrodes. It has been further suggested, based on dielectric constants arguments, that
the effect is limited to an interfacial layer not thicker than 10 nm, and the two interfaces of the
device are quite different from fabrication even before any pulsing [7, 10].

Recent study, however, has shown that not only is the dielectric constant in PCMO at room
temperature much larger [11] than the earlier estimation, calling into question the projected
interface layer thickness [7], but the active region is also much larger—100 nm or more extended
into the bulk from the electrode/perovskite oxide interface [12]. In addition, there is also recent
evidence of possible switching in the bulk material itself [9, 13].

It now remains to be seen if an asymmetry in the construction of an EPIR device is required
for resistance switching. To investigate the role of symmetry, or lack of it, in the EPIR effect, we
have carefully constructed a resistance-switching device to be as physically symmetric as possible
within the constraints of sample preparation. The device consists of two more-or-less identical
half-parts connected together in mirror image series. The two parts not only are structurally
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similar, but also have very similar resistance switching characteristics as given by their resistance
versus voltage hysteresis curves.

Fabricated symmetric devices were subjected to electrical pulses of different voltage
amplitudes and polarity, and the resulting hysteresis curves of the devices indeed showed
resistance switching.

These results were analysed in terms of a theoretical idealized resistance model that was
designed to be completely symmetric. The good agreement between experimental results of the
real device, and the calculations using the idealized model, indicates that a symmetric device
(one having mirror image symmetry) can indeed switch if there are certain constraints on the
voltage amplitude of the applied switching pulses. This result is important for future memory
device development.

2. Fabrication of two symmetric switching device and experimental results

Two actual symmetrically structured EPIR devices were constructed, and each was characterized
by measuring its total resistance as a function of switching pulse amplitude (both positive and
negative), with the result plotted as a device hysteresis loop.

The first device (figure 1(a)) consists of two half-parts, each half-part consisting of a vertical
layered structure of a silver (Ag) top electrode, a PCMO layer and a YBa2Cu3O7−x (YBCO)
bottom electrode. The device is fabricated by pulsed laser deposition (PLD) on a LaAlO3 (LAO)
substrate as initially described by Liu et al [1]. The PCMO films are approximately 3 mm × 4 mm,
and the two haft-parts are connected together through the common YBCO bottom electrode. In
addition to the top Ag electrodes, an Ag contact is also made to the exposed area of the YBCO
bottom electrode surface. The Ag electrode pads, which are approximately 0.4 mm in diameter,
are sputtered on top of the PCMO and YBCO films, and are later connected to Ag wires with
silver paste for connection to the testing circuit.

An Agilent 8114A Pulse Generator was used to send electrical pulses to the sample. Square
pulses of 200 ns duration with varying amplitude and polarity were used to switch the sample
resistance. The pulse shape was monitored with a Tektronic TDS 520 Digitizing Oscilloscope.
After each pulse, the sample was connected to a resistance measurement circuit, which applied
a 1 µA current to the sample by a Keithley 200 Programmable Current Source, and measured
the voltage drop across the sample with a Keithley 617 Programmable Electrometer. The two
half-parts were first tested to confirm that they are very close in switching behaviour to one
another, and then the whole device was put under test and the switching hysteresis loop of the
complete device was experimentally determined. The experiment was performed in air at room
temperature. The resistance of the device was observed to be switched after the electric pulses
were applied, and the resistance was stable after switching. The results are shown in figure 1(b).

Contrary to the earlier suggestions, this symmetric device does show resistance switching.
The hysteresis loop in figure 1(b) has a characteristic two-lobe structure and will be compared
later to a model simulation for a symmetric device. The observed switching is related to the
symmetric structure of the device, negating the suggestion that a built in asymmetry in the
device, even before any pulsing, is a critical requirement for switching in the EPIR device. The
resistance of the half devices during the testing of figure 1(b) is measured and plotted in figure
1(c), where the square symbols and the —— indicate the resistance of the left half, and the
circle symbols and the - - - - indicate the right half. The � and ◦ are the data for the voltage
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Figure 1. The experimental hysteresis loop of an actual EPIR device with a
symmetric structure: (a) a schematic of the symmetric device; (b) the resistance
versus pulse voltage loop for the total device; (c) the resistance versus pulse
voltage of each of the two half devices during the test. (Each resistance was
measured after the pulses voltage was applied.)

scan from positive to negative, where with −15 to −22V pulses applied to the device A–B,
the right half resistance gradually switched down from the high state of ∼500 � to the low
state of ∼300 �, and with voltage pulse larger than −15V the left half resistance gradually
switched up from the low state of ~ 300� to the high state of ∼500�, with the switching
down happening a little earlier, so that the total device resistance switched down first and then
switched back to the high value of Rtotal. This agrees with the data shown in figure 1(b). Note
when a half device resistance is being switched, it does not jump directly from low state to high
state or jump from high state to low state, but shows intermediate resistance levels under pulses
with increasing amplitudes. As seen in the figure, the half device resistance changes gradually
with increasing pulse amplitude (greater change with higher pulse amplitude), indicating that
any resistance value between the high and low states can be obtained for the half device by
choosing a proper switching voltage. The � and • in figure 1(c) are the data for the voltage scan
from negative to positive, where with +15 to +22V pulses applied to the device, the left half
switched down and the right half switched up, with the switching down happening earlier, so
that Rtotal switched down first and then switched back to the high value as seen in figure 1(b).
In figure 1(c) it is seen that the switching behaviours of the two halves are nearly mirror images
of each other, supporting the symmetric nature of the fabricated device and confirming that
symmetry is involved in the full device switching behaviour.The sum of the half device resistances
in figure 1(c) is slightly larger than the Rtotal value in figure 1(b) due to the nonzero contact
resistance between Ag and YBCO.
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Figure 2. (a) The ‘table with legs’ symmetric switching loop obtained on a
microfabricated EPIR device (insert is the device structure); (b) The asymmetric
hysteresis curve of the micro-fabricated device obtained at the voltage range of
−9 to +12V and the voltage range of −12 to +9V.

The second symmetric device was fabricated from a approx. 200 nm thick PCMO thin
film, which was grown on an 5 mm × 10 mm sized insulating LAO substrate by PLD and
lithographically patterned into a 40 µm wide stripe. Ag electrodes of 100 µm width and approx.
20 µm separation were deposited on top of the PCMO stripe by DC-sputtering and lithographic
processing (schematically shown in the insert of figure 2(a)). Figure 2(a) gives the pulse switching
hysteresis loop of the micro-fabricated device indicating that this symmetric device also shows
resistance switching. The hysteresis loop of figure 2(a) is similar in shape to that of figure 1(b),
and exhibits the two-lobed ‘table with legs’ type diagram, which is characteristic of such a
symmetric device and is distinguished from the hysteresis loops of asymmetric EPIR devices.
Certain regions on the R versus pulse voltage curve in figure 2(a) are more-or-less horizontal,
indicating that little or no resistance switching is taking place. Other regions have a steep R
versus pulse voltage slope with respect to the horizontal axis and indicate a ‘transition region’
in which the resistance is switched by the applied pulses. For convenience, we have labelled the
characteristic resistance states in the figure 2(a) as HL+, HL−, LL+ and LL− states, which will
be further addressed later.

The hysteresis data from these two actual devices demonstrates that mirror symmetrical
devices can exhibit resistance switching within certain pulse amplitude conditions. Although
as can be seen from figure 2(a), there is no difference in the total resistance and hence no net
resistance switching of a perfectly symmetric resistive device when pulsed with saturating pulses
of opposite polarities, this does not preclude switching when pulses of different amplitudes are
applied. To demonstrate this, we undertook resistance switching under restricted pulse voltage
ranges. In particular for the second device, the ◦ and - - - - of figure 2(b) show the device hysteresis
loop obtained using a pulse voltage range of from about −9 to +12V, in which the device showed
resistance switching up to larger values under positive pulsing and switching down under negative
pulsing, while as shown in figure 2(b) by the • and ——, using a pulse voltage range of from
about −12 to +9V, the device showed reversed switching polarity: switching up under negative
voltage pulsing and switching down under positive voltage pulsing. In figure 2, it is observed
that reducing the voltage at the bottom of the ‘transition region’ results in a horizontal line
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Table 1. The switching of resistance elements at different states of the
planar device.

Pulse Voltage (V) State RR (k�) RF (k�) RL (k�) R (k�)

8.7 LL+ 19.8 0.8 46.7 65.5
11.7 HL+ 105.5 0.8 27.4 134.4
−8.2 LL− 25.6 0.6 28.4 53.9

−10.6 HL− 24.5 1.7 104 126.2

(no switching) that continues across to the bottom of the transition region of the opposite polarity,
instead of going back in the transition region where the resistance has been switched down. This
suggests that resistance switching by the short switching pulses is thermodynamically irreversible
and might be of first order.

The resistance elements in the planar device of figure 2 with the device in the HL+, HL−,
LL+ and LL− states were also measured by the four-point resistance method and listed in table 1,
which shows the variation of the resistance of the device R, and the three individual resistance
regions: RL the resistance of left interface region near the electrode, RR the resistance of right
interface region near the electrode, and RF the resistance of the PCMO film between the electrode
regions. The four-point resistance results in table 1 show that roughly 98% of the switching occurs
in the interface region while, 2% is a bulk phenomena. These results have been further confirmed
by direct scanning Kelvin probe microscopy resistance profile analysis [13].

3. Symmetric device modelling

3.1. Symmetric device model

For analysis, we chose as a theoretical model an idealized device that has reflection (mirror
image) symmetry. Figure 3(a) showed the schematic of a model symmetric device consisting
of two identical half-parts, which was used for the numerical simulation of the device. The left
half of the device, A–O, consists a top terminal electrode A in contact with a functional oxide
switching layer, which is made on a bottom electrode. A reference electrode O is connected to
the bottom electrode. The right half-part of the device B–O is structurally identical to the left
half, A–O.

Either of the two half-devices can be viewed as a two-electrode device, which is not
symmetric. We propose a resistance switching hysteresis behaviour of the left half-device as
shown in figure 3(b). For simplicity, we have assumed that in the transition region, the half-
device resistance varies linearly with the pulse voltage drop across it, and that switching does
not take place for decreasing pulse amplitude. For the resistance switch hysteresis loop of
RA−O, the resistance across A–O is affected by the applied pulse from A to O (VA−O). An
increasing positive pulse voltage VA−O of 5–6V is assumed to gradually switch RA−O from
10 � down to 5 �, and a negative voltage of −5 to −6 V gradually switch RA−O up from 5 to
10 �. For voltage between 5 and 6V, and between −5 and −6V, the half device resistance has
resistance values between 5 and 10 � following the resistance versus pulse voltage curve in the
figure. The right half-device, B–O, is identical to the left half-device, however, by setting the
positive direction in the O–B direction, the right half-device B–O shows a similarly shaped,
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Figure 3. (a) a schematic of the modelled symmetric device; (b) the switching
hysteresis loop of the half device A–O (V = VA−O, R = RA−O), which is mirror
image of (c) the loop of half device O–B (V = VO−B, R = RB−O).

but mirror image hysteresis loop RB–O versus VO−B to that of the left half A–O as shown
in figure 3(c).

Figure 4 shows a computer simulation of the hysteresis curve of resistance versus pulse
voltage for the whole two terminal A–B device. Note that to obtain the whole device the two
MIRROR halves are connected in series, i.e. A–O is connected to O–B. In calculating the
applied pulse voltage that causes the switching, we calculate the voltage across each of the
half-devices taking into account the resistance of each of the two parts. Obviously switching
history is important in determining the voltage across each half at each point in the hysteresis
curve, and this fact is built into the computer simulation.

We begin the computer simulation with both half-devices in the high resistance state. For
the full device, the pulse voltage ranges between ±18V and is increased (or decreased) by 0.5V
for each point on the curve, producing the hysteresis curve of figure 4. The points numbered 1
through 11 and the arrowheads indicate the resistance states and the switching sequence in the
hysteresis loop. The starting point is labelled as the HH state, indicating both halves are in high
resistance state. When the switching is stabilized, the characteristic HL+, HL−, LL+ and LL−
resistances states of figure 2(a) are reproduced in the modelling and are labelled in figure 4.
The model results show that the HL± states are with one half high and the other half low in resis-
tance, and the LL+ and LL− states are identical with both halves low in resistance. In the cycle,
points 3 through 11 reproduce the unique ‘table with legs’ shaped hysteresis loop of figure 2(a).
Note that in this cycle there are more than just two high and low (‘on’ and ‘off’) resistance states.
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Although both HL+ and HL− are at 15 �, they are different states of the device that are mirror
to each other and respond differently to external pulses. This simulation clearly confirms that a
symmetrically constructed EPIR device can indeed switch resistance if the switching pulses are
within certain limits.

As we have experimentally observed, a half-device is asymmetrical, and generally the
switching up voltage for RA−O begins at a different amplitude from the switching down voltage.
To examine this general result, the model was changed such that the starting negative switch
voltage was −7V and the saturating negative switching voltage was −8V. Thus the starting
and saturating negative switch voltages have different absolute values from the corresponding
positive switch voltages. The hysteresis loop of this device in the full voltage range is shown
in figure 5(a) and is very similar to that of figure 4. In these ‘table with legs’ hysteresis loops,
the switching voltages are well defined, similar to that of the half devices, so that the symmetric
device can be easily used in actual applications.

The resistance change of each of the two-half devices of figure 5(a) as a function of pulse
voltage VA−B is shown in figure 5(b), and it is seen that their switching behaviours are mirror
images of each other, similar to the experimental observation in figure 1(c).

We also calculated the bi-polar switching characteristics of the modelled device under
selected pulse voltages, which are shown in figure 5(c). We first use a large positive voltage pulse
across A–B (first training) to set the device to the HL+ state, and then we subject the device to
alternate positive and negative pulses. As shown in the figure, we can switch the device resistance
RA−B back and forth between 15 and 10 � with alternate +16 and −13V pulses. We can then
apply a large negative VA−B (second training) and then again apply alternate +13 and −16V
pulses to the device with RA−B switching back and forth between 10 and 15 �. Note the device
now switches to the low resistance state with positive pulses and to the high resistance state with
negative pulses, which is opposite switching polarity to that seen after the first training. This
result indicates the direction of resistance change under switching polarity can be controlled in
an EPIR device.
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Figure 5. Computer calculations on the structurally symmetric device A–B:
(a) the symmetric ‘table with legs’ switching hysteresis loop (point 3–11) is
reproduced from the simulation; (b) the hysteresis curves of the half devices
during the test of (a); (c) bi-polar like switching behaviour of A–B after training
with a single voltage pulse: initial training +20V, second training −20V; (d) the
asymmetric hysteresis curve of A–B obtained from a restricted voltage range (the
apparent asymmetry can be reversed by using a different voltage range).

The polarity dependant switching behaviour seen in figure 5(c) can also be demonstrated
in the switching hysteresis loop test. As shown in figure 5(d), scanning pulse voltages between
−14 and +18V will result in a resistance switching loop in which a positive pulse switches RA−B

up, and a negative pulse switches RA−B down. Scanning pulse voltages between −18 and +14V
will result in a hysteresis loop of the opposite polarity.

3.2. Symmetric device model fitting experimental results

Figure 6 shows the result of a simulation where we used a small fixed resistance to represent the
bulk of the PCMO film, and two switchable interface resistances to represent the two Ag/PCMO
interface region resistances. The two interfaces are mirror to each other in the device. By adjusting
the switching element parameters, we obtained the result shown in figure 6(a) (the small switching
contribution from the bulk is neglected here, but will be addressed elsewhere). The solid curve
in the figure is the R versus pulse voltage loop obtained under full pulse voltage ranges, which
is quantitatively in good agreement with the experimental results of figure 2(a). We further
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Figure 6. A simulation result that is quantitatively agree with the experimental
results in figure 2; (a) a theoretical simulation of the symmetric device switching
hysteresis in the full voltage range; panels (b) and (c) in different restricted voltage
ranges.

simulated the switching under the partial voltage ranges, with the results shown by the - - - -
in the R versus pulse voltage curve of figure 6(a). A clearer representation is shown in figure
6(b) and (c), where applied pulses with small negative amplitude and large positive amplitude
will result in a polar-like switching where positive pulses switch the device resistance up and
negative pulses switch the device resistance down as seen in figure 6(b).Applied pulses with large
negative amplitude and small positive amplitude will result in a different polar-like switching
where positive pulses switch the device resistance down and negative pulses switch the device
resistance up as seen in figure 6(c). These results are also quantitatively in good agreement with
the experimental results in figure 2(b).

3.3. A summary of the symmetrical model

The model discussed in the above sections has confirmed the symmetric EPIR device properties.
This new model is started with two completely identical half parts, which are reversely
connected together. It is found that the physically symmetric M–PCMO–M device can exhibit
resistance switching under the application of voltage pulses of different amplitude and of
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varying polarities and show a symmetric switching hysteresis loop. Two restricted voltage range
resistance hysteresis loops of the device that are polar-like by themselves, but are mirror image
of each other, can be obtained by selecting different voltage ranges as seen in figure 5(d),
figure 6(b) and (c).

4. Multi-switching element property applications

Finally, there is another important prospective from the multi switching element nature of the
EPIR device: it can be used to develop future multi state memory devices. The symmetric device
as in figure 6(a) can be switched to three different intrinsic memory states based on the high and
low states of its two interfaces: HL−, HL+ and LL± states. More states can be demonstrated in
an EPIR device if we include the bulk resistance switching. For practical device application, it
is not limited to be a symmetric device. Understanding the multi-element and multi-state nature,
and knowing that the resistance switching of the different elements does not need to happen at
the same time, we can design and fabricate an EPIR device in which all the states are different in
resistance as shown in figure 7. Here we model RLwith a smaller switching voltage than RR. Both
interface regions having different high and low resistance values. Under a small negative voltage,
RLis switched up and the device goes to HH− state (with both interface high in resistance); under
a high negative voltage, RR is switched down and the device goes to HL− state; under a small
positive voltage, RL is switched down and the device goes to LL+ state; and under a high positive
voltage, RR is switched up and the device goes to HL+ state. The switching of the two interface
resistances can result in a two-bit device with four distinct memory states: HH−, HL−, HL+, and
LL+ state. We have recently observed similar behaviour by changing the oxygen concentration in
a PCMO thin film grown on Pt/TiN/SiO2/Si substrates [14]. Furthermore, engineering different
resistance switching parameters and values of the two interfaces and the bulk resistance may
generate more states for the EPIR device. The modelling presented in this paper, although very
simple, is demonstrated to be a very powerful tool for studying the EPIR effect.
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5. Discussion of the symmetry issue

The symmetry question for an EPIR device has been addressed here and clarifies a controversy
in EPIR research that alleges a violation of a fundamental law of physics: the conservation of
parity [7].

As an EPIR device is an electrical device, we expect that parity conservation should hold for
such a device. It is intuitive to think that if a device is originally constructed to be symmetrical,
there should be no resistance switching; conversely, if resistance switching is observed, the device
must be constructed to be asymmetrical. However, this study demonstrates that asymmetry in
the construction of the device is not necessary for resistance switching, as long as the switching
voltages are within certain limits (e.g., one at saturation, and the other in some narrow range
less than saturation). The study presented in this paper clearly shows that an EPIR device that is
constructed symmetrically can still exhibit resistance switching.

Some of the important results are:

1. The EPIR effect is not limited to resistance switching at only one of the two interfaces
between the metal electrodes and PCMO. Our results clearly show resistance switching
at both of the interfaces of the device under certain values of the switching voltage, can
result in overall resistance switching of the device. There is also an addition of resistance
switching in the bulk [9, 13] of the PCMO thin film.

2. The resistance switching in an EPIR device does not necessarily have to be polar. This is
shown for the experimental results in figure 2(a) and the simulation in figure 6(a).

3. A symmetrically constructed device can show a polar-like switching behaviour under certain
conditions such as shown in figure 6(b) depending on switching voltage history.

6. Conclusions

We have demonstrated, both by experiment on fabricated structurally symmetric EPIR devices,
and by simulation using an ideal symmetric model, that multi-state resistive switching in a
structurally symmetric EPIR device is possible under certain well-defined pulsing conditions.
We have also found an important feature of a symmetric EPIR device: its switching polarity can
be selected and engineered simply by controlling pulsing conditions. These properties indicate
the EPIR devices presented here have application as multi-state resistive memory devices.

After demonstrating a symmetric device can switch, it is still to be resolved as to exactly how
the resistance of an oxide material sandwiched between two metal electrodes is hysteretically
switched under the application of short electric pulses. We have recently performed some research
on this topic, which will be published elsewhere [14].
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